Topological Data Analysis of Biological Aggregation Dynamics

Chad Topaz (Williams College) NSF DMS-I4I2674/I743963

This talk, in a nutshell

Part I: Applying a topological lens to biological aggregation model data
Message: TDA can be a useful tool for exploratory data analysis.

Part II: Moving towards topological reductions of a complex system
Message: When dynamics are neither highly ordered nor totally random, a topological description might be appropriate, but the approach is analytically challenging.

Biological aggregations abound in nature.

Chad's parsing of biological aggregation research:

I. Determine individual-level behaviors
2. Assess macroscopic group properties
3. Elucidate the connection between these

Quantifying group dynamics is a task suited for data science.

https://youtu.be/q27Jn3h4kpE

M. Copeland, University of Wisconsin

Vicsek's seminal model describes aligning particles.

Novel type of phase transition in a system of self-driven particles T Vicsek, A Czirók, E Ben-Jacob, I Cohen, O Shochet - Physical review letters, 1995 - APS is 70 Cited by 4884 Related articles All 28 versions

$\mathbf{v}_{i} \leftarrow v_{0}\left(\cos \theta_{i}, \sin \theta_{i}\right)$
$\mathbf{x}_{i} \leftarrow \quad \mathbf{x}_{i}+\mathbf{v}_{i} \Delta t$

Dynamics are often assessed via order parameter time series.

Alignment order parameter: $\phi(t)=\frac{1}{N v_{0}}\left|\sum_{i=1}^{N} \mathbf{v}_{i}(t)\right|$

are often assessed via rameter time series.

$\varphi=1$

$\varphi=0$

$\varphi=0$

How about using topology as our "order parameter"?

I. Computational Homology
T. Kaczynski, K. Mischaikow, and M. Mrozek. (2004)
2. Computing persistent homology
A. Zomorodian, G. Carlsson. Disc. \& Comp. Geom. (2005)
3. Barcodes:The persistent topology of data R. Ghrist. Bull. Am. Math. Soc. (2008)
4. Persistent homology:A Survey
H. Edelsbrunner, J. Harer. Contemp. Math. (2008)
5. Topology and Data
G. Carlsson. Bull. Am. Math. Soc. (2009)

Step I:

Envision data as point cloud

Step 2:

Build simplicial complex

Step 3:

Calculate Betti numbers

Chad's Self-Help
Homology Tutorial
For The Simple(x)-Minded
A full-color Extravaganza
With very sincere thanks and apologies to Lori Ziegelmesier and Tom Halverson, who actually know topology and tried to explain it to me.

Step 4:

Find persistent homology

Proximity Parameter ε

Step 4:

Find persistent homology

Step 5:

Evolve in time

Step 5:

Evolve in time (CROCKER)

Initial condition for Vicsek model covers a three-torus.

The Vicsek model has several prototypical behaviors.

Clusters?

Loose alignment?

Strong alignment?

Traditional order parameter time series that look similar...

Parameter Set \#I "Clusters"

...can have drastically different topological signatures.

Parameter Set \#I

 "Clusters"

Parameter Set \#2
"Strong Alignment"

This talk, in a nutshell

Part I: Applying a topological lens to biological aggregation model data
 Message: TDA can be a useful tool for exploratory data analysis.

Part II: Moving towards topological reductions of a complex system
Message: When dynamics are neither highly ordered nor totally random, a topological description might be appropriate, but the approach is analytically challenging.

Do time series of random

processes have average homology?
Vicsek model (naive) average over $\mathrm{n}=1000$ simulations

Expected value of $b_{0}(\epsilon)$ for an

 impressive ensemble of 2 points?

$$
\begin{aligned}
\mathrm{b}_{0}(\epsilon) & =2 \cdot P(\text { disconn. })+I \cdot P(\text { conn. }) \\
& =2 \cdot[I-P(\text { conn. })]+P(\text { conn. }) \\
& =2-P(\text { conn. }) \\
P(\text { conn. }) & =P(\text { conn. } ; \epsilon)=? ? ?
\end{aligned}
$$

Expected value of $b_{0}(\epsilon)$ for an

 impressive ensemble of 2 points?

