A Green's Function Approach to Efficient Shallow Water Uncertainty Quantification

Will Mayfield Oregon State University

SIAM Geosciences 2019

March 2019

◆□ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ ≧ のQ (~ 1/25

OUTLINE

INTRODUCTION

GREEN'S FUNCTION APPROACH

Efficiency

DEMONSTRATION

Efficiency

ACKNOWLEDGEMENTS

Harrison Ko¹

Michael Dumelle²

NSF Research Traineeship (NRT) Program. National Science Foundation—DMS grant 1211413

²Oregon State University

¹SRI International

MOTIVATION

11

Rising sea level has worldwide consequences because of its potential to alter ecosystems and the vulnerability of coastal regions by increasing the prevalence of recurrent tidal flooding events and life-threatening storm surge events.¹

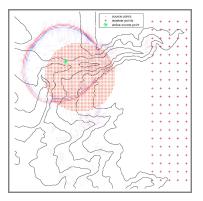
¹NOAA. The Ecological Effects of Sea Level Rise Program. coastalscience.noaa.gov/』 Access 3月9.

A (modest) Goal: Variance estimation for a given "reference" or "mean" shallow water forecast.

A (modest) Goal: Variance estimation for a given "reference" or "mean" shallow water forecast.

Tools to use:

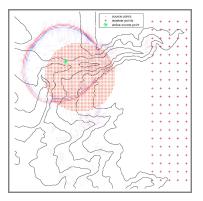
- Green's Functions
- Shallow Water Equations
- Monte Carlo approach



A (modest) Goal: Variance estimation for a given "reference" or "mean" shallow water forecast.

Tools to use:

- Green's Functions
- Shallow Water Equations
- Monte Carlo approach



GREEN'S FUNCTIONS

Given an inhomogeneous **linear** system,

 $\mathcal{L}[q(x,t)] = f(x,t),$

the Green's function solves the system perturbed by an impulse (Dirac delta):

 $\mathcal{L}[G(x,t;x',t')] = \delta(x-x')\delta(t-t').$

The "**magic rule**" property of the Green's function recovers the solution:

$$q(x,t) = \int_0^T \int_\Omega f(x',t') G(x,t;x',t') dx' dt'.$$

Numerically, we can use a unit impulse (Kronecker delta) and solve for Green's Functions on a spacetime grid ($\{x_i\}, \{t_n\}$):

$$\mathcal{L}[G(x,t;x_i,t_n)] = \delta(x-x_i)\delta(t-t_n).$$

The solution is

$$q(x,t) = \sum_{n=1}^{N} \sum_{i=1}^{S} f(x_i, t_n) G(x, t; x_i, t_n).$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

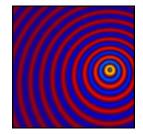
GREEN'S FUNCTIONS—SOME ANALYTIC EXAMPLES

2D Wave impulsive force

2D Wave Time-Harmonic force

•
$$\nabla^2 \phi - \frac{1}{c^2} \phi_{tt} = \delta(\mathbf{x}) e^{i\omega t}$$

• $\phi(\mathbf{x}, t) = \frac{i}{4} e^{i\omega t} H_0^{(2)}(\frac{\omega r}{c})$

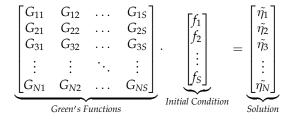


GREEN'S FUNCTIONS

For the initial condition problems,

$$q(x,t) = \sum_{i=1}^{S} f(x_i) G(x,t;x_i).$$

Or, in a matrix form,



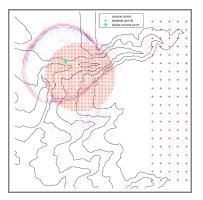
For a time-dependent forcing, add an extra dimension to this calculation.

<□ > < @ > < E > < E > E のQ (?) 9/25

The Goal: Variance estimation for a given "reference" or "mean" shallow water forecast.

Tools to use:

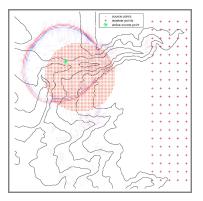
- Green's Functions
- Shallow Water Equations
- Monte Carlo approach



The Goal: Variance estimation for a given "reference" or "mean" shallow water forecast.

