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Infineon at a glance

FY23 revenue by segment1

Employees2

Automotive (ATV)

Green Industrial Power (GIP)

Power & Sensor Systems (PSS)

Connected Secure Systems (CSS)

Growth areas

Energy
green and efficient

Mobility
clean and safe

IoT
smart and secure

For further information: Infineon Annual Report.
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1 2023 Fiscal year (as of 30 September 2023) | 2 As of 30 September 2023

Financials

[EUR m]

Revenue Segment result Segment result margin

FY17 FY18 FY19 FY20 FY21

1,208 1,353 1,319 1,170

FY22 FY23

2,072 3,378 4,339

17% 18% 16% 14%
19%

24%
27%

16,309

14,218

11,060

8,5678,0297,5997,063

https://www.infineon.com/cms/en/about-infineon/investor/reports-and-presentations/#annual-reports
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Motivation

• Materials integration and development for the next generation of power semiconductor technologies

• Digitalization and electrification of our society and its supply with sustainable energy

• European Green Deal for climate neutrality by 2050

10/11 partners in 5 countries 

AddMorePower
EU funded research project: 01/2023 – 12/2026

Project objectives

• Develop a defect characterization workflow using advanced X-ray and 

electronprobe related techniques 

• Modelling approaches to new wide bandgap power semiconductor 

materials and 3D integrated power technologies

• Using FAIR (findable, accessible, interoperable and reuseable) data 

principles required for digitalization and industry 4.0

Outline

• Challenges in power electronic application

• Thermo-mechanical fatigue testing & modeling 

• 3D characterization of damage networks

[1] Consortium partner until: 01/2024

[2] Designated consortium partner

[1] [2]
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In power electronic applications, malfunction and short circuit events cause high overload pulses, leading to 

rapid heating up to high temperatures.

Structure of a power electronic device [1]

After thermo-mechanical cycling [2]

surface of the sun: 63 W/mm2

Typical overload pulse in a power electronic device

Challenges in power electronic applications
Thermo-mechanical fatigue

Degradation of the metallization layer due to multiple overload pulses and final device failure.

[1] M. Nelhiebel, Microelectronics Reliability (2011)

[2] M. Nelhiebel, Microelectronics Reliability (2013)
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30 years of shrinkage in subsequent generations in „automotive high-side smart power switch“ 

Example: Power electronic switches for 12V board net

• self-protecting (temperature, current, voltage) to guarranty reliably functioning

• low-ohmic

Challenges in power electronic applications
Thick Cu as enabler for aggressive device shrink

Al era Cu era
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* Devices tested with identical loading condition

[1]  https://eps.ieee.org/technology/heterogeneous-integration-roadmap/2023-edition.html

[2] M. Nelhiebel, Microelectronics Reliability (2011)

Infineon embedded MOSFET half bridge power module [1]

+ 3D integration

[2] [2] DMOS area

DMOS area

DMOS area

DMOS area

DMOS area

→ Advanced materials characterization metrology

→ Understand the dominant degradation mechanism

→ Multiphysics and multiscale modeling of Cu

metallization degradation
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Thermo-mechanical fatigue testing + modeling
Polyheater test structures

Test Parameters which can be varied:

• TBase (RT - 150 °C)

• TMax (up to 650 °C)

• Pulse Length (200µs (*) – 20ms)

• Ambient: Air, Vacuum, Forming gas

• Repitition rate: 5 pulses/sec - ...

(*) Heating rate of ~1.5*106 K/sec (ΔT = 300°C)

Test chip to investigate the thermo-mechanical degradation of power electronic 

metallization layers via repetitive fast heat pulsing

heated Cu structureelectric contact

(power heating)

electric contact

(sensing)

S. Moser, JOM (2019)

100µm

50000 cycles

In-situ experiment showing the damage evolution on the Cu surface 
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M. Kleinbichler, Microelectronics 

Reliability (2021)

Thermo-mechanical fatigue testing + modeling
Post-testing 2D Scanning electron microscopy study

Applied test conditions:

• Tbase: 100 °C - Tmax: 400 °C

• Pulse Length: 200 µs

• Repittion rate: 1 Pulse/sec

N1750

N200 N300 N400

N750

N0 N500

N1000N1250N1500

Crack Growth

Void Growth and Coalescence

Void

Nucleation
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Ultra-fast 20 kHz X-ray diffraction (Synchrotron: PSI - MS-Powder)

• In-situ time resolved X-ray diffraction to determine the stress within Cu metallization with 

20.000 fps (every 50µs) 

• Acquisition of diffraction patterns (DP) allows to determine temperature and thermo-

mechanical stress throughout the course of a single heating pulse

PSI

Applied test conditions:

• Tbase: 150 °C - Tmax: 400 °C

• Pulse Length: 3200 µs

Thermo-mechanical fatigue testing + modeling
Thermo-mechanical stress in metallization layers

T. Ziegelwanger, In Prep.
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• Different deformation mechanisms are activated in high 

strain rate regime

• High thermo-mechanical stresses were measured but 

data evaluation is challenging 

• Slow heating experiments (e.g.: Wafer Curvature) are 

not representative for application-relevant stresses

Thermo-mechanical fatigue testing + modeling
Thermo-mechanical stress in metallization layers

Wafer Curvature: dT/dt = 10-1 [°C/sec]

X-ray diffraction: dT/dt = 5*105 [°C/sec]

Heating

Cooling

Si

Cu

Slow heating vs. rapid heating

Evolution of the thermo-mechanical stress in a 20 µm Cu metallization 

through the course of a heat cycle 

Cu : Si

6.5 : 1

Coefficient of  thermal expansion

T. Ziegelwanger, In Prep.
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5000 cycles

Thermo-mechanical stress evolution:

TMF cycling:

• Tbase: 100 °C - Tmax: 400 °C

• Pulse Length: 200 µs

• Repittion rate: 1 Pulse/sec

The damage formation leads to a cyclic softening in the metallization layer and 

a decrease of total thermo-mechanical stress.

