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We consider frequent itemset mining as the mining task




Security Issues of DMaS
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Security concerns:
1. How to protect privacy of the data and the mining results?
2. How to verify correctness/completeness of the mining results?

— Correctness: all returned itemsets are frequent
— Completeness: all frequent itemsets are returned



Existing Research

* Two parallel lines of research
— Privacy-preserving mining (e.g., [1], [9])
— Verification of outsourced data mining computations
[2-7] (without any privacy protection)

* No work considered both privacy and result
Integrity verification in a unified framework
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» Select-a-size randomization approach [1]

— Effect of randomization on itemset support:

* The itemset support is a random variable following a given
distribution

» Frequent (infrequent resp.) itemsets may become infrequent
(frequent, resp.)



Result Integrity Verification Methods
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* Frequent itemset mining [2, 3] (without privacy
protection):

— Verification preparation

» The client constructs artificial transactions A for verification
objects
— Artificial frequent itemsets (Fl): for completeness verification
— Artificial infrequent itemsets (/). for correctness verification

* The client outsources T*=T + A.

— Verification

» The client verifies the completeness and correctness w.r.t. Fl
and II.
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Verification Goal

. . R RS
Correctness: Precision R, = %
Completeness: Recall R, — 2%

— R: frequent itemsets of T; R®: mining results returned by the
Cloud

Verification goal

— A verification method M can verify (a4, pB4)-correctness if it has
probability Pr = a4 to catch RS whose precision R, < B.

— A verification method M can verify (a,, p,)-completeness if it
has probability Pm = a5, to catch RS whose recall R, < B».

Number of verification objects (Fl and |l) is decided by
ay, Ay f1 Do



On the Marriage of Privacy and
Result Integrity

* Two equal-important goals
— Provable privacy guarantee

— Robust result integrity guarantee ((a,, S,)-correctness
and (a,, pB,)-completeness)

* Challenges

— Data-perturbation techniques lead to inaccurate
mining results

— It makes the Cloud's cheating behaviors harder to be
caught.



Approach |

* Privacy-preserving data perturbation first

:
L]
Privacy-Preserving Verification Qutsoyrce T*
ata Pertubation reparation ™ .
.

Verify Integrity of RS
RS RS

Discover Frequent
ltemset RS in T*

Return RS

The Data Owner . The Server

Privacy weakness: inserting artificial transactions
constructed without any respect to privacy may lead to
new privacy vulnerabilities.



Approach |l

* Integrity verification preparation first

L
Verification Privacy-Preserving Outsoyrce T'*
T Preparation 3 Data Pertubation L -
'
L

Verify Integrity of RS
RS RS

Discover Frequent
Itemset RS in T'*

.
Return RS

The Data Owner . The Server

Result integrity verification weakness: iImpact of

perturbation on verification objects

« Atrtificial frequent itemsets (FI) can turn to be infrequent.
 Artificial infrequent itemset (Il) can turn to be frequent.
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A Deeper Look of Approach |l
N

Insert A

Discover Frequent

Itemset RS in T'*
Verify Integrity of RS

The Data Owner . The Server

Verification Preparation: construction artificial transactions A that
contains v4 number of FI and v, number of Il.

Privacy protection: Apply Select-A-Size data pertubation [1].
Verification: check if R® contains at least ry Fl and at most r, II.
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A Deeper Look of Approach |l
e m

Insert A

Discover Frequent

Itemset RS in T'*
Verify Integrity of RS

The Data Owner . The Server

Verification Preparation: construction artificial transactions A that
contains v4 number of FI and v, number of Il.

Privacy protection: Apply Select-A-Size data pertubation [1].
Verification: check if R® contains at least ry Fl and at most r, Il.

Challenges:
1. How to construct Fl and 11?

2. What is the appropriate value of v4, v,, ry and r, for (a,, f5;)-
correctness and (a,, f,)-completeness?
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Our Contributions

» Design of efficient algorithms to construct
verification objects (FI and Il)

« Formal analysis of the probabilistic
Integrity guarantee

« Formal analysis of privacy guarantee
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Probability Reasoning of Change of
(In)Frequentness of Fls/lls

Itemset
constructed | Itemset after
by data Itemset in R° | Reason Probability
verification perturbation
preparation
1 | Frequent | Frequent Y True Positive Pr(FI=F) * B,
2 Frequent Frequent N Cheat on completeness Pr(FI=>F) * (1-B,)
3 | Frequent | Infrequent Y Cheat on correctness Pr(FI=>1) * (1-B,)
4 | Frequent Infrequent N False Negative (by pertubation) Pr(FI=>I) * B,
5 | Infrequent | Frequent Y False Positive (by pertubation)  Pr(li=F) * B,
6 | Infrequent | Frequent N Cheat on completeness Pr(lI=>F) * (1-B,)
7 | Infrequent | Infrequent Y Cheat on correctness Pr(li=>1) * (1-B,)
8 Infrequent | Infrequent N True negative Pr(li=>1) * B, 13

a4, By for (a,, B,)-correctness; a,, B for (a,, B,)-completeness



Probability Reasoning of Change of
(In)Frequentness of Fls/lls

ltemset
constructed
by
verification
preparation
Frequent

Frequent
Frequent
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Infrequent
Infrequent
Infrequent

