A rigorous error analysis framework for slender body theory

Laurel Ohm,
University of Minnesota

-

with Yoichiro Mori, Daniel Spirn

August 9, 2018

What is a slender body?

Direction of motion

(a) Flagella

Direction of motion

(b) Cilia

Slender body theory: setup

Hancock (1953), Cox (1970), Batchelor (1970); Keller/Rubinow (1976), Johnson (1980), Götz (2000)

Slender body theory: setup

Hancock (1953), Cox (1970), Batchelor (1970); Keller/Rubinow (1976), Johnson (1980), Götz (2000)

Slender body theory: setup

Hancock (1953), Cox (1970), Batchelor (1970); Keller/Rubinow (1976), Johnson (1980), Götz (2000)

Slender body theory: setup

Hancock (1953), Cox (1970), Batchelor (1970); Keller/Rubinow (1976), Johnson (1980), Götz (2000)

Slender body theory: setup

Hancock (1953), Cox (1970), Batchelor (1970); Keller/Rubinow (1976), Johnson (1980), Götz (2000)

Slender body theory: setup

Hancock (1953), Cox (1970), Batchelor (1970); Keller/Rubinow (1976), Johnson (1980), Götz (2000)

Slender body theory: setup

Hancock (1953), Cox (1970), Batchelor (1970); Keller/Rubinow (1976), Johnson (1980), Götz (2000)

Slender body theory: setup

Hancock (1953), Cox (1970), Batchelor (1970); Keller/Rubinow (1976), Johnson (1980), Götz (2000)

Slender body theory: setup

Hancock (1953), Cox (1970), Batchelor (1970); Keller/Rubinow (1976), Johnson (1980), Götz (2000)

Slender body theory: building blocks

Stokes flow in \mathbb{R}^{3} resulting from point source at \boldsymbol{x}_{0} of strength \boldsymbol{f} :

$$
u=\frac{1}{8 \pi} \mathcal{S}\left(x-x_{0}\right) f
$$

where the Stokeslet \mathcal{S} is defined by

$$
\mathcal{S}(x)=\frac{\mathrm{I}}{|x|}+\frac{x x^{\mathrm{T}}}{|x|^{3}} .
$$

Slender body theory: building blocks

Stokes flow in \mathbb{R}^{3} resulting from point source at \boldsymbol{x}_{0} of strength \boldsymbol{f} :

$$
u=\frac{1}{8 \pi} \mathcal{S}\left(x-x_{0}\right) f
$$

where the Stokeslet \mathcal{S} is defined by

$$
\mathcal{S}(x)=\frac{\mathrm{I}}{|x|}+\frac{x x^{\mathrm{T}}}{|x|^{3}} .
$$

SBT arises as 1D force density along curve $\boldsymbol{X}(s)$:

$$
8 \pi \boldsymbol{u}^{\mathrm{SB}}(\boldsymbol{x})=\int_{\mathbb{T}} \mathcal{S}(\boldsymbol{x}-\boldsymbol{X}(s)) \boldsymbol{f}(s) d s+\ldots
$$

Slender body theory: building blocks

Fiber integrity condition?

Add doublet as correction:

Slender body theory: building blocks

Fiber integrity condition?
Add doublet as correction:

$$
\mathcal{D}(\boldsymbol{x})=\frac{1}{2} \Delta \mathcal{S}=\frac{\mathbf{I}}{|\boldsymbol{x}|^{3}}-\frac{3 \boldsymbol{x} \boldsymbol{x}^{\mathrm{T}}}{|\boldsymbol{x}|^{5}}
$$

Slender body theory: building blocks

Fiber integrity condition?
Add doublet as correction:

$$
\mathcal{D}(\boldsymbol{x})=\frac{1}{2} \Delta \mathcal{S}=\frac{\mathbf{I}}{|\boldsymbol{x}|^{3}}-\frac{3 \boldsymbol{x} \boldsymbol{x}^{\mathrm{T}}}{|\boldsymbol{x}|^{5}}
$$

