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In theory there is no difference 
between theory and practice. 

In practice there is.

Yogi Berra
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Optimization Status

Optimization has become increasingly 
widespread as computational science has 
expanded.
Variety of forms/applications including inverse 
problems, parameter estimation, energy 
minimization, etc.
Wide range of problems with diverse 
characteristics, including nonlinear, nonconvex, 
mixed integer, bi-level, stochastic, global, etc.
Most problems exceedingly difficult to analyze 
theoretically, yet solutions must be obtained.
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Challenges in simulation-based optimization

Objective function is smooth
Often true, but simulations can create noisy 
behavior

Twice continuously differentiable
Difficult to prove

Constraints
Users can sometimes over-specify or incorrectly 
guess constraints
Require strict feasibility

Computationally expensive objective functions
Dominant cost is evaluation of objective function
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Chemical Vapor Deposition 
Control
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Heater zones

Silicon 
wafers (200 
mm dia.)

Quartz pedestal

Thermocouple

• Temperature uniformity across 
the wafer stack is critical

• Independently controlled heater 
zones regulate temperature

• Wafers are radiatively heated
• Design parameters:

• Number of heater zones
• Size/position of heater zones
• Wafer pitch
• Pedestal configuration
• Insulation thickness
• Baseplate cooling

The design of a small-batch fast-ramp LPCVD 
furnace
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Standard least squares problem formulation

Finding temperatures involves solving a heat 
transfer problem with radiation
Adjusting tolerances in the PDE solution 
trades off noise with CPU time
Larger tolerances lead to

Less accurate PDE solutions
Less time per function evaluation

min f(p) =
∑

i

(Ti(p; x)− Ttarget)
2
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In Theory You Have Derivatives  ...

But in practice you don’t
Lack of derivatives reduces the choice of 
optimization methods one can readily use.

Need to consider alternative methods
Accurately computing derivatives much 
harder than one might think at first glance
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Target Temp=1027 C

Optimized power distribution enhances wafer 
temperature uniformity for steady-state 

Simulation of Equipment Design Optimization in Microelectronics Manufacturing, J.C. Meza, 
C.H. Tong, C.D. Moen, Proc. 30th Annual Simulation Symposium, Atlanta, GA, April 7-9, 1997.
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Wafer Temperatures for Optimal Powers 
Obtained by TRPDS
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P.D. Hough and J.C. Meza, A Class of Trust Region Methods for Parallel Optimization.  
SIAM Journal of Optimization, Vol. 13, No. 1, pp. 64-282, 2002.

Automatic 
Differentiation
Pattern Search 
Method
Parallelization 
combined within a 
trust-region 
framework
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Supernova Spectra

Supernova (SN) 
cosmology is the most 
powerful and best 
proven technique to 
date for probing the 
dark energy 
Most SN reach 
maximum light a few 
weeks after outburst
Light curves evolve on 
day to week time scales
Fade away over months 
to years.
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Spectra
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Figure 1 Spectra of SNe, showing early-time distinctions between the four major types and

subtypes. The parent galaxies and their redshifts (kilometers per second) are as follows: SN 1987N

(NGC 7606; 2171), SN 1987A (LMC; 291), SN 1987M (NGC 2715; 1339), and SN 1984L (NGC

991; 1532). In this review, the variables t and τ represent time after observed B-band maximum

and time after core collapse, respectively. The ordinate units are essentially “AB magnitudes” as

defined by Oke & Gunn (1983).

conclusions are based on the few existing late-time spectra of SNe Ib, and no

other possibly significant differences have yet been found. At this phase, SNe

II are dominated by the strong Hα emission line; in other respects, most of

them spectroscopically resemble SNe Ib and Ic, but the emission lines are even

narrower and weaker (Filippenko 1988). The late-time spectra of SNe II show

substantial heterogeneity, as do the early-time spectra.

