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The shallow water equations

We are interested in this lecture in issues concerning the
well-posedness of the initial-boundary value problem for the
inviscid Shallow Equations (SW) in a rectangle, a problem
closely related to the Primitive Equations.
We consider the linearized inviscid SW equations.

(1)


ut + u0ux + v0uy + gφx − fv = 0,
vt + u0vx + v0vy + gφy + fu = 0,
φt + u0φx + v0φy + φ0(ux + vy ) = 0;

and the fully nonlinear inviscid SW equations

(2)


ut + uux + vuy + gφx − fv = 0,
vt + uvx + vvy + gφy + fu = 0,
φt + uφx + vφy + φ(ux + vy ) = 0.
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For (1) we assume without loss of generality that u0 >, v0 > 0,

Φ0 > 0 and we exclude the non generic cases where

(3) u2
0 = gΦ0, or v2

0 = gΦ0, or u2
0 + v2

0 = gΦ0.
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In the linearized case, the issue was fully discussed in [HT1]
using the linear semi group theory. For that purpose we write
(1) in the form

(4) Ut + E1Ux + E2Uy + BU = 0,

where U = (u, v , φ)t , BU = (−fv , fu,0)t and

E1 =

u0 0 g
0 u0 0
φ0 0 u0

 , E2 =

v0 0 0
0 v0 g
0 φ0 v0

 .

We observe that (4) is Friedrichs symmetrizable, i.e. E1, E2
admit a symmetrizer S0 = diag(1,1,g/φ0).
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By direct calculation with the help of Matlab, we find that E−1
1 E2

is diagonalizable:

(5) P̂−1· E−1
1 E2· P̂ = diag(λ1, λ2, λ3),

where P̂ has a complicated expression, whereas

P̂−1 =


v0

2κ0
− u0

2κ0

1
2

− v0
2κ0

u0
2κ0

1
2

u0v0
u2

0+v2
0

v2
0

u2
0+v2

0

gv0
u2

0+v2
0

 ,

where κ0 =
√

g(u2
0 + v2

0 − gφ0)/φ0, and

(6) λ1 =
u0v0 + φ0κ0

u2
0 − gφ0

, λ2 =
u0v0 − φ0κ0

u2
0 − gφ0

, λ3 =
v0

u0
.
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Therefore, we can conclude that E−1
1 E2 is diagonalizable over

C. The diagonalization over R depends on the sign of
u2

0 + v2
0 − gΦ0.

The study conducted in [HT1] shows that there are 5 cases,
essentially 3.

(7)


j = 1,2,3,4, u2

0 > or < gφ0, v2
0 > or < gφ0

but u2
0 + u2

0 − gφ0 > 0,
j = 5 u2

0 + v2
0 − gφ0 < 0 implying

u2
0 < gφ0, v2

0 < gφ0.
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(i) In the case where u2
0 + v2

0 − gΦ0 < 0, the equation is partly
hyperbolic and partly parabolic.

(ii) In the other cases, the time independent part of the
equation is fully hyperbolic, and the boundary conditions
are determined by the direction of the characteristics.

(iii) We also have partial results for the nonlinear SW
equations:

- The case u2
0 > gΦ0, v0 > gΦ0, was studied in [HPT].

- The other cases u2
0 > or < gΦ0, v2

0 > or < gΦ0, but
u2

0 + v2
0 − gΦ0 > 0, raise additional difficulties. They were

studied in the recent article [HT4].
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The inviscid fully nonlinear shallow water equations (SWE) read

(8)


ut + uux + vuy + gφx − fv = 0,
vt + uvx + vvy + gφy + fu = 0,
φt + uφx + vφy + φ(ux + vy ) = 0.

Setting U = (u, v , φ)t , we write (25) in compact form

(9) Ut + E1(U)Ux + E2(U)Uy + `(U) = 0,

where `(U) = (−fv , fu,0)t , and

E1(U) =

u 0 g
0 u 0
φ 0 u

 , E2(U) =

v 0 0
0 v g
0 φ v

 .
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The assumptions and difficulties

(i) We assume that u2 < gΦ, v2 > gφ and u2 + v2 > gφ
with u, v , φ > 0. More precisely

(10)

{
c0 ≤ u, v , φ ≤ c1,

u2 + v2 − gφ ≥ c2
2 , u2 − gφ ≤ −c2

2 , v2 − gφ ≥ c2
2 ,

for some given positive constants c0, c1, c2 > 0.
In this case the flow in subsonic in the x direction and
supersonic in the y direction. This will produce
characteristics entering different sides of the rectangle and
this will raise some compatibility issues at the corners
and at t = 0.
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(ii) The boundary conditions are not directly related to the
linearized case. Their linearization is totally different from
the boundary conditions for the linearized equation, and
they do not produce a well-posed problem for the
linearized equations.

