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Feature Data Assimilation

”A feature can be thought of as a low-dimensional representation of the
data, e.g., a principal component analysis (PCA) (Jolliffe, 2002), a Gaussian
process model (Rasmussen and Williams, 2006), or a Gaussian mixture model
(McLachlan and Peel, 2000).
Features are either constructed a priori, or learned from data. The same ideas
carry over to data assimilation.
One can extract low-dimensional features from the data and then use the

features to define a feature-based likelihood, which in turn defines a
feature-based posterior distribution.”

-Morzfeld, Adams, Lunderman, Orozco, NPG 2018
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Feature DA - history

Context: history matching from geophysics. A kernel based EnKF is used to
represent the image above in ”feature space”, and a minimization problem is
solved to return an ensemble estimate in state space.
Sarma and Chen, SPE 119177, 2009
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Feature DA - history

Context: field alignment. Rather than rely on DA to correct the magnitude of the
state at different locations, one looks for a (regularized) warping of the underlying
grid before carrying out the analysis step.
Ravela, Emanuel and Mclaughlin, Physica D 2006
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Feature DA - recent history

M., Santitissadeekorn, Jones - feature DA using SMC-ABC

Weiss, Grooms - (?) feature DA assimilating observations only of vortex locations

Morzfeld, Adams, Lunderman, Orozco - feature DA using ”perturbed
observations”
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Assimilation in the Unstable Subspace - AUS

Framework designed for the extended Kalman Filter, that observes only a reduced
number of unstable directions.
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Particle filters

The particle filter sequentially approximates the distribution of x at time n by a

set {x(i)
n , w

(i)
n }, i = 1, . . . , N of particles and weights.

The weight update for the i-th particle is
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where R is the covariance matrix for the observations.

Observe that the key quantity by which the particle filter gains information is the

innovation yon −Hx
(i)
n .
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Goal

Initial goal to create a feature DA method where, instead of taking the full
observations, one projects to a basis for the largest p local Lyapunov exponents.

That is, from another PoV, to create a ”PF-AUS” method.
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Identifying observation space as a subspace of model space

The state variables are x ∈ Rd, the observations y ∈ Rm, the observation operator
H is linear.
Goal: identify the observations in a subspace of model space.
Assuming H is full rank one can identify the projection PH = HT (HHT )−1H,
PH : Rd → Rd.
Defining ỹ = HT (HHT )−1y and R̃ = H−1R(HT )−1, one then has

(ỹ − PHx)
T
R̃−1 (ỹ − PHx) = (y −Hx)

T
R−1(y −Hx) .

A particle filter in which the weight update step uses ỹ as the observations, PHx
as the state and R̃ as the observation covariance matrix is identical to the
’standard’ particle filter.

This is a precursor for the conversion of the problem into
”feature space”.
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Projected Particle Filtering - naive approach

Consider an orthogonal projection Pn = QnQ
T
n , where Pn ∈ Rd×d and

Qn ∈ Rd×p. Construct an approximation of the particle filter update step, but
employing approximations of the innovation and obs covariance in Rp.
First attempt: define

R̃(x, y) = exp
(
[Pn (ỹ − PHx)]

T
R̃−1 [Pn (ỹ − PHx)]

)
=exp

([
QT

n (ỹ − PHx)
]T

QT
n R̃

−1Qn

[
QT

n (ỹ − PHx)
])

.

Success: the state vector has been expressed as QT
n (ỹ − PHx) ∈ Rp and the

covariance matrix as QT
n R̃

−1Qn ∈ Rp×p.
This approach, with a suitable projection Pn, should reduce the effective
dimension of the data assimilation problem.
But: While Pn is a projection, and PH is a projection, PnPH is not a projection.
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Projected Particle Filtering

Define PH
n as the orthogonal projection onto the intersection of the subspaces

spanned by the columns of Qn and the rows of H.
PH
n may be approximated by e.g. POCS, Dykstra’s projection algorithm. Then,

the innovation has been successively replaced by

y −Hx→ ỹ − PHx→ PnP
H
n (ỹ − PHx)
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Numerical Example

We take L96 with F = 4, 40 state variables.
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Numerical Example
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Future Work

Assimilation in both the P− and (I − P )−spaces!
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