

Result Integrity Verification of Outsourced Privacy-preserving Frequent Itemset Mining

Ruilin Liu, Wendy Hui Wang Stevens Institute of Technology Hoboken, NJ, USA

Supported by the National Science Foundation CAREER Grant #1350324

Data-Mining-as-A-Service (DMaS) Paradigm

We consider <u>frequent itemset mining</u> as the mining task

Security Issues of DMaS

Security concerns:

- 1. How to protect privacy of the data and the mining results?
- 2. How to verify correctness/completeness of the mining results?
 - Correctness: all returned itemsets are frequent
 - Completeness: all frequent itemsets are returned

Existing Research

- Two parallel lines of research
 - Privacy-preserving mining (e.g., [1], [9])
 - Verification of outsourced data mining computations
 [2-7] (without any privacy protection)
- No work considered both privacy and result integrity verification in a unified framework

Privacy-Preserving Frequent Itemset Mining

- Select-a-size randomization approach [1]
 - Effect of randomization on itemset support:
 - The itemset support is a random variable following a given distribution
 - Frequent (infrequent resp.) itemsets may become infrequent (frequent, resp.)

Result Integrity Verification Methods

- Frequent itemset mining [2, 3] (without privacy protection):
 - Verification preparation
 - The client constructs artificial transactions ∆ for verification objects
 - Artificial frequent itemsets (FI): for completeness verification
 - Artificial infrequent itemsets (II): for correctness verification
 - The client outsources T*= T + Δ.

Verification

The client verifies the completeness and correctness w.r.t. FI and II.

Verification Goal

- Correctness: Precision $R_r = \frac{|R \cap R^S|}{|R^S|}$
- Completeness: Recall $R_m = \frac{|R \cap R^S|}{|R|}$
 - R: frequent itemsets of T; R^s: mining results returned by the Cloud
- Verification goal
 - A verification method M can verify (α₁, β₁)-correctness if it has probability Pr ≥ α₁ to catch R^S whose precision R_r ≤ β₁.
 - A verification method M can verify (α₂, β₂)-completeness if it has probability Pm ≥ α₂ to catch R^S whose recall R_m ≤ β₂.
- Number of verification objects (FI and II) is decided by α₁, α₂, β₁, β₂.

On the Marriage of Privacy and Result Integrity

- Two equal-important goals
 - Provable privacy guarantee
 - Robust result integrity guarantee ((α_1, β_1) -correctness and (α_2, β_2) -completeness)

Challenges

- Data-perturbation techniques lead to inaccurate mining results
- It makes the Cloud's cheating behaviors harder to be caught.

Approach I

Privacy-preserving data perturbation first

Privacy weakness: inserting artificial transactions constructed without any respect to privacy may lead to new privacy vulnerabilities.

Approach II

Integrity verification preparation first

Result integrity verification weakness: impact of perturbation on verification objects

- Artificial frequent itemsets (FI) can turn to be infrequent.
- Artificial infrequent itemset (II) can turn to be frequent.

A Deeper Look of Approach II

- Verification Preparation: construction artificial transactions ∆ that contains v₁ number of Fl and v₂ number of II.
- Privacy protection: Apply Select-A-Size data pertubation [1].
- Verification: check if R^S contains at least r₁ FI and at most r₂ II.

A Deeper Look of Approach II

- Verification Preparation: construction artificial transactions ∆ that contains v₁ number of FI and v₂ number of II.
- Privacy protection: Apply Select-A-Size data pertubation [1].
- Verification: check if R^S contains at least r₁ FI and at most r₂ II.

Challenges:

- How to construct FI and II?
- What is the appropriate value of v₁, v₂, r₁ and r₂ for (α₁, β₁)correctness and (α₂, β₂)-completeness?