Full slender body approximation:

$$
8 \pi \boldsymbol{u}^{\mathrm{SB}}(\boldsymbol{x})=\int_{\mathbb{T}}\left(\mathcal{S}(\boldsymbol{x}-\boldsymbol{X}(s))+\frac{\epsilon^{2}}{2} \mathcal{D}(\boldsymbol{x}-\boldsymbol{X}(s))\right) \boldsymbol{f}(s) d s
$$

Slender body theory: building blocks

Fiber integrity condition?
Add doublet as correction:

$$
\mathcal{D}(\boldsymbol{x})=\frac{1}{2} \Delta \mathcal{S}=\frac{\mathbf{I}}{|\boldsymbol{x}|^{3}}-\frac{3 \boldsymbol{x} \boldsymbol{x}^{\mathrm{T}}}{|\boldsymbol{x}|^{5}}
$$

Full slender body approximation:

$$
8 \pi \boldsymbol{u}^{\mathrm{SB}}(\boldsymbol{x})=\int_{\mathbb{T}}\left(\mathcal{S}(\boldsymbol{x}-\boldsymbol{X}(s))+\frac{\epsilon^{2}}{2} \mathcal{D}(\boldsymbol{x}-\boldsymbol{X}(s))\right) \boldsymbol{f}(s) d s
$$

Shelley-Ueda (2000), Tornberg-Shelley (2004), Smith-Gaffney-Blake (2007), Lauga-Powers(2008),
Spagnolie-Lauga (2011), Smith-Smith-Blake (2010), Pak-Spagnolie-Lauga (2012), Cortez-Nicholas (2012), Olson-Lim-Cortez (2013), Buchmann, et al. (2015)

Questions

How close is the slender body approximation to a true solution?
Objective: Given $f(s)$, approximate the slender body velocity and the flow $u^{\mathrm{SB}}(x), x \in \Omega$

Main difficulty: not immediately clear how to formulate the

 underlying "true solution" as a well-posed PDE
Questions

How close is the slender body approximation to a true solution?
Objective: Given $\boldsymbol{f}(s)$, approximate the slender body velocity $\boldsymbol{u}^{\mathrm{SB}}(s)$ and the flow $\boldsymbol{u}^{\mathrm{SB}}(\boldsymbol{x}), \boldsymbol{x} \in \Omega_{\epsilon}$

Main difficulty: not immediately clear how to formulate the underlying "true solution" as a well-posed PDE.

Questions

How close is the slender body approximation to a true solution?
Objective: Given $\boldsymbol{f}(s)$, approximate the slender body velocity $\boldsymbol{u}^{\mathrm{SB}}(s)$ and the flow $\boldsymbol{u}^{\mathrm{SB}}(\boldsymbol{x}), \boldsymbol{x} \in \Omega_{\epsilon}$

Main difficulty: not immediately clear how to formulate the underlying "true solution" as a well-posed PDE.

To what, exactly, is the slender body expression

$$
8 \pi \boldsymbol{u}^{\mathrm{SB}}(\boldsymbol{x})=\int_{\mathbb{T}}\left(\mathcal{S}(\boldsymbol{x}-\boldsymbol{X}(s))+\frac{\epsilon^{2}}{2} \mathcal{D}(\boldsymbol{x}-\boldsymbol{X}(s))\right) \boldsymbol{f}(s) d s
$$

an approximation?

Slender Body PDE

In $\Omega_{\epsilon}=\mathbb{R}^{3} \backslash \overline{\Sigma_{\epsilon}}$:
$-\Delta \boldsymbol{u}+\nabla p=0$ $\operatorname{div} \boldsymbol{u}=0$

Slender Body PDE

$$
\operatorname{In} \Omega_{\epsilon}=\mathbb{R}^{3} \backslash \overline{\Sigma_{\epsilon}}:
$$

$$
-\Delta \boldsymbol{u}+\nabla p=0
$$

$$
\operatorname{div} \boldsymbol{u}=0
$$

On $\Gamma_{\epsilon}=\partial \Sigma_{\epsilon}$:

$$
\begin{aligned}
\int_{0}^{2 \pi} \sigma n \mathcal{J}_{\epsilon}(s, \theta) d \theta & =\boldsymbol{f}(s), \quad \boldsymbol{\sigma}=\nabla \boldsymbol{u}+(\nabla \boldsymbol{u})^{\mathrm{T}}-p \mathbf{I} \\
\left.u\right|_{\Gamma_{\epsilon}} & =\boldsymbol{u}(s) \quad \text { (unknown but independent of } \theta)
\end{aligned}
$$

At ∞ :

$$
\boldsymbol{u} \rightarrow 0 \text { as }|\boldsymbol{x}| \rightarrow \infty
$$

Why is this the right formulation?