(iii) We establish the short term existence of solutions in the
vicinity of a stationary solution as done in [BS07] in the
case of smooth domains.

[BS07]S. Benzoni-Gavage, and D. Serre, Multidimensional hyperbolic partial differential equations, Oxford
Mathematical Monographs, First-order systems and applications, The Clarendon Press, Oxford University Press,
Oxford, 2007.
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Stationary Solutions independant of y

We can construct a stationary solution Us = (us, vs,Φs),
independent of y and satisfying (10):

(11)


uux + gφx − fv = 0,
uvx + fu = 0,
(uφ)x = 0.

and consequently

(12)


uφ = κ1,

v = −fx + κ2,

u2 + 2gφ = −f 2x2 + 2fκ2x + κ3,

where κ1, κ2, κ3 are constants.
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More generally, we assume that a stationary solution Us(x , y)
exists for all (x , y) ∈ (0,1)x × Ry and satisfies

(13) E1(Us)Us,x +E2(Us)Us,y + `(Us) = 0, ∀ (x , y) ∈ (0,1)x ×Ry .

The reason why we assume Us exists for all y ∈ Ry instead of
y ∈ (0,1)y is that, in relation with the compatibility issue, we are
going to extend the problem into the channel domain
(0,1)x ×Ry and the assumption that Us exists for all y ∈ Ry will
simplify our presentation.
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Technicalities
We choose κ0,1, κ0,2, κ0,3 > 0 and δ > 0 such that
(14)

c0 ≤ κ0,1 ± c3δ < c1, c0 ≤ κ0,2 ± c3δ < c1, c0 ≤ κ0,3 ± c3δ < c1,

(κ0,1 + c3δ)2 − g(κ0,3 − c3δ) ≤ −c2
2 ,

(κ0,2 + c3δ)2 − g(κ0,3 − c3δ) ≥ c2
2 ,

where c0, c1, c2 > 0 are as in (10) and c3 is a constant
appearing in the proof.
In what follows, we think of the stationary solution Us in a more
general form (i.e. Us depends on both x and y ), and we choose
Us = (us, vs, φs) such that

(15) | us − κ0,1 |≤ δ/4, | vs − κ0,2 |≤ δ/4, | φs − κ0,3 |≤ δ/4,

and by (14), Us satisfies the mixed hyperbolic condition (10).
For convenience, we write

(16) | Us − κ0 |≤ δ/4, ∀ (x , y) ∈ (0,1)x × Ry ,

to stand for (15), where κ0 = (κ0,1, κ0,2, κ0,3), and the κ0,i
(i = 1,2,3) are positive constants satisfying (14).
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We set U = Us + Ũ and substitute these values into (9); we
obtain a new system for Ũ, and dropping the tildes, our new
system reads:

(17) LUs+U U = −LUs+U Us,

where the operator L is defined by

(18) LW U = Ut + E1(W )Ux + E2(W )Uy + `(U).

We supplement (17) with the following initial and boundary
conditions:

(19) U = U0(x , y), on t = 0, U = G(x , t), on y = 0, b(Us + U) = Π(y , t),

where

b(Us+U) =


u + us + 2

√
g(φ+ φs) = π1(y , t), on x = 0,

v + vs = π2(y , t), on x = 0,
u + us − 2

√
g(φ+ φs) = π3(y , t), on x = 1,

Π =

π1
π2
π3

 , G =

g1
g2
g3

 .
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We regard the initial condition U0 = Us + Ũ0 as a small
perturbation of the stationary solution, and after dropping the
tilde, we choose the small perturbation U0 satisfying

(20) | U0 |≤ εδ,

for some ε > 0 small enough.
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Compatibility conditions on the data (1)

In order to be able to solve the system (17) we need to
introduce some technical conditions (see [BS07]). First we
require that U = 0 is a solution of the special IBVP (17) with
zero initial data and boundary data Π(y , t = 0) and G(x , t = 0),
which amounts to asking that the following compatibility
conditions are satisfied by Us:

b(Us) =


us + 2

√
gφs = π1(y ,0), on x = 0,

vs = π2(y ,0), on x = 0,
us − 2

√
gφs = π3(y ,0), on x = 1,

Us = G(x ,0), on y = 0.