Our Contributions

- Design of efficient algorithms to construct verification objects (FI and II)
- Formal analysis of the probabilistic integrity guarantee
- Formal analysis of privacy guarantee

Probability Reasoning of Change of (In)Frequentness of Fls/IIs

Case	Itemset constructed by verification preparation	Itemset after data perturbation	Itemset in R ^s	Reason	Probability
1	Frequent	Frequent	Υ	True Positive	$Pr(FI \rightarrow F) * \beta_1$
2	Frequent	Frequent	N	Cheat on completeness	$Pr(FI \rightarrow F) * (1-\beta_2)$
3	Frequent	Infrequent	Υ	Cheat on correctness	$Pr(FI \rightarrow I) * (1-\beta_1)$
4	Frequent	Infrequent	N	False Negative (by pertubation)	$Pr(FI \rightarrow I) * \beta_2$
5	Infrequent	Frequent	Υ	False Positive (by pertubation)	$Pr(II \rightarrow F) * \beta_1$
6	Infrequent	Frequent	N	Cheat on completeness	$Pr(II \rightarrow F) * (1-\beta_2)$
7	Infrequent	Infrequent	Υ	Cheat on correctness	$Pr(II \rightarrow I) * (1-\beta_1)$
8		Infrequent (α_1, β_1) -corre	N ectness;	True negative α_2 , β_2 : for (α_2, β_2) -complete	Pr($ \rightarrow $) * β_2 13 teness

Probability Reasoning of Change of (In)Frequentness of FIs/IIs

Case	Itemset constructed by verification preparation	Itemset after data perturbation	Itemset in R ^s	Reason	Probability
1	Frequent	Frequent	Υ	True Positive	$Pr(FI \rightarrow F) * \beta_1$
2	Frequent	Frequent	N	Cheat on completeness	$Pr(FI \rightarrow F) * (1-\beta_2)$
3	Frequent	Infrequent	Υ	Cheat on correctness	$Pr(FI \rightarrow I) * (1-\beta_1)$
4	Frequent	Infrequent	N	False Negative (by pertubation)	$Pr(FI \rightarrow I) * \beta_2$
5	Infrequent	Frequent	Υ	False Positive (by pertubation)	$Pr(II \rightarrow F) * \beta_1$
6	Infrequent	Frequent	N	Cheat on completeness	$Pr(II \rightarrow F) * (1-\beta_2)$
7	Infrequent	Infrequent	Υ	Cheat on correctness	$Pr(II \rightarrow I) * (1-\beta_1)$
8	•	Infrequent (α_1, β_1) -corr	N ectness;	True negative α_2 , β_2 : for (α_2, β_2) -complete	Pr(II→I) * β₂ 14 teness

Probability Reasoning of Change of (In)Frequentness of Fls/IIs

Case	Itemset constructed by verification preparation	Itemset after data perturbation	Itemset in <i>R^s</i>	Reason	Probability
1	Frequent	Frequent	Υ	True Positive	$Pr(FI \rightarrow F) * \beta_1$
2	Frequent	Frequent	N	Cheat on completeness	$Pr(FI \rightarrow F) * (1-\beta_2)$
3	Frequent	Infrequent	Υ	Cheat on correctness	$Pr(Fl \rightarrow I) * (1-\beta_1)$
4	Frequent	Infrequent	N	False Negative (by pertubation)	$Pr(FI \rightarrow I) * \beta_2$
5	Infrequent	Frequent	Υ	False Positive (by pertubation)	$Pr(II \rightarrow F) * \beta_1$
6	Infrequent	Frequent	N	Cheat on completeness	$Pr(II \rightarrow F) * (1-\beta_2)$
7	Infrequent	Infrequent	Υ	Cheat on correctness	$Pr(II \rightarrow I) * (1-\beta_1)$
8	Infrequent α_1 , β_1 ; for	Infrequent (α_1, β_1) -corre	ectness;	True negative α_2 , β_2 ; for (α_2, β_2) -complete	Pr(II→I) * $β_2$ 15 teness