At ultraviolet (UV) wavelengths, all SNe I exhibit a very prominent early-

time deficit relative to the blackbody fit at optical wavelengths (e.g. Panagia

1987). This is due to line blanketing by multitudes of transitions, primarily

those of Fe II and Co II (Branch & Venkatakrishna 1986). The spectra of

SNe Ia (but not of SNe Ib/Ic) also appear depressed at IR wavelengths (Meikle

Composition
Density
Temperature
Energy deposited
Kinetic energy
Environment

Spectra indicative of 
rapid ejecta outflow
up to 0.1c.
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Introduction to Spectrum Synthesis 

Spectrum synthesis is the computation of a 
theoretical spectrum of a model atmosphere based 
upon the known laws of physics. 
The goals of spectrum synthesis for supernovae are 
three-fold:

Calculate the spectra of detailed explosion models, 
compare with observations and falsify or validate the 
models
Calculate various “toy models” in order to predict or 
explain a set of observations
Parameterize a model atmosphere and calculate the 
subsequent spectra, compare these directly to 
observation 

Courtesy of Peter Nugent, LBNL
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Problem is a least squares problem

A simulation code produces synthetic spectra 
based on inputs that describe the elements 
that are present in the model atmosphere

Goal is to find the correct set of elements 
that best fit the synthetic spectra to the 
observed data

Must have an solution within 24 hours

No analytic derivatives available
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In Theory The Functions are Inexpensive ...

But in practice the objective functions can 
dominate the total cost of the solution
May not matter how expensive the 
optimization algorithm is as long as you can 
minimize the total number of function calls
Sometimes convergence is dictated by how 
big your computer budget is and/or time 
constraints
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Real-Time Assessment of Data for SN Factory

Simulation Inputs:
Temperature
Velocity
Density 
Optical depth
Min and Max velocity
Teff

Parallel Pattern Search
Solution found within 1 
hour
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Computational Nanoscience
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Photovoltaic Solar Cells

Solar cells based on inorganic 
nanorods and semiconducting 
polymers
Nanorods can be made of 
CdSe, a semiconducting 
material
Nanorods act like wires, 
absorbing light and generating 
hole-electron pairs
Biggest challenge is cost, ~30 
cents/kWh
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Why do we need simulations

Advances in density functional theory coupled with multinode 
computational clusters now enable accurate simulation of the behavior of 
multi-thousand atom complexes that mediate the electronic and ionic transfers 
of solar energy conversion. These new and emerging nanoscience capabilities 
bring a fundamental understanding of the atomic and molecular processes of 
solar energy utilization within reach.

Basic Research Needs for Solar Energy Utilization,
Report of the BES Workshop on Solar Energy Utilization,April 18-21, 2005
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• Ψi contains all the information needed to study a system

• |Ψi|2 probability density of finding electrons at a certain state

• Ei quantized energy

• Computational work goes as 103N , where N is the number of electrons

Many-body Schrödinger equation

HΨi(r1, r2, ..., rN ) = EiΨ(r1, r2, ..., rN )

H = − h

2m

N∑

i=1

∇2
i +

N∑

i=1

v(ri) +
1
2

∑

i !=j

e2

|ri − rj |
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ρ =
∑ne

i=1 |ψi(r)|2,
∫
Ω ψiψj = δi,j

Etotal[{ψi}] =
1
2

ne∑

i=1

∫

Ω
|∇ψi|2 +

∫

Ω
Vextρ

+
1
2

∫

Ω

ρ(r)ρ(r
′
)

|r − r′ | drdr
′
+ Exc(ρ),

[
−1

2
∇2 + Vext(r) +

∫
ρ

|r − r′ | + Vxc(ρ)
]
ψi = εiψi

Density Functional Theory and the Kohn-
Sham equations
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Hψi = εiψi, i = 1, 2, ..., ne

H =
[
−1

2
∇2 + Vion(r) +

∫
ρ

|r − r′ | + Vxc(ρ)
]

Kohn-Sham Equations

Goal is to find the ground state energy by 
minimizing total energy,
Leads to nonlinear eigenvalue problem:

Etotal

ρ =
∑ne

i=1 |ψi(r)|2,
∫
Ω ψiψj = δi,j
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Solving the Kohn-Sham equations

Self-Consistent Field (SCF) iteration
view as a (large) linear eigenvalue problem
usually used with other acceleration techniques 
to improve (ensure) convergence
convergence theory sparse

Direct Constrained Minimization
minimize the total energy directly
also requires globalization techniques
convergence theory still difficult, but can use 
existing frameworks
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Basic SCF Iteration

{−1
2
∇2 + V (r)}ψi(r) = Eiψi(r)

ρ(r) =
N∑

i

|ψi(r)|2

V (r)

Se
lfc

on
sis

te
nc

y

Most of the work is in 
solving the sequence of 
linear eigenvalue 
problems
Orthogonality constraint 
for the wavefunctions 
must be enforced 
explicitly
May converge slowly and 
sometimes doesn’t 
converge at all

{ψi}i=1,...,N
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In theory ...