- Force balance:

$$
\begin{aligned}
\int_{\Omega_{\epsilon}} 2|\mathcal{E}(\boldsymbol{u})|^{2} d \boldsymbol{x} & =\int_{\Gamma_{\epsilon}} \boldsymbol{u}(s) \boldsymbol{\sigma} \boldsymbol{n} \mathcal{J}_{\epsilon}(s, \theta) d \theta d s \\
& =\int_{\mathbb{T}} \boldsymbol{u}(s) \boldsymbol{f}(s) d s, \quad \mathcal{E}(\boldsymbol{u})=\frac{\nabla \boldsymbol{u}+(\nabla \boldsymbol{u})^{\mathrm{T}}}{2}
\end{aligned}
$$

- Gives rise to natural solution theory (Lax-Milgram)
- Energy estimate:

$$
\|\boldsymbol{u}\|_{D^{1,2}\left(\Omega_{\epsilon}\right)}+\|p\|_{L^{2}\left(\Omega_{\epsilon}\right)} \leq C\|\boldsymbol{f}\|_{L^{2}\left(\mathbb{T}^{1}\right)}
$$

Why is this the right formulation?

- Force balance:

$$
\begin{aligned}
\int_{\Omega_{\epsilon}} 2|\mathcal{E}(\boldsymbol{u})|^{2} d \boldsymbol{x} & =\int_{\Gamma_{\epsilon}} \boldsymbol{u}(s) \boldsymbol{\sigma} \boldsymbol{n} \mathcal{J}_{\epsilon}(s, \theta) d \theta d s \\
& =\int_{\mathbb{T}} \boldsymbol{u}(s) \boldsymbol{f}(s) d s, \quad \mathcal{E}(\boldsymbol{u})=\frac{\nabla \boldsymbol{u}+(\nabla \boldsymbol{u})^{\mathrm{T}}}{2}
\end{aligned}
$$

- Gives rise to natural solution theory (Lax-Milgram)
- Energy estimate:

$$
\|\boldsymbol{u}\|_{D^{1,2}\left(\Omega_{\epsilon}\right)}+\|p\|_{L^{2}\left(\Omega_{\epsilon}\right)} \leq C\|\boldsymbol{f}\|_{L^{2}\left(\mathbb{T}^{1}\right)}
$$

Another difficulty: what is C ?

Geometric considerations

Need to determine ϵ-dependence in:

- Korn inequality

$$
\|\nabla \boldsymbol{u}\|_{L^{2}\left(\Omega_{\epsilon}\right)} \leq C\|\mathcal{E}(\boldsymbol{u})\|_{L^{2}\left(\Omega_{\epsilon}\right)}
$$

- Trace inequality

$$
\|\operatorname{Tr}(\boldsymbol{u})\|_{L^{2}\left(\mathbb{T}^{1}\right)} \leq C\|\nabla \boldsymbol{u}\|_{L^{2}\left(\Omega_{\epsilon}\right)}
$$

- Pressure estimate

$$
\|p\|_{L^{2}\left(\Omega_{\epsilon}\right)} \leq C\|\mathcal{E}(\boldsymbol{u})\|_{L^{2}\left(\Omega_{\epsilon}\right)}
$$

- Higher regularity

$$
\sup _{0<h<1} \frac{1}{h}\left(\left\|\frac{1}{\rho} \delta_{h}^{\theta} \boldsymbol{u}\right\|_{H^{1}}+\left\|\delta_{h}^{s} \boldsymbol{u}\right\|_{H^{1}}\right) \leq C\left(\|\nabla \boldsymbol{u}\|_{L^{2}\left(\Omega_{\epsilon}\right)}+\|p\|_{L^{2}\left(\Omega_{\epsilon}\right)}\right)
$$