Expected value of $b_{0}(\epsilon)$ for an impressive ensemble of 2 points?
$\mathrm{b}_{0}=1 \mathrm{~b}_{0}=2 \mathrm{~b}_{\text {function is } \mathrm{C}^{1}}^{\left.\mathrm{b}_{0}(\epsilon)=2 \cdot \mathrm{P} \text { (conn. } ; \epsilon\right)}$

Proximity parameter ϵ

Expected value of $b_{0}(\epsilon)$ for an

 impressive ensemble of 3 points?b। Probability
0 ?

0
?

0
?

0
0
?

Class \# in class

1	3
3	2
3	1
1	1

8
I

Expected value of $b_{0}(\epsilon)$ for an impressive ensemble of 4 points?

Expected value of $b_{0}(\epsilon)$ for an impressive ensemble of 4 points?

Class	\# in class	b_{0}	b_{1}	Probability
1	1	4	0	$?$
2	6	3	0	$?$
3	3	2	0	$?$
4	12	2	0	$?$
5	12	1	0	$?$
6	4	2	0	$?$
7	4	1	0	$?$
8	3	1	1	$?$
9	12	1	0	$?$
10	6	1	0	$?$
11	1	1	0	$?$

What is the homology of a random geometric graph?

- Random Geometric Graphs [M. Penrose, 2003]
- Topology of random geometric complexes: A Survey [Bobrowski and Kahle, 2014]

Types of results:

- Bounds
- Limiting results $(\mathrm{N} \rightarrow \infty, \varepsilon \rightarrow 0)$
- Hard expressions

What is the homology of a random geometric graph?

Theorem 3.2.1 (Penrose, [47]). If $\Lambda=\lambda \in(0, \infty)$, then:
where

$$
\frac{\beta_{0}(n)}{n} \xrightarrow{L^{2}} \int_{\mathbb{R}^{d}}\left(\sum_{k=1}^{\infty} k^{-1} p_{k}(\lambda f(x))\right) f(x) d x
$$

$$
\begin{gathered}
p_{k}(t)=\frac{t^{k-1}}{k!} \int_{\left(\mathbb{R}^{d}\right)^{k-1}} h\left(0, y_{1}, \ldots, y_{k-1}\right) e^{-t A\left(0, y_{1}, \ldots, y_{k-1}\right)} d y_{1} \cdots d y_{k-1}, \\
h\left(x_{1}, x_{2}, \ldots, x_{k}\right)= \begin{cases}1 & G\left(\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}, 1\right) \text { is connected } \\
0 & \text { otherwise }\end{cases}
\end{gathered}
$$

and

$$
A\left(x_{1}, x_{2}, \ldots, x_{k}\right):=\left|\bigcup_{j=1}^{k} B_{1}\left(x_{j}\right)\right|
$$

The infinite sum in (3.2) comes from the fact that we need to count the number of components consisting of any possible number of vertices. The limiting expression provided by the theorem is highly intricate, and at this point impossible to evaluate analytically. Nonetheless, as we will

What is the homology

of a random points on flat torus?

Try modeling the topological signature.

+ dimensional analysis

Let $b_{0}(\epsilon)=I+(N-I) \cdot f\left(\epsilon^{2}\right), f(0)=I, f\left(\epsilon^{2}\right)=0$ for $\epsilon \geq \epsilon^{*}$

$$
f\left(\epsilon^{2}\right)=\exp \left[\frac{1}{g(0) \epsilon_{*}^{2}}-\frac{1}{\epsilon_{*}^{2}-\epsilon^{2}} \frac{1}{g\left(\epsilon^{2}\right)}\right]
$$

Try modeling

 the topological signature.

Try modeling the topological signature.

This talk, in a nutshell

Part I: Applying a topological lens to biological aggregation model data
 Message: TDA can be a useful tool for exploratory data analysis

Part II: Moving towards topological reductions of a complex system
Message: When dynamics are neither highly ordered nor totally random, a topological description might be appropriate, but the approach is analytically challenging

Applied mathematical modeling with topological techniques Summer (???) 2019
 Organizers:
 Henry Adams, Colorado State University Maria D'Orsogna, Cal State Northridge Rachel Neville, University of Arizona Jose Perea, Michigan State University Chad Topaz, Williams College