$Pr(FI \rightarrow F)$ and $Pr(FI \rightarrow I)$

FI remains frequent after perturbation

(case 1 & 2):
$$Pr(FI \to F) = \sum_{i=min_{sup}}^{N} Pr[supp_{T'^*}(FI) = i],$$

 FI turns to be infrequent after perturbation (case 3 & 4):

(case 3 & 4):
$$\Pr(FI \rightarrow I) = \sum_{i=0}^{min_{sup}-1} \Pr[supp_{T'}*(FI) = i],$$

where

$$Pr[supp_{T'^*}(FI) = k] = \sum_{j=0}^{\min(k,a)} \binom{a}{j} (p_\ell^m[\ell \to \ell])^j \times \ell \to \ell])^{a-j} \times \binom{N}{k-j} (\rho_m^\ell)^{k-j} \times (1-\rho_m^\ell)^{N-k+j}.$$

a: number of artificial transactions.

$Pr(II \rightarrow F)$ and $Pr(II \rightarrow I)$

 II turns to be frequent after perturbation (case 5 & 6):

$$Pr(II \rightarrow F) = \sum_{i=min_{sup}}^{N} Pr[supp_{T'^*}(II) = i],$$

 Il remains infrequent after perturbation (case 7 & 8):

$$Pr(II \to I) = \sum_{i=0}^{min_{sup}-1} Pr[supp_{T'^*}(II) = i],$$

Where:

$$Pr[supp_{T'^*}(II) = k] \binom{N}{k} (\rho_m^e)^k (1 - \rho_m^e)^{N-k}.$$
17

Number of FI and II for Verification Preparation

- v₁: # of FI
- v₂: # of II
- The number of FI and II

$$\nu_1 = \log_{[(1-Pr[FI\to F])\beta_2]}(1-\alpha_2) + \log_{[(Pr[FI\to F])\beta_1]}(1-\alpha_1)$$

$$\nu_2 = \log_{[(1-Pr[II\to F])\beta_2]}(1-\alpha_2) + \log_{[(Pr[II\to F])\beta_1]}(1-\alpha_1)$$

Number of FI and II for Verification

- r1: expected # of FI in the returned result R^S
- r2: expected # of II in the returned result R^S
- r₁ and r₂ are computed as:

$$r_1 = \log_{(\beta_1 \times (Pr[FI \to F])} (1 - \alpha_1)$$

$$r_2 = \log_{(\beta_2 \times (Pr[II \to F])} (1 - \alpha_2)$$

Post-Processing

- Post-processing by the client
 - Remove FI and II
 - Recover real supports of real frequent itemsets

Complexity Analysis

Client side

- Preparation: O(|FI|+|II|)
- Verification: O(|FI|+|II|)
- Post-processing: $O(|R^S|)$

Cloud side

- $-O(2^{|I|+|I|+|I|})$
 - I: number of unique items in T;
 - I_1/I_2 : number of unique items in FI/II.

Privacy Analysis

- Our method is ε-private
 - For any transaction t ∈ T, and any itemset A ⊆t*, where t* is constructed from t after perturbation

$$Pr[a \in t \mid A \subseteq t^*] < \varepsilon$$
, for any item $a \in t$.

Experiments

Datasets

Dataset	NASA-HTTP	Retail
# of transactions	39531	88162
# uf unique items	22458	16470
max length of transactions	112	74
min length of transactions	1	1
min _{sup}	1000	10
# of frequent itemsets	4156264	189400

Detection Probability

(a) Correctness Verification

(b) Completeness Verification

Verification Preparation Time

(a) Retail Dataset

(b) NASA-HTTP Dataset

Verification Time

Verification Time

Client V.S. Server

Conclusion

- Design a probabilistic integrity verification method for outsourced privacy-preserving frequent itemset mining
- Design efficient method to construct verification objects for data perturbation based privacy preservation methods.
- Quantify the integrity guarantee probability.
- Conduct experiments to evaluate robustness and efficiency.

Thank You!

Questions?