Thermo-mechanical fatigue testing + modeling
Thermo-mechanical stress in metallization layers

T. Ziegelwanger, In Prep.

1000 cycles

0 cycles

Stress measurement:

Pulse length: 800 µs
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Thermo-mechanical fatigue testing + modeling
2D Modeling based on SEM imaging

Future: 3D Modelling

• To consider complex 3D integrated structures for damage model

• 3D characterization techniques to study the damage network formation

Today: 2D Damage Modelling

• SEM imaging to determine weak spots in microstructure

• Input for 2D FEM-based damage modeling

• Calibration based on Top view and Cross-Section view SEM images

Initial distribution of the damage onset variable D0  [1] Evolution of the damage variable De during cycling [1] 

Si

Cu

Si Si

CuCu

[1] P. Hoffmann, PhD thesis (2023)
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3D characterization of damage networks
FIB Tomography – Comparison of 2D and 3D

Laboratory FIB Tomography
• Voxel Volume: 30 × 30 × 30 nm³

• SE and FIB images were recorded

• Enhanced information for void/crack detection and quantification

• Damage network revealed in laboratory and good correlation 

between 2D and 3D data

• Very time consuming and destructive

M. Kleinbichler, Microelectronics Reliability (2021)
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Applied test conditions:

• Tbase: 100 °C - Tmax: 400 °C

• Pulse Length: 200 µs

• Repittion rate: 1 Pulse/sec

Synchrotron: Tomography (DESY P05)

• Post testing characterization of the resulting damage network

• Voxel volume: 14.8 × 14.8 × 14.8 nm³

• 3D damage network and alignment of vertical features

• Continuous increase of damaged volume

5000 cycles1000 cycles0 cycles

3D characterization of damage networks
Nano-Tomography – Preparation artefact-free ground truth

Crack after 5000 cycles

Void network after 5000 cycles

Si

Cu

Si

Cu

T. Ziegelwanger, In Prep.
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Optical beam path of state-of-the-art TXM/nano-CT tool

• Varying X-ray absorption inside sample results in 2D-radiographies

• Sample mounted on a rotating stage

• Rotates inside the beam to allow complete view of sample

• Only 180° rotation necessary because of the nearly parallel-beam geometry

• Nondestructive 3D-imaging technique

• Preparation artefact free volume information 

3D characterization of damage networks
Lab X-ray microscopy – Introduction
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3D characterization of damage networks
Radiography to reveal damage evolution

Applied test conditions:

• Tbase: 100 °C - Tmax: 400 °C

• Pulse Length: 200 µs

• Repittion rate: 1 Pulse/sec

• Radiography mapping after different cycling states: 126 single mosaic images with 65µm FoV

• Spatial damage destribution correlates well with temperature 

• Degradation details are missing due to projection view

• Radiographs of the sample geometry with thinner copper providing more detailed information
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• Innovative liquid metal-jet X-ray source technology (Ga-Ka) with 9.05 keV provides 

enhanced contrast for Cu structures in dielctrics

• Use high energetic source such as In to enable the characterization of thick Cu structures

Cu-Kα (8.05 keV) Ga-Kα (9.25 keV)

3D characterization of damage networks
Radiography using multi-photon energies (Cu-Kα, Ga-Kα) on 5µm Cu

K. Kutukova, Nanomaterials (2024)
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3D characterization of damage networks
Radiography vs. in-Situ SEM

Applied test conditions:

• Tbase: 100 °C - Tmax: 400 °C

• Pulse Length: 200 µs

• Repittion rate: 1 Pulse/sec
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3D characterization of damage networks
Lab X-ray tomography of realistic test structure

• Modified sample geometry enables a section for a tomography with an angular 

range of 180°

• Two sections within on sample: 

• Section A: Single line

• Section B: 2 parallel lines with limited transparency

• Smearing effect leads to damage overestimation

• Tomography on „real structures“ requires higher energetic X-ray source and the  

corresponding optics

Applied test conditions:

• Tbase: 100 °C - Tmax: 400 °C

• Pulse Length: 200 µs

• Repittion rate: 1 Pulse/sec

• 25000 cycles

Section A

Section B

B

A
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• Thermo-mechanical fatigue leads to the formation of complex 3D damage networks.

• Void nucleation  → Void growth and coalescence  → Crack growth

• Grain boundaries and triple junctions are weak spots

• Vertical alignment of damage features identified by 3D techniques

• Radiography reveals damage progression within the volume after surface damage saturation.

• Large thermal stresses due to high heating rates and cyclic softening due to degradation

• Dedicated test structures are required to achieve application relevant conditions

• In-Situ experiments necessary to monitor evolution

• Lab X-ray microscopy has a high potential for damage monitoring in semiconductor industry

• Using In-Kα radiation (24 keV) and Ga-Kα (9.2 keV) radiation X-ray sources

• Non-destructive investigation of thick metallization's or complex 3D integrated structures

• Enhanced contrast and detailed information  

• New test structures design for in-situ X-ray microscopy and in-situ damage monitoring 

• Advanced damage segmentation algorithms are required for quantification of 3D data

• Input for predictive 3D damage modeling

Conclusion

Lab X-ray microscopy is a key characterization method to enable the 

3D integration of future power electronic technologies!
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Thank you for your attention!

Questions?
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In case you have questions please 

contact me:

Michael Reisinger

michael.reisinger@k-ai.at


