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Part 1: Applying a topological lens to biological 
aggregation model data

Message: TDA can be a useful tool for exploratory 
data analysis.

Part II: Moving towards topological reductions of 
a complex system

Message: When dynamics are neither highly 
ordered nor totally random, a topological 
description might be appropriate, but the 
approach is analytically challenging.

This talk, in a nutshell



Biological aggregations 
abound in nature.



Chad’s parsing of biological 
aggregation research:

1. Determine individual-level behaviors

2. Assess macroscopic group properties

3. Elucidate the connection between these



300 bacteria
4 pieces info. / (frame x bacteria)
20 frames / second
10 seconds
240,000 pieces of information

https://youtu.be/q27Jn3h4kpE

Quantifying group dynamics is a 
task suited for data science.

M. Copeland, University of Wisconsin

https://youtu.be/q27Jn3h4kpE


Vicsek’s seminal model  
describes aligning particles.

http://youtu.be/jphRZV3oC
aI

�i � ��j�|xi�xj|�R + U(��/2, �/2)

vi � v0(cos �i, sin �i)

xi � xi + vi�t

social  
alignment

uniform  
noise
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Dynamics are often assessed via 
order parameter time series.
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Dynamics are often assessed via 
order parameter time series.



How about using topology as 
our “order parameter”?

1. Computational Homology 
T. Kaczynski, K. Mischaikow, and  M. Mrozek. (2004)

2. Computing persistent homology
A. Zomorodian, G. Carlsson. Disc. & Comp. Geom. (2005)

3. Barcodes: The persistent topology of data
R. Ghrist. Bull. Am. Math. Soc. (2008)

4. Persistent homology: A Survey
H. Edelsbrunner, J. Harer. Contemp. Math. (2008)

5. Topology and Data
G. Carlsson. Bull. Am. Math. Soc. (2009)



Step 1:
Envision data as point cloud



Step 2:
Build simplicial complex



Step 3:
Calculate Betti numbers

b0 = 4
b1 = 1
b2 = 0
b3 = 0
etc.
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Step 4:
Find persistent homology

Look for 
persistent 
features



Step 4:
Find persistent homology
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Step 5:
Evolve in time
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Step 5:
Evolve in time (CROCKER)
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Look for 
persistent 
features

Contour Realization Of 
Computed K-dimensional-hole 
Evolution in the Rips complex



Initial condition for Vicsek 
model covers a three-torus.
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The Vicsek model has several 
prototypical behaviors.
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Traditional order parameter 
time series that look similar…
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…can have drastically different 
topological signatures.
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Part 1: Applying a topological lens to biological 
aggregation model data

Message: TDA can be a useful tool for exploratory 
data analysis.

Part II: Moving towards topological reductions of 
a complex system

Message: When dynamics are neither highly 
ordered nor totally random, a topological 
description might be appropriate, but the 
approach is analytically challenging.

This talk, in a nutshell







Do time series of random 
processes have average homology?

b0(t,ε) b1(t,ε)
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Vicsek model (naive) average over n = 1000 simulations
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Expected value of b0(ϵ) for an 
impressive ensemble of 2 points?

b0(ϵ) = 2⋅P(disconn.) + 1⋅P(conn.)
= 2⋅[1 - P(conn.)] + P(conn.)
= 2 - P(conn.)

P(conn.) = P(conn.;ϵ) = ???



 

Expected value of b0(ϵ) for an 
impressive ensemble of 2 points?



Proximity parameter ϵ

function is C1
b0 = 1

b0 = 2

Expected value of b0(ϵ) for an 
impressive ensemble of 2 points?

b0(ϵ) = 2⋅P(conn.;ϵ)



Expected value of b0(ϵ) for an 
impressive ensemble of 3 points?

Class # in class b0 b1 Probability

1 3 0 ?

3 2 0 ?

3 1 0 ?

1 1 0 ?



Expected value of b0(ϵ) for an 
impressive ensemble of 4 points?



Expected value of b0(ϵ) for an 
impressive ensemble of 4 points?

Class # in class b0 b1 Probability
1 1 4 0 ?
2 6 3 0 ?
3 3 2 0 ?
4 12 2 0 ?
5 12 1 0 ?
6 4 2 0 ?
7 4 1 0 ?
8 3 1 1 ?
9 12 1 0 ?
10 6 1 0 ?
11 1 1 0 ?



