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What is a slender body?

Direction of motion

(a) Flagella

Direction of motion

(b) Cilia
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Stokes flow in R3 resulting from point source at @, of strength f:
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I xx’

e[ 2

SBT arises as 1D force density along curve X (s):

8 u’B(x) :/TS(iL'—X(S))f(S)dS—{—...
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Fiber integrity condition?

Add doublet as correction:

I 3xxT
2 2P e

Full slender body approximation:

sru(e) = [ (St - X() + §Dle - X(6) ) 6)ds

Shelley-Ueda (2000), Tornberg-Shelley (2004), Smith-Gaffney-Blake (2007), Lauga-Powers(2008),
Spagnolie-Lauga (2011), Smith-Smith-Blake (2010), Pak-Spagnolie-Lauga (2012), Cortez-Nicholas (2012),
Olson-Lim-Cortez (2013), Buchmann, et al. (2015)
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Questions

How close is the slender body approximation to a true solution?

Objective: Given f(s), approximate the slender body velocity
u°B(s) and the flow u°B(x), = € Q.

Main difficulty: not immediately clear how to formulate the
underlying “true solution” as a well-posed PDE.

To what, exactly, is the slender body expression

smuSB(x) = /T (S(:c — X (s)) + E;D(:c — X(s)))f(s) ds

an approximation?
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Slender Body PDE

In Q. =R3\Z.:
—Au+Vp=0
divu =0

On T, =0%.:

2T
/ on J.(5.0)d0— £(s), o =Vu+ (V)T — pl
0

u|FV: u(s) (unknown but independent of 6)
At oo:

u— 0as |x| — o0



Why is this the right formulation?

e Force balance:
/ 2|E(u)|? de :/ u(s)on J.(s,0)d0ds
SL— €
— [ uls)f(s)ds. - Ew) = T

e Gives rise to natural solution theory (Lax-Milgram)

e Energy estimate:
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Why is this the right formulation?

e Force balance:

/2]5(u)|2da: :/ u(s)on J.(s,0)d0ds

Qe Ie

— [ uls) s, Elw) = LT,

e Gives rise to natural solution theory (Lax-Milgram)

e Energy estimate:

ul[prz@y + 1Pl 22 < Cllfllz2er)

Another difficulty: what is C?



Geometric considerations

Need to determine e-dependence in:

@ Korn inequality
IVull2 @ < ClE) L2
@ Trace inequality
ITr(w)l| L2y < Cl V|2,
@ Pressure estimate
Ipllz2 () < ClIE@) L2

@ Higher regularity
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We show:
@ Korn inequality
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Well-posedness of slender body PDE

Theorem (Mori, O., Spirn 2018)

Let Q. = R3\X.. Given f € L*(T), there exists a unique weak
solution (u,p) € DV?(Q.) x L*(Q.) to the SB PDE satisfying

lll D120 + 1Pl 200 < [og e ?eul| £ 1| 2y, (1)
where ¢, depends only on the shape of the fiber centerline X (s).
If X (s) is at least C* and f(s) € HY?(T), then (u,p) is a strong

solution; i.e. (w,p) is in D**(Q.) x H'(Q.) and satisfies the SB
PDE pointwise almost everywhere, and

1/2

lullp22,) + Pl @) < €7 logel Zeall fllazm.  (2)
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Need to use integral expression

s, [ f(t) RRYf@t) € [(f(t) B3RRTf()
Sru @) = | TR T RP +2<R|3‘ R >dt

to compute

@ 0-dependence in velocity on I';:

. 1 2
u'(s,0) = uSB’FC(s,Q) - 27r/0 uSB

r.(s,¢)do

€

@ Total force over I',:
2T
26 = [ o s o) as
0

(in terms of f) on the actual fiber surface I,
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Need to use integral expression

s, [ f(t) RRYf@t) € [(f(t) B3RRTf()
Sru @) = | TR T RP +2<R|3‘ R >dt

to compute

@ 0-dependence in velocity on I';:

. 1 2
u'(s,0) = uSB’FC(s,Q) - 27r/0 uSB

o (5,0) do
@ Total force over I',:
2T
26 = [ o s o) as
0

(in terms of f) on the actual fiber surface I,

For straight centerline/constant force/infinitely long fiber, SBT exactly
recovers f



Error sources

For a fiber with C** centerline X (s), given f € C'(T) we show:

@ 0O-dependence in velocity on I'.:

u'| < ellog el cw | fllcriry;
@ Total force over I',:

!fSB - f‘ < €cq ||fHCl(’]I‘)a

where ¢, depends only on the shape of the fiber centerline.



PDE for error

Errors u, = u°® — U, Pe = pSB —p, and

0. = —pJ+2E(u.) = 0°P — o satisfy

—Au,+ Vp, =0 in €,

divu, =0
/27r o.n J.(s,0)d0 = f55(s) — f(s) onT. (3)
0
Ue|r, = Ue(s) +u'(s,0)

u, — 0 as || — o



How does SBT compare to the true solution?

Theorem (Mori, O., Spirn 2018)

Let Q. = R3\X, for X, with centerline X (s) € C**(T). Given
f € CY(T), the difference uS® — u, p°® — p satisfies

14 = ullprzy + 1P°F = plliz@y <elloge|ce [l fllorr),  (4)
where ¢, depends only on the shape of the fiber centerline X (s).

The L? trace of the error uS® — u along T., scaled by
IT|7/2 ~ \/ig, satisfies

1
T|1/2

ITr(u® — )2 <ellog el | fllsmy.  (5)

v




Current work

e Free ends: special consideration needed at endpoints

e Rotating fibers: another admissible motion we have not yet
considered

e Inextensible fibers: Easy to write down mathematical
formulation: Lagrange multiplier (tension) A(s) in force term,
but SB approximation is cumbersome

e Numerical methods: numerical verification of error
estimate by discretizing layer potential formulation of SB

PDE



Thank you for your attention!

Acknowledgments: NSF GRF grant 00039202 and Torske Kubben Fellowship