Geometric considerations

We show:

- Korn inequality

$$
\|\nabla \boldsymbol{u}\|_{L^{2}\left(\Omega_{\epsilon}\right)} \leq c_{\kappa}\|\mathcal{E}(\boldsymbol{u})\|_{L^{2}\left(\Omega_{\epsilon}\right)}
$$

- Trace inequality

$$
\|\operatorname{Tr}(\boldsymbol{u})\|_{L^{2}\left(\mathbb{T}^{1}\right)} \leq c_{\kappa}|\log \epsilon|^{1 / 2}\|\nabla \boldsymbol{u}\|_{L^{2}\left(\Omega_{\epsilon}\right)}
$$

- Pressure estimate

$$
\|p\|_{L^{2}\left(\Omega_{\epsilon}\right)} \leq c_{\kappa}\|\mathcal{E}(\boldsymbol{u})\|_{L^{2}\left(\Omega_{\epsilon}\right)}
$$

- Higher regularity

$$
\sup _{0<h<1} \frac{1}{h}\left(\left\|\frac{1}{\rho} \delta_{h}^{\theta} \boldsymbol{u}\right\|_{H^{1}}+\left\|\delta_{h}^{s} \boldsymbol{u}\right\|_{H^{1}}\right) \leq \epsilon^{-1} c_{\kappa}\left(\|\nabla \boldsymbol{u}\|_{L^{2}\left(\Omega_{\epsilon}\right)}+\|p\|_{L^{2}\left(\Omega_{\epsilon}\right)}\right)
$$

Well-posedness of slender body PDE

Theorem (Mori, O., Spirn 2018)

Let $\Omega_{\epsilon}=\mathbb{R}^{3} \backslash \overline{\Sigma_{\epsilon}}$. Given $\boldsymbol{f} \in L^{2}(\mathbb{T})$, there exists a unique weak solution $(\boldsymbol{u}, p) \in D^{1,2}\left(\Omega_{\epsilon}\right) \times L^{2}\left(\Omega_{\epsilon}\right)$ to the $S B P D E$ satisfying

$$
\begin{equation*}
\|\boldsymbol{u}\|_{D^{1,2}\left(\Omega_{\epsilon}\right)}+\|p\|_{L^{2}\left(\Omega_{\epsilon}\right)} \leq|\log \epsilon|^{1 / 2} c_{\kappa}\|\boldsymbol{f}\|_{L^{2}(\mathbb{T})}, \tag{1}
\end{equation*}
$$

where c_{κ} depends only on the shape of the fiber centerline $\boldsymbol{X}(s)$.
If $\boldsymbol{X}(s)$ is at least C^{4} and $\boldsymbol{f}(s) \in H^{1 / 2}(\mathbb{T})$, then (\boldsymbol{u}, p) is a strong solution; i.e. (\boldsymbol{u}, p) is in $D^{2,2}\left(\Omega_{\epsilon}\right) \times H^{1}\left(\Omega_{\epsilon}\right)$ and satisfies the $S B$ $P D E$ pointwise almost everywhere, and

$$
\begin{equation*}
\|\boldsymbol{u}\|_{D^{2,2}\left(\Omega_{\epsilon}\right)}+\|p\|_{H^{1}\left(\Omega_{\epsilon}\right)} \leq \epsilon^{-1}|\log \epsilon|^{1 / 2} c_{\kappa}\|\boldsymbol{f}\|_{H^{1 / 2}(\mathbb{T})} \tag{2}
\end{equation*}
$$

How does SBT compare to the true solution?

Need to use integral expression
to compute

- n-dopendence in velocity on Γ e:
(2) Total force over Γ_{ϵ} :
(in terms of \boldsymbol{f}) on the actual fiber surface Γ_{ϵ}
For straight centerine/constant force/inninitely long fiber, SBT exactly recovers f

How does SBT compare to the true solution?