(21)
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Compatibility conditions on the data (2)

The other compatibility conditions are classically obtained by
writing that the time derivatives of the equation (9) are satisfied
at t = 0, where all quantities are (can) be compared in terms of
the data(Rauch-Massey, Smale, Temam)

Rewrite (9), (17) as

(22) Ut = H(U + Us)− E1(U + Us)Ux − E2(U + Us)Uy − `(U),

where we denote by H(U + Us) the right-hand side of (17), that
is −LUs+UUs.
Now, if U is continuous, then necessarily at t = 0, there should
holds

(23) b(Us + U0) = Π(y ,0), G(x ,0) = U0|y=0.
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If U is C1 up to the boundary, then at t = 0,

∂t Π(y ,0) = db(Us + U0) · ∂tU(x ,0)

= db(Us + U0) ·
(
H(U0 + Us)− E1(U0 + Us)U0,x

− E2(U0 + Us)U0,y − `(U0)
)
,

∂tG(x ,0) = ∂tU(x ,0) = H(U0 + Us)− E1(U0 + Us)U0,x

− E2(U0 + Us)U0,y − `(U0),

where db(Us + U) is a matrix-valued function, the gradient of
the function b(Us + U) with respect to the variable U.

Similarly, additional conditions are required if U is Cm−1 up to
the boundary.

Compatibility conditions on the data (3)

We also need some similar compatibility conditions at y = 0.
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The main result

Theorem 1
We are given a rectangular domain Ω = (0,1)x × (0,1)y , a real
number T > 0, an integer m ≥ 3, the stationary solution
Us ∈ Hm+1(Ω) satisfying (15) (i.e. the mixed hyperbolic
condition (10)), the initial data U0 = (u0, v0, φ0) belonging to
Hm+1/2(Ω), the boundary data G = (g1,g2,g3) belonging to
Hm+1/2((0,1)x × (0,T )) and Π = (π1, π2, π3) belonging to
Hm+1/2((0,1)y × (0,T )). We assume the condition (21) and the
suitable conditions which are necessary to obtain a smooth
solution in Hm(Ω× (0,T )). We also assume that the initial data
U0 is small enough in the space Hm(Ω). Then there exists
T ∗ > 0 ( T ∗ ≤ T) such that the system (17)-(19) admits a
unique solution U ∈ Hm(Ω× (0,T ∗)).
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Idea of the proof

1) Make the initial and boundary conditions homogeneous by
subtracting a suitable lifting Ug of the data (classical
procedure, see e.g. [BS07]).

2) Extend the problem from Ω× (0,T ) to
Q× (0,T ),Ω = (0,1)x × (0,1)y ,Q = (0,1)x × Ry .
Here we use the classical Babitch extension procedure in
such a way that the extension of the initial and boundary
values satisfy the compatibility conditions.

3) For the extended problems in Q, the domain is smooth
and the results of [BS07] directly apply.
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Remarks

(i) The compatibility conditions are explicitly written in the
article [HT4] for the case where m = 3 (solutions in
Hm(Ω× (o,T∗))).

(ii) A basic principle in physics is that the physical laws should
be independent of the reference frame chosen, which
gives us the so-called invariance property of SW
equations. The invariance property enables us to solve the
fully hyperbolic case (that is u2 + v2 > gφ) completely.

(iii) One key is our proof is to extend original IBVP (9) in a
non-smooth domain (rectangle) into a new IBVP problem
in a smooth domain (channel) and then apply the results in
[BS07]. We could also solve the IBVP (9) in some other
non-smooth domains as long as the non-smooth domain
could be extend to a smooth domain in a suitable way.
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The invariance property of SW equations
Let T be 2× 2 orthogonal matrix and set

(24)
(

x ′

y ′

)
= T

(
x
y

)
,

(
u′

v ′

)
= T

(
u
v

)
,

then (u′, v ′, φ) also satisfies the SW equations:

(25)


u′t + u′u′x ′ + v ′u′y ′ + gφx ′ − fv ′ = 0,
v ′t + u′v ′x ′ + v ′v ′y ′ + gφy ′ + fu′ = 0,
φt + u′φx ′ + v ′φy ′ + φ(u′x ′ + v ′y ′) = 0.

We also have
u2 + v2 = u′2 + v ′2.

Hence, in the fully hyperbolic condition u2 + v2 > gφ, with a
suitable coordinate transformation, we are able to find

v ′2 > gφ.
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The choice of the domain
The 2d nonlinear inviscid SWE are said to be supercritical in
the direction~l = (α, β) with α2 + β2 = 1 (α, β are constants) if
the following holds

(26) (uα + vβ)2 > gφ.

Note that in our case u2 < gφ, v2 > gφ with domain
(0,1)x × (0,1)y , the SWE is supercritical in the direction (0,1)
and hence the boundary conditions only need to be assigned at
y = 0. This enables us to extend the rectangular domain into a
channel (smooth) domain.
Some other non-smooth domain may also have such property.
For example, we could solve the IBVP (9) in the following
curvilinear polygonal domain.
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Thank you for your attention!
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