Infrequent

a,, B,4-for (a,, B4)-correctness;

Itemset after
data
perturbation

Frequent
Frequent
Infrequent
Infrequent
Frequent
Frequent

Infrequent

—|efregquent—

Y

N

Itemset in R° | Reason Probability

True Positive Pr(FI=>F) * B,
Cheat on completeness Pr(FI=>F) * (1-B,)
Cheat on correctness Pr(FI=>1) * (1-B,)

False Negative (by pertubation) Pr(FI-=>I) * B,

False Positive (by pertubation)  Pr(lI->F) * B,

Cheat on completeness Pr(lI->F) * (1-B,)
Cheat on correctness Pr(llI=>1) * (1-B,)
True negative Pr(li=>1) * B, 14

a,, B,- for (a,, B,)-completeness



Probability Reasoning of Change of
(In)Frequentness of Fls/lls

Itemset after
data
perturbation

Itemset in R®

Probability

Frequent

Frequent
Frequent
Frequent
Infrequent
Infrequent
Infrequent

Infrequent

a4, B4 for (a4, B1)-correctness;

Frequent

Frequent
Infrequent
Infrequent
Frequent
Frequent
Infrequent

Infrequent

Y

N

True Positive Pr(FI=>F) * B,

Cheat on completeness Pr(FI=>F) * (1-B,)

Cheat on correctness Pr(FI=>I) * (1-B,)
False Negative (by pertubation) Pr(FI=>I) * B3,

False Positive (by pertubation)  Pr(lI=>F) * B,
Cheat on completeness Pr(lI=>F) * (1-B,)
Cheat on correctness Pr(ll-=>1) * (1-B,)

True negative Pr(lI=>1) * B, 15
a,, B, for (a,, B,)-completeness



Pr(FI—F) and Pr(FI—l)

* Fl remains frequent after perturbation
(case 1 & 2):

Pr(FI=+F)= Y  Prlsupprn(FI) =14,

TR S

* Fl turns to be infrequent after perturbation

(case 3 &4): i sup =4
Pr(FI=I)= Y  Prlsuppp(FI) =1,
where

in( Je, =
Pr(suppr(FI) =k] = Z (3} e [ — E’])9>< ¢ — 4y (fch ) (pfn)j”_j X (1— ,oﬁ,l)N-hH.

a: number of artificial transactions. 16



Pr(/I—-F) and Pr(/[—1)

* |l turns to be frequent after perturbation
(case 5 & 6): R

Pr(II—+F)y= Y  Prlsuppr~(II)=1].

2R sy

* |l remains infrequent after perturbation
(case 7 & 8):

MR syp — 1
Pr(II—I) = Z Prlsuppps (IT) =1,
Where: =

}3-7*[8’1)/10103’«»* (II) = )?C] (N) (pfn)k(l - pi)N—Ie.



Number of Fl and l|
for Verification Preparation

e v,. #oOf Fl
e Voo #Of
* The number of Fl and I

vy = 10%[(1—P1-[f‘1—>f‘]).1._,](1 —a2) + log[(Pr~[F1—>F]>-ﬁ](1 — o

Vo = 10%[(1—Pl-[11—>f‘]).32](1 —i) + log[(Pr[II—ﬂf]).i,](l —aq)
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Number of Fl and |l for Verification

* r1: expected # of Fl in the returned result RS
« r2: expected # of Il in the returned result R°
* r; and r, are computed as:

" = 10%(,31><(Pr[F1—>F])(1 —aq)

o l(x)g(af;zx(Pr[II—>F])(1 — a2 )
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Post-Processing

» Post-processing by the client
— Remove Fl and Il

— Recover real supports of real frequent
itemsets
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Complexity Analysis

« Client side
— Preparation: O(|F/|+|/l|)
— Verification: O(|F/|+|/l])
— Post-processing: O(|RS)])
« Cloud side
— (211121
* |- number of unique items in T;
* [/l,: number of unique items in Fl/II.
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Privacy Analysis

« Our method is ¢-private

— For any transaction t € T, and any itemset A
ct*, where t* Is constructed from t after
perturbation

Prlacet|Act]<e,
forany item a e t.

22



Experiments

Datasets

ot
# of transactions 39531 88162

# uf unique items 22458 16470

max Iength of 113 24

transactions

min length of 1 1

transactions

min,, 1000 10

# of frequent itemsets 4156264 189400



Detection Probability

Detection Probability
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Verification Preparation Time
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Verification Time (Seconds)
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Conclusion

Design a probabilistic integrity verification method for
outsourced privacy-preserving frequent itemset mining

Design efficient method to construct verification objects
for data perturbation based privacy preservation
methods.

Quantify the integrity guarantee probability.

Conduct experiments to evaluate robustness and
efficiency.
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Thank You!

Questions?
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