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Invariant Manifolds are important 
in understanding dynamics

Smith et al 2017Mireles James/Capinski 2017
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Setup
Consider a diffeomorphic mapping 
with a hyperbolic fixed point 
i.e. such that              has eigenvalues 

Define the stable and unstable manifolds
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0 = f(x),x 2 R2

Df(x⇤) 0 < |�s| < 1 < |�u|

W s(x⇤) = {x 2 R2 : fk(x) ! x

⇤ as k ! 1}
W u(x⇤) = {x 2 R2 : f�k(x) ! x

⇤ as k ! 1},
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Fundamental segments
Pick a point x0 near x*  and inductively define xn+1=f(xn).
Then the nth fundamental segment is defined as  

and 

Un = W

u[xn, xn+1]

W u =
1[
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Issues: 
Not many points required to resolve 
U0 but dynamic stretching and folding 
will require more points to resolve 
later segments. 

Curvature can vary by orders of 
magnitude after just a few iterates.



Existing Methods of 
Computation

• Iteration of fundamental segments 

• Marching methods: given a manifold 
computed up to a given point, extending 
manifold by a given amount, see esp. 
Krauskopf & Osinga 

• Parameterization methods: seek functional 
representation for Wu  (generally only useful 
locally) ✓
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Existing Methods: Linear Interpolation
Bisection Algorithm
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2Consider adaptively drawing a 
parametric curve. Basis for Carter’s 
adaptive (bisection) algorithm. 
Bisect if 

Marching algorithm (Hobson): Similar. Add one point to 
previously computed curve. Requires finding the right 
pre-image at each point, throws away many points. 
Occasionally cuts corners

↵k > tol1 or lk↵k > tol2
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Tools from CAGD
Bézier curves: Form a convex combination 
of (n+1) control points using Bernstein 
Polynomials
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Cubic Hermite polynomials: construct Bezier curve 
interpolating points x0 and x1 with tangent vectors v0 and 
v1 by letting

p0 = x1,p1 = x1 + ~
v1/3,p2 = x2 � ~

v2/3,p3 = x2,



Catmull-Rom splines
Partial interpolation using 
composite cubic Bézier functions. 

First and last control point on each 
segment chosen to interpolate 
data.
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Second and third control points on each segment chosen 
to approximate tangent vector at endpoints using centered 
differences. 

Allows for local refinement (as opposed to more familiar 
cubic splines).



Adaptive Catmull-Rom 1: 
Flatness conditions
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1. max{d1, d2}

2. (|p0p1|+ |p1p2|+ |p2p3|� |p0p3|),

3. max{d1/d0, d2/d0},

4. the angle between

~v1 and

~v2,

5. (|p0p1|+ |p1p2|+ |p2p3|� |p0p3|)/|p0p3|.



Adaptive Catmull-Rom 2: 
Error refinement conditions

Compute two approximations, subtract and 
obtain the error polygon
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Numerical Results: 
model problem



Numerical Results: 
Real Maps

Hénon Map McMillan Map
xn+1 = 1 + yn � ax

2
n

yn+1 = bxn

xn+1 = yn,

yn+1 = �xn + 2yn
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2D Unstable Manifolds for 3D Maps
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Significant new challenges
Dynamics: Exponentially 

anisotropic Growth
Computational/Geometric



CAGD Toolbox

b

b

b

b

b
b

b
b

b

3,0,0

1,2,0

0,3,0b

2,1,0

1,1,1

0,2,1

0,1,2

2,0,1

1,0,2

0,0,3

w=0

u=0

v=0

Bézier triangular 
patches

Quasi-interpolation 
using quartic 2D 
Bernstein polynomials: 
10 data points/triangle, 
+46 points from 
neighboring triangles, 
giving 15 control 
points/patch

Quasi-interpolation: choose coeffs 
such that  polynomials of given 
degree represented exactly



Adaptive quasi-interpolating 
quartic Bezier patches 

Sorokina/Zeilfelder 2008, Hering-Bertram et al 2009

A Band-aid approach

Identify triangles on which need refining, bisect into 
four half-length triangles

Interpolate the difference between the data and the current 
interpolant on the refined grid. 

Overlay the higher resolution patch on the previous 
computation



Applied to model problems



Application to Unstable Manifolds
Fundamental Segments→Fundamental Annuli 

Proper loop: A simple closed curve on Wu with the 
fixed point on its interior and which does not intersect 
its image under the map.

Fundamental annulus: Region of Wu  contained between 
a proper loop   and its image        .� F (�)

Parameterization method used 
for initial annulus



Arneodo–Coullet–Tresser map
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A discrete map whose attractor resembles the Rössler 
system’s attractor
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Volume-preserving Hénon Map
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Can Geodesic-Level-Set-
Method save the day?

Emphatically, no.
If computational boundary not a 
proper loop, can’t find pre-image of 
needed next points 
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That leaves parameterization

• Invariance under the map 

• Curve passes through fixed point 

• Curve tangent to unstable subspace at fixed 
point

Let’s look at it in 2 space dimensions: 
Goal: Construct functions         and        such that 
                                 parameterizes the unstable manifold, requiring:

p(t) ⇤(t)
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f (p(t)) = p (⇤(t))



How parameterization works
In practice, defined by a power series 
and

p(t) =
1X
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Invariance condition                              satisfied by 
expanding both sides in power series and matching 
coefficients

f (p(t)) = p (⇤(t))

Methods based on automatic differentiation for expanding 
functions of power series on LHS

Conditions p(0) = x

⇤ dp(t)

dt

����
t=0

= cvunstableand

used to determine leading-order terms.



In practice only useful for generating 
small portion of manifolds

How can we generalize the method to give more global 
information?

xn+1 = xn + ✏ sin ✓n

✓n+1 = xn + ✓n + ✏ sin ✓n

Standard Map Residual |f (p(t))� p (⇤(t))|