• Random Geometric Graphs [M. Penrose, 2003]
• Topology of random geometric complexes: 

A Survey [Bobrowski and Kahle, 2014]

Types of results:
• Bounds
• Limiting results (N → ∞, 𝛆 → 0)
• Hard expressions

What is the homology 
of a random geometric graph?



therefore the results related to connectivity are the same for both complexes. As we mentioned in

the introduction, the main purpose of this survey is to review recent results related to homology

in degree k � 1. However, for completeness, we wish to include a brief review of the key proper-

ties related to the connected components. Connectivity in graphs is tightly related to the average

degree. Note that in the G(n, r) the degree of a vertex is the number of points lying in a ball of ra-

dius r around that vertex. Therefore, for both the binomial and the Poisson processes, the expected

degree is proportional to the term

⇤ := n · rd. (3.1)

As mentioned above, the limiting behavior splits into three main regimes, depending on the limit

of the term ⇤. We will correspondingly split the discussion on the limiting results.

3.1 The subcritical regime

The subcritical regime (also known as the ‘sparse’ or ‘dust’ regime) is when ⇤ ! 0. In this regime,

the graph G(n, r) is very sparse, and mostly disconnected. Therefore, the study of connectivity did

not draw much attention in the past. See [11] for a proof of the following.

Theorem 3.1.1. If ⇤ ! 0 then

E {�0(n)} ⇡ n.

This statement can be sharpened to a central limit theorem, and a law of large numbers can be

proved for deviation from the mean. In fact, as we see in the next section, a central limit theorem

and law of large numbers continue, even into the critical regime.

3.2 The critical regime

The critical regime (also known as the ‘thermodynamic limit’) is when ⇤ = � 2 (0,1). In this

regime �0(n) ⇡ cn for some constant c < 1 (depending on �), so the number of components is still

⇥(n), but is significantly lower than in the subcritical regime. The following law of large numbers

is proved in section 13.7 of [47].

Theorem 3.2.1 (Penrose, [47]). If ⇤ = � 2 (0,1), then:

�0(n)

n
L

2

�!
Z

Rd

 1X

k=1

k�1p
k

(�f(x))

!
f(x)dx, (3.2)

9

where

p
k

(t) =
tk�1

k!

Z

(Rd)k�1
h(0, y1, . . . , y

k�1)e
�tA(0,y1,...,yk�1)dy1 · · · dy

k�1,

h(x1, x2, . . . , x
k

) =

(
1 G({x1, x2, . . . , x

k

}, 1) is connected,
0 otherwise,

and

A(x1, x2, . . . , x
k

) := |
k[

j=1

B1(xj)|.

The infinite sum in (3.2) comes from the fact that we need to count the number of components

consisting of any possible number of vertices. The limiting expression provided by the theorem

is highly intricate, and at this point impossible to evaluate analytically. Nonetheless, as we will

discuss later, this theorem provides the only formula available to date for the limit of the Betti

numbers in the critical regime.

In addition to a law of large numbers, there is also a central limit theorem available.

Theorem 3.2.2 (Penrose, [47]). If ⇤ = � 2 (0,1) then there exists � > 0 such that

�0(n)� E {�0(n)}p
n

L�! N (0,�2).

A more geometric view of connectivity is studied in percolation theory. Penrose considered

the case where f is a uniform probability density on a d-dimensional unit cube, and ⇤ = �. A

remarkable fact is that there exists a constant �
c

> 0 depending only on the underlying density

function, such that if � < �
c

then a.a.s. every connected component is of order O(log n), and if

� > �
c

then a.a.s. there is a unique “giant” component on ⇥(n) vertices. This sudden change in

behavior over a very small shift of parameter is sometimes called a phase transition.

In chapters 9 and 10 of [47], Penrose relates percolation on random geometric graphs to more

classical continuum percolation theory. In continuum percolation, also called the Gilbert disk model

[29], one considers a random geometric graph on a unit-intensity uniform Poisson process on Rd,

and then there is a threshold radius r
c

> 0 such that for r > r
c

the random geometric graph has an

infinite connected component, and for r < r
c

every component is finite size. For a deeper study of

continuum percolation, see Meester and Roy’s book [40]. For an introduction and overview of the

subject, see Chapter 8 of Bollobas–Riordan [16] or Section 12.10 of Grimmett [30].
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What is the homology 
of a random geometric graph?
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(10,000 trials)
max(std. error) = 0.001

What is the homology 
of a random points on flat torus?
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Try modeling 
the topological signature.

N

1

b0

ϵϵ*

Let b0(ϵ) = 1 + (N - 1)⋅f(ϵ2), f(0) = 1, f(ϵ2) = 0 for ϵ ≥ ϵ* 

+ dimensional analysis

f(✏2) = exp


1

g(0)✏2⇤
� 1

✏2⇤ � ✏2
1

g(✏2)

�



Try modeling 
the topological signature.



Try modeling 
the topological signature.

0 5
0

300

b0

ϵ

N = 300
Take g(ϵ2) = line (2 free parameters)
R2 = 0.9999…
MSE < 0.1

= numerical data (190 pts)

= model fit
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