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What is a slender body?
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Slender body theory: setup
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Slender body theory: building blocks

Stokes flow in R3 resulting from point source at x0 of strength f :

u =
1

8π
S(x− x0)f ,

where the Stokeslet S is defined by

S(x) =
I

|x|
+
xxT

|x|3
.

SBT arises as 1D force density along curve X(s):

8πuSB(x) =

∫
T
S(x−X(s))f(s) ds+ ...
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Fiber integrity condition?

Add doublet as correction:

D(x) =
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Full slender body approximation:

8πuSB(x) =

∫
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S(x−X(s)) +
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2
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)
f(s) ds
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Questions

How close is the slender body approximation to a true solution?

Objective: Given f(s), approximate the slender body velocity
uSB(s) and the flow uSB(x), x ∈ Ωε

Main difficulty: not immediately clear how to formulate the
underlying “true solution” as a well-posed PDE.
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Slender Body PDE

In Ωε = R3\Σε:

−∆u+∇p = 0

divu = 0

ε

Γ0,X(s)

Γε = ∂Σε

f (s)

u(s)

On Γε = ∂Σε:∫ 2π

0

σnJε(s, θ) dθ= f(s), σ = ∇u+ (∇u)T − pI

u
∣∣
Γε

= u(s) (unknown but independent of θ)

At ∞:
u→ 0 as |x| → ∞
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Why is this the right formulation?

Force balance:∫
Ωε

2|E(u)|2 dx =

∫
Γε

u(s)σnJε(s, θ) dθds

=

∫
T
u(s)f(s) ds, E(u) = ∇u+(∇u)T

2
.

Gives rise to natural solution theory (Lax-Milgram)
Energy estimate:

‖u‖D1,2(Ωε) + ‖p‖L2(Ωε) ≤ C‖f‖L2(T1)

Another difficulty: what is C?
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Geometric considerations
Need to determine ε-dependence in:

Korn inequality

‖∇u‖L2(Ωε) ≤C‖E(u)‖L2(Ωε)

Trace inequality

‖Tr(u)‖L2(T1) ≤C‖∇u‖L2(Ωε)

Pressure estimate

‖p‖L2(Ωε) ≤C‖E(u)‖L2(Ωε)

Higher regularity

sup
0<h<1

1

h

(∥∥1

ρ
δθhu

∥∥
H1 +

∥∥δshu∥∥H1

)
≤C(‖∇u‖L2(Ωε) + ‖p‖L2(Ωε))
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Well-posedness of slender body PDE

Theorem (Mori, O., Spirn 2018)

Let Ωε = R3\Σε. Given f ∈ L2(T), there exists a unique weak
solution (u, p) ∈ D1,2(Ωε)× L2(Ωε) to the SB PDE satisfying

‖u‖D1,2(Ωε) + ‖p‖L2(Ωε) ≤ | log ε|1/2cκ‖f‖L2(T), (1)

where cκ depends only on the shape of the fiber centerline X(s).

If X(s) is at least C4 and f(s) ∈ H1/2(T), then (u, p) is a strong
solution; i.e. (u, p) is in D2,2(Ωε)×H1(Ωε) and satisfies the SB
PDE pointwise almost everywhere, and

‖u‖D2,2(Ωε) + ‖p‖H1(Ωε) ≤ ε−1| log ε|1/2cκ‖f‖H1/2(T). (2)



How does SBT compare to the true solution?
Need to use integral expression

8πuSB(x) =

∫
T1

f(t)

|R|
+
RRTf(t)

|R|3
+
ε2

2

(
f(t)

|R|3
− 3RRTf(t)

|R|5

)
dt

to compute
1 θ-dependence in velocity on Γε:

ur(s, θ) = uSB
∣∣
Γε

(s, θ)− 1

2π

∫ 2π

0
uSB

∣∣
Γε

(s, φ) dφ

2 Total force over Γε:

fSB(s) =

∫ 2π

0
σSBnJε(s, θ) dθ

(in terms of f) on the actual fiber surface Γε

For straight centerline/constant force/infinitely long fiber, SBT exactly
recovers f
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Error sources

For a fiber with C2,α centerline X(s), given f ∈ C1(T) we show:
1 θ-dependence in velocity on Γε:

|ur| ≤ ε| log ε| cκ ‖f‖C1(T);

2 Total force over Γε:∣∣fSB − f
∣∣ ≤ ε cκ ‖f‖C1(T),

where cκ depends only on the shape of the fiber centerline.



PDE for error

Errors ue = uSB − u, pe = pSB − p, and
σe = −peI + 2E(ue) = σSB − σ satisfy

−∆ue +∇pe = 0 in Ωε

divue = 0∫ 2π

0

σenJε(s, θ) dθ = fSB(s)− f(s) on Γε

ue|Γε = ūe(s) +ur(s, θ)

ue → 0 as |x| → ∞

(3)



How does SBT compare to the true solution?

Theorem (Mori, O., Spirn 2018)

Let Ωε = R3\Σε for Σε with centerline X(s) ∈ C2,α(T). Given
f ∈ C1(T), the difference uSB − u, pSB − p satisfies

‖uSB − u‖D1,2(Ωε) + ‖pSB − p‖L2(Ωε) ≤ ε| log ε| cκ ‖f‖C1(T), (4)

where cκ depends only on the shape of the fiber centerline X(s).

The L2 trace of the error uSB − u along Γε, scaled by
|Γε|−1/2 ∼ 1√

ε
, satisfies

1

|Γε|1/2
‖Tr(uSB − u)‖L2(Γε) ≤ ε| log ε|3/2 cκ ‖f‖C1(T). (5)



Current work

Free ends: special consideration needed at endpoints
Rotating fibers: another admissible motion we have not yet
considered
Inextensible fibers: Easy to write down mathematical
formulation: Lagrange multiplier (tension) λ(s) in force term,
but SB approximation is cumbersome
Numerical methods: numerical verification of error
estimate by discretizing layer potential formulation of SB
PDE
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