Tools to use:

- Green's Functions
- ► Shallow Water Equations
- Monte Carlo approach

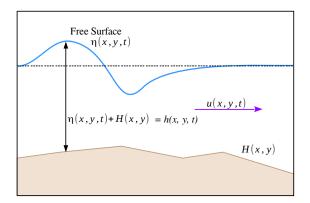


Free surface elevation: $\eta(\mathbf{x}, t)$ Velocities: $\mathbf{u}(\mathbf{x}, t)$ Bathymetry: $H(\mathbf{x})$

$$\eta_t + \nabla \cdot \left((H + \eta) \mathbf{u} \right) = 0$$

$$\mathbf{u}_t + (\mathbf{u} \cdot \nabla)\mathbf{u} + g\nabla\eta = 0$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <



◆□ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ ≧ 少 Q (~ 13 / 25

Free surface elevation: $\eta(\mathbf{x}, t)$ Velocities: $\mathbf{u}(\mathbf{x}, t)$ Bathymetry: $H(\mathbf{x})$

$$\eta_t + \nabla \cdot \left((H + \eta) \mathbf{u} \right) = 0$$

$$\mathbf{u}_t + (\mathbf{u} \cdot \nabla)\mathbf{u} + g\nabla\eta = 0$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Free surface elevation: $\eta(\mathbf{x}, t)$ Velocities: $\mathbf{u}(\mathbf{x}, t)$ Bathymetry: $H(\mathbf{x})$

$$\eta_t + \nabla \cdot \left((H + \eta) \mathbf{u} \right) = 0$$

$$\mathbf{u}_t + (\mathbf{u} \cdot \nabla)\mathbf{u} + g\nabla\eta = 0$$

...but we need a linear model to use Green's functions, right?

SHALLOW WATER PERTURBATION EQUATIONS

Instead, we try to get better results within the previously stated goal to perturb **around** some kind of "reference solution."

- Assume a given solution to SWE: $[E, \mathbf{U}]^T$.
 - This is the **mean** of our forecast.

SHALLOW WATER PERTURBATION EQUATIONS

Instead, we try to get better results within the previously stated goal to perturb **around** some kind of "reference solution."

- Assume a given solution to SWE: $[E, \mathbf{U}]^T$.
 - This is the **mean** of our forecast.
- Perturb it: $[E + \tilde{\eta}, \mathbf{U} + \tilde{\mathbf{u}}]^T$
- Assumption: $\tilde{\eta}, \tilde{\mathbf{u}}, \sim \mathcal{O}(\epsilon)$

LINEARIZED Perturbation EQUATIONS

$$\begin{split} \tilde{\eta}_t + (\mathbf{U} \cdot \nabla) \tilde{\eta} + (H + E) (\nabla \cdot \tilde{\mathbf{u}}) &= -(\nabla \cdot \mathbf{U}) \tilde{\eta} - (\tilde{\mathbf{u}} \cdot \nabla) (H + E) \\ \tilde{\mathbf{u}}_t + (\mathbf{U} \cdot \nabla) \tilde{\mathbf{u}} + g \nabla \tilde{\eta} &= -(\tilde{\mathbf{u}} \cdot \nabla) \mathbf{U} \end{split}$$

LINEARIZED Perturbation EQUATIONS

$$\tilde{\eta}_t + (\mathbf{U} \cdot \nabla)\tilde{\eta} + (H + E)(\nabla \cdot \tilde{\mathbf{u}}) = -(\nabla \cdot \mathbf{U})\tilde{\eta} - (\tilde{\mathbf{u}} \cdot \nabla)(H + E)$$
$$\tilde{\mathbf{u}}_t + (\mathbf{U} \cdot \nabla)\tilde{\mathbf{u}} + g\nabla\tilde{\eta} = -(\tilde{\mathbf{u}} \cdot \nabla)\mathbf{U}$$