Need to use integral expression

$$
8 \pi \boldsymbol{u}^{\mathrm{SB}}(\boldsymbol{x})=\int_{\mathbb{T}^{1}} \frac{\boldsymbol{f}(t)}{|\boldsymbol{R}|}+\frac{\boldsymbol{R} \boldsymbol{R}^{\mathrm{T}} \boldsymbol{f}(t)}{|\boldsymbol{R}|^{3}}+\frac{\epsilon^{2}}{2}\left(\frac{\boldsymbol{f}(t)}{|\boldsymbol{R}|^{3}}-\frac{3 \boldsymbol{R} \boldsymbol{R}^{\mathrm{T}} \boldsymbol{f}(t)}{|\boldsymbol{R}|^{5}}\right) d t
$$

to compute
(1) θ-dependence in velocity on Γ_{ϵ} :

$$
\boldsymbol{u}^{\mathrm{r}}(s, \theta)=\left.\boldsymbol{u}^{\mathrm{SB}}\right|_{\Gamma_{\epsilon}}(s, \theta)-\left.\frac{1}{2 \pi} \int_{0}^{2 \pi} \boldsymbol{u}^{\mathrm{SB}}\right|_{\Gamma_{\epsilon}}(s, \phi) d \phi
$$

(2) Total force over Γ_{ϵ} :

$$
\boldsymbol{f}^{\mathrm{SB}}(s)=\int_{0}^{2 \pi} \boldsymbol{\sigma}^{\mathrm{SB}} \boldsymbol{n} \mathcal{J}_{\epsilon}(s, \theta) d \theta
$$

(in terms of \boldsymbol{f}) on the actual fiber surface Γ_{ϵ}

How does SBT compare to the true solution?

Need to use integral expression

$$
8 \pi \boldsymbol{u}^{\mathrm{SB}}(\boldsymbol{x})=\int_{\mathbb{T}^{1}} \frac{\boldsymbol{f}(t)}{|\boldsymbol{R}|}+\frac{\boldsymbol{R} \boldsymbol{R}^{\mathrm{T}} \boldsymbol{f}(t)}{|\boldsymbol{R}|^{3}}+\frac{\epsilon^{2}}{2}\left(\frac{\boldsymbol{f}(t)}{|\boldsymbol{R}|^{3}}-\frac{3 \boldsymbol{R} \boldsymbol{R}^{\mathrm{T}} \boldsymbol{f}(t)}{|\boldsymbol{R}|^{5}}\right) d t
$$

to compute
(1) θ-dependence in velocity on Γ_{ϵ} :

$$
\boldsymbol{u}^{\mathrm{r}}(s, \theta)=\left.\boldsymbol{u}^{\mathrm{SB}}\right|_{\Gamma_{\epsilon}}(s, \theta)-\left.\frac{1}{2 \pi} \int_{0}^{2 \pi} \boldsymbol{u}^{\mathrm{SB}}\right|_{\Gamma_{\epsilon}}(s, \phi) d \phi
$$

(2) Total force over Γ_{ϵ} :

$$
\boldsymbol{f}^{\mathrm{SB}}(s)=\int_{0}^{2 \pi} \boldsymbol{\sigma}^{\mathrm{SB}} \boldsymbol{n} \mathcal{J}_{\epsilon}(s, \theta) d \theta
$$

(in terms of \boldsymbol{f}) on the actual fiber surface Γ_{ϵ}
For straight centerline/constant force/infinitely long fiber, SBT exactly recovers f

Error sources

For a fiber with $C^{2, \alpha}$ centerline $\boldsymbol{X}(s)$, given $\boldsymbol{f} \in C^{1}(\mathbb{T})$ we show:
(1) θ-dependence in velocity on Γ_{ϵ} :

$$
\left|\boldsymbol{u}^{\mathrm{r}}\right| \leq \epsilon|\log \epsilon| c_{\kappa}\|\boldsymbol{f}\|_{C^{1}(\mathbb{T})} ;
$$

(3) Total force over Γ_{ϵ} :

$$
\left|\boldsymbol{f}^{\mathrm{SB}}-\boldsymbol{f}\right| \leq \epsilon c_{\kappa}\|\boldsymbol{f}\|_{C^{1}(\mathbb{T})},
$$

where c_{κ} depends only on the shape of the fiber centerline.