Derivatives are available!

Orthogonalization constraints imply that 
we need to find not just one solution but 
an invariant subspace

Working with large-scale problems again 
reduces the number of options available.
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Improving SCF

Construct better surrogate – cannot afford to use 
local quadratic approximations (Hessian too 
expensive)
Charge mixing to improve convergence (heuristic)
Use trust region to restrict the update to stay within a 
neighborhood of the gradient matching point
TRSCF – Thogersen, Olsen, Yeager & Jorgensen (2004)
DCM – Yang, Meza, Wang (2007)
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Electronic Structure Theory

Mathematically, all problems arising in electronic 
structure theory are nonlinear minimization 
problems, with possible lacks of compactness at 
infinity  ... and are subject to a constraint.

C. Le Bris, Proc. of the International 
Congress of Mathematicians (2006)
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Direct Constrained Minimization

Trick is to solve a sequence of smaller nonlinear 
eigenvalue problem 

Minimize energy in a particular subspace

Construct minimization problem so that 
constraints are satisfied automatically

Add trust region to ensure robustness

Resulting method is more robust and faster 
(especially for larger systems)

C. Yang, J. Meza, L. Wang, A Constrained Optimization Algorithm for Total Energy Minimization in 
Electronic Structure Calculation, J. Comp. Phy., 217 709-721 (2006)
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Direct Constrained Minimization

• Assume x(i) is the current approximation

• Idea: minimize the energy in a certain (smaller) subspace

• Update x(i+1) = αx(i) + βp(i−1) + γr(i);

– p(i−1) previous search direction;
– r(i) = H(i)x(i) − θ(i)x(i);
– choose α, β and γ so that

∗ xT
k+1xk+1 = 1;

∗ E(xk+1) < E(xk);

C. Yang, J. Meza, L. Wang, A Constrained Optimization Algorithm for Total Energy Minimization 
in Electronic Structure Calculation, J. Comp. Phy., 217 709-721 (2006)
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Example: Graphene

sampling grid:
• 114 x 114 x 15

10 PCG 
iterations / SCF 
outer iteration
5 inner SCF 
iteration / DCM 
outer iteration
supercell:

40 x 40 x 5

C. Yang, J.C. Meza, B. Lee, and L.W. Wang, “KSSOLV - A MATLAB Toolbox for Solving the Kohn-
Sham Equation,”  ACM Transactions on Mathematical Software, Vol. 36, No. 2, 2009
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Next Steps
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Basic SCF Iteration

{−1
2
∇2 + V (r)}ψi(r) = Eiψi(r)

ρ(r) =
N∑

i

|ψi(r)|2

V (r)
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Overall Complexity

Major computational work 
(for plane wave codes):

3D FFT

Orthogonalization

Nonlocal potential

Parallel efficiencies can be 
quite high

O(N3)

{ψi}i=1,...,N
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Nanoscience Calculations and Linearly 
Scaling Algorithms

Linear Scaling 3D Fragment (LS3DF)

Density Function Theory (DFT) 
calculation numerically equivalent to 
direct DFT

Scales with O(N) in the number of 
atoms rather than O(N3). 

Up to 400X faster than direct DFT

Achieved 442 TFlops/sec on Cray 
XT5 with 147K processors and 225 
TFlops/s on a Blue Gene/P with 
165K processors
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ZnTe bottom of cond. band stateHighest O induced state

Can one use an intermediate state to 
improve solar cell efficiency?

 Single band material 
theoretical PV efficiency is 
30%

 With an intermediate state, the 
PV efficiency could be 60%

 One proposed material 
ZnTe:O
 Is there really a gap?

 LS3DF calculation for 3500 
atom 3% O alloy [one hour on 
17,000 processors] 

 Yes, there is a gap, and O 
induced states are very 
localized.

INCITE project, NERSC, NCCS
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Summary - The Difference Between 
Theory and Practice  ...

Theory gives us the framework for analyzing our 
problems and guides our solutions

Practice gives us the experience of real-world 
problems and helps us improve algorithms

New techniques (as well as old techniques) are 
always arising that should be investigated  

We are in a unique position to contribute 
solutions to emerging problems in energy, 
climate, and many others.
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Thank you!