or, to emphasize the linearity in the perturbations,

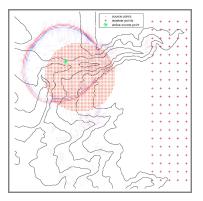
$$\begin{bmatrix} \tilde{\eta} \\ \tilde{u} \\ \tilde{v} \end{bmatrix}_{t}^{t} + \begin{bmatrix} U & (H+E) & 0 \\ g & U & 0 \\ 0 & 0 & U \end{bmatrix} \begin{bmatrix} \tilde{\eta} \\ \tilde{u} \\ \tilde{v} \end{bmatrix}_{x}^{t} + \begin{bmatrix} V & 0 & (H+E) \\ 0 & V & 0 \\ g & 0 & V \end{bmatrix} \begin{bmatrix} \tilde{\eta} \\ \tilde{u} \\ \tilde{v} \end{bmatrix}_{y}^{t}$$

$$= -\begin{bmatrix} (U_{x} + V_{y}) & (H+E)_{x} & (H+E)_{y} \\ 0 & U_{x} & U_{y} \\ 0 & V_{x} & V_{y} \end{bmatrix} \begin{bmatrix} \tilde{\eta} \\ \tilde{u} \\ \tilde{v} \end{bmatrix}_{y}^{t}$$

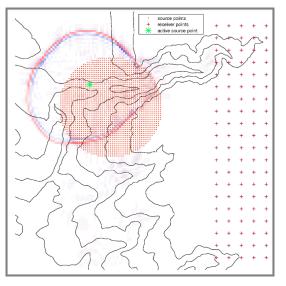
The Goal: Variance estimation for a given "reference" or "mean" shallow water forecast.

Tools to use:

- Green's Functions
- Shallow Water Equations
- Monte Carlo approach



DOMAIN SNAPSHOT—SOURCES AND RECEIVERS



<□ ト < □ ト < □ ト < 三 ト < 三 ト 三 の < ○ 18 / 25

EFFICIENCY

Parameters affecting computation and storage of the Green's functions:

- ► Source region size (*S*)
- ► Receiver region size (*R*)
- ► Timesteps (*T*)
- 2 stages:
 - Pre-computation of Green's functions (expensive—model runs)
 - Re-combination of Green's functions (effectively instantaneous—matrix-vector multiply)

MONTE CARLO VS GREEN'S FUNCTIONS

So what's the difference?

<□ ト < □ ト < □ ト < 三 ト < 三 ト < 三 り < ○ 20 / 25

MONTE CARLO VS GREEN'S FUNCTIONS

So what's the difference?

- In a straightforward Monte Carlo approach, we calculate many model runs.
 - Convergence is slow, and model runs are long.
- ► In the GF approach, we must pre-compute:
 - ► For Initial Condition / Tsunami: *S* model runs.
 - ► For time-dependent forcing / Storm surge: *S* · *T* model runs.

REDUCING THE PROBLEM

We need to keep the number of Green's functions reasonable.

For the spatial dimension (*S*):

- ► Coarsen the Green's Functions grid
- Other basis representations

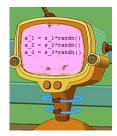
For the temporal dimension (*T*):

► Time-harmonic Green's functions

SO THEY'RE PRE-COMPUTED—WHAT NOW?

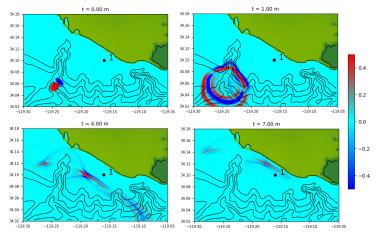
After pre-computing Green's functions, the world of parameter perturbation is open.

- What-if scenarios
- Look at individual parameter effects



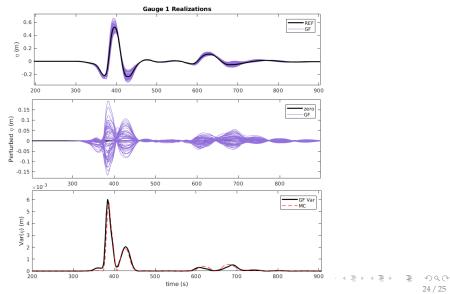
DEMONSTRATION

The mean forecast:



DEMONSTRATION

Results:



Thank you.

ペロト 《 伊 ト 《 臣 ト 《 臣 ト 《 臣 か Q (25 / 25