PDE for error

Errors $\boldsymbol{u}_{e}=\boldsymbol{u}^{\mathrm{SB}}-\boldsymbol{u}, p_{e}=p^{\mathrm{SB}}-p$, and $\boldsymbol{\sigma}_{e}=-p_{e} \mathbf{I}+2 \mathcal{E}\left(\boldsymbol{u}_{e}\right)=\boldsymbol{\sigma}^{S B}-\boldsymbol{\sigma}$ satisfy

$$
\begin{align*}
-\Delta \boldsymbol{u}_{e}+\nabla p_{e} & =0 \quad \text { in } \Omega_{\epsilon} \\
\operatorname{div} \boldsymbol{u}_{e} & =0 \\
\int_{0}^{2 \pi} \boldsymbol{\sigma}_{e} \boldsymbol{n} \mathcal{J}_{\epsilon}(s, \theta) d \theta & =\boldsymbol{f}^{\mathrm{SB}}(s)-\boldsymbol{f}(s) \quad \text { on } \Gamma_{\epsilon} \tag{3}\\
\left.\boldsymbol{u}_{e}\right|_{\Gamma_{\epsilon}} & =\overline{\boldsymbol{u}}_{e}(s)+\boldsymbol{u}^{\mathrm{r}}(s, \theta) \\
\boldsymbol{u}_{e} \rightarrow 0 & \text { as }|\boldsymbol{x}| \rightarrow \infty
\end{align*}
$$

How does SBT compare to the true solution?

Theorem (Mri, O., Spirn 2018)

Let $\Omega_{\epsilon}=\mathbb{R}^{3} \backslash \overline{\Sigma_{\epsilon}}$ for Σ_{ϵ} with centerline $\boldsymbol{X}(s) \in C^{2, \alpha}(\mathbb{T})$. Given $\boldsymbol{f} \in C^{1}(\mathbb{T})$, the difference $\boldsymbol{u}^{\mathrm{SB}}-\boldsymbol{u}, p^{\mathrm{SB}}-p$ satisfies

$$
\begin{equation*}
\left\|\boldsymbol{u}^{\mathrm{SB}}-\boldsymbol{u}\right\|_{D^{1,2}\left(\Omega_{\epsilon}\right)}+\left\|p^{\mathrm{SB}}-p\right\|_{L^{2}\left(\Omega_{\epsilon}\right)} \leq \epsilon|\log \epsilon| c_{\kappa}\|\boldsymbol{f}\|_{C^{1}(\mathbb{T})} \tag{4}
\end{equation*}
$$

where c_{κ} depends only on the shape of the fiber centerline $\boldsymbol{X}(s)$.
The L^{2} trace of the error $\boldsymbol{u}^{\mathrm{SB}}-\boldsymbol{u}$ along Γ_{ϵ}, scaled by $\left|\Gamma_{\epsilon}\right|^{-1 / 2} \sim \frac{1}{\sqrt{\epsilon}}$, satisfies

$$
\begin{equation*}
\frac{1}{\left|\Gamma_{\epsilon}\right|^{1 / 2}}\left\|\operatorname{Tr}\left(\boldsymbol{u}^{\mathrm{SB}}-\boldsymbol{u}\right)\right\|_{L^{2}\left(\Gamma_{\epsilon}\right)} \leq \epsilon|\log \epsilon|^{3 / 2} c_{\kappa}\|\boldsymbol{f}\|_{C^{1}(\mathbb{T})} . \tag{5}
\end{equation*}
$$

Current work

- Free ends: special consideration needed at endpoints
- Rotating fibers: another admissible motion we have not yet considered
- Inextensible fibers: Easy to write down mathematical formulation: Lagrange multiplier (tension) $\lambda(s)$ in force term, but SB approximation is cumbersome
- Numerical methods: numerical verification of error estimate by discretizing layer potential formulation of SB PDE

Thanks

Thank you for your attention!

Acknowledgments: NSF GRF grant 00039202 and Torske Kubben Fellowship

