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Introduction - Gliomas

Gliomas:
o Account for 80% of all malignant brain fumors.

o More than 60,000 new cases each year in US.

Goals of biophysical fumor growth model:
o Determining the extent of tumor infiltration

o Pre- and post-operative planning

This requires a patient specific method to approximate a Time2 FLAIR Scan

tumor growth model parameters.
Image from (P. Mosayebi et.

al.)
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Forward Model TEXAS

Phenomenological model:

% — V.(k(x)Ve) —pc(1 —c)=0in U = Q) x (0, T],

& =O0onl x (0,1),
on
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Forward Model TEXAS

Phenomenological model:

% — V.(k(x)Vc) —pc(l —c)=0in U =2 x (0, T],
dc _
— —Dc—r(c)=0in U = x (0, T],
ot
& =O0onl! x (0,1),
on

SIAM Imaging Science 16 May 26, 2016



Forward Model - Diffusion

Dc = V.(k(x)Vec),
k(x) = ko(x)I + kT (x)
o kop: Inhomogeneous diffusion part

o T(x): Anisotropic diffusion part
o Ik Anisotropic diffusion coefficient
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Forward Model - Diffusion TEXAS

Principle direction extracted from DTI
(raw data provided by LONI lab of USC).

Inhomogeneous part of the diffusion
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Inverse Problem - Setup TEXAS
PDE-constrained optimization:

: 1 1 B
rrgnj = 5”0000 - d0||1%2(9) + EHOICI - d1||12,2((2) + EpHp”%Nk?

subject to:
— —Dc—r(c) =0in U

co— Pp=0.
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Inverse Problem - KKT Optimality Conditions TEXAS

By requiring stationarity of the Lagrangian with respect to the adjoint, state, and
inversion variable, we obtain the so called KKT optimality conditions:

oL - :
— = 0 = adjoint equation
dc

oL .

— = 0 = state equation
da
oL

N = 0 = inversion equation
p
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Inverse Problem - First Optimality Conditions TEXAS

Find ¢, ., p such that:

( —ge Doz—ag()oz—o
aj + Of (Oyc; — dy) =
—Dc—r(c)=0
co—Pp=0
Bp+ O)(Opp — do) — PTag =0
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Reduced Space Method TEXAS

Hp = —0,L| .
where H is the reduced Hessian and Hp is computed by:
1. Given p°, compute c® and a° from the state and adjoint
equations.
2. Solve for ¢ and &

7¢ V- (kE) (1 - 2e")e = 0
&(0) — ®p = 0

oo 0\ ~ ~ 0
_a_v.(kva)—p(l—zc Ja + 2pca” =0

a(T) + 0T0e(T) = 0
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Reduced Space Method TEXAS

Hp = —0,L| .
where H is the reduced Hessian and Hp is computed by:
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7¢ ¥ (kE) — p(1 - 2e%)e = 0
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Straing Splitting: Forward Problem TEXAS

@ Solve 2¢ = Dc over time At/2 with ¢" as initial condition, to obtain cf.

at
@ Solve 9¢ — R(c) over time At with ¢! as initial condition, to obtain ¢fT.
ot
@ Solve g—f = Dc over time At/2 with ¢!t as initial condition, to obtain ¢!

This scheme can more compactly be written as:

1 NP
"t =82 SRSz
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Extensive work on Hessian preconditioners on stationary problems but much less
work on solvers for nonlinear parabolic systems
General ideas:

o Low rank approximation,
o Domain-decomposition,
o Analytic preconditioners,

o Multilevel preconditioners,

Our approach fits in the last two categories with some elements on multilevel.
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Hessian Preconditioner TEXAS
1. Given p°, compute c® and o from the state and adjoint

equations.
2. Solve for ¢ and a:

0C V- (kE) (1 - 2e)e = 0
&(0) — ®p = 0

oo 0\ ~ ~ 0
_E_v.(kVa)—p(l—ZC Ja + 2pca” =0

a(T) + 0"0¢(T) = 0

3. Hp = fp— ®Ta(0).

* Approximate J -1 by including the nonlinear reaction term, and using average

diffusion coefficient (k)
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Hessian Preconditioner TEXAS
1. Given p°, compute c® and o from the state and adjoint
equations.

2. Solve for ¢ and

g_(;_v.(EVE)—p(l—ZCO)&:O
c(0)—Pp=0

oo — 0\ ~ ~ 0
_E_v.(kva)—p(l—Qc )&+ 2pca” =0

a(T) + 0"0¢(T) = 0

3. Pyp = fp— ®Ta(0).
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o AP,: Use k for the diffusion term and ignore the rest
o Computational cost independent of the number of time steps.

o AP;: Use k for the diffusion term and numerically solve the rest
o Computational cost scales linearly with the number of time steps.

OR
Compute the true H™ 1, on a coarser grid — MLP;
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Multi Level Preconditioner TEXAS

H=JToToJ ! + 3L
Use an iterative solver to compute the
matvec of H !

o Higher computational cost compared to
APs.
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Reduced Space Method - Compact Form TEXAS

(1) Start with some p°.
—1yyr= -10
(3) Set p° = p° + vp (with line search).
(4) If tolerance is reached break, otherwise go back to 2.
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Preonditioner Performance: Test Case 1 TEXAS

— — V.(k(x)Vec) —pc(l —¢c) =0

k = 1+ sin(2x) and p constant
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Preonditioner Performance: Test Case 1
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The number of Hessian matvecs to solve the optimality conditions for one iteration (tol=1E-3,
N = 1282). AP: Analytical Preconditioner, MLP; Coarse Grid Preconditioner (level i coarsening).

p No Prec Py P, MLP,  MLP, MLPs

0 6 3+0.00 3+0.07 3+150 3+029 4+0.07
0.1 6 3+0.00 3+007 3+150 3+0.29 4+0.07
1 8 5+0.01 4+40.11 3+1.82 4+051 6+0.11
5 13 156+002 6+0.40 5+900 6+228 10+0.71
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Hylbrid inexact Newton method TEXAS

\?I’Since the preconditioners perform very well, we can use them at
the early stages of the Newton solves
— hybrid inexact Newton Method
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Preonditioner Performance: Test Case 1 TEXAS

The fotal of Hessian matvecs to required to reduce the L2 norm of the gradient below 1E-3.

Method p=0 p=01 p=10 p=>5.0
UnPrec. Newton 12 12 22 85
Prec. Newton 8.90 8.90 15.00 44.43
Hybrid Newton  2.34 2.35 5.69 32.59

D s e e e e —— —_— _
o ~o= Newton | 10° | —e— Newton |
_-:-_ gyDbnd —— Hybrid
100 108 ——GD
107!
1072 T
1 107 1107
T R
-6
10 10-5
107
107% 0
107 -
L L L L L L L L L L L L L 1070 L L L L L L L L L L 1
0 2 4 6 8 10 12 14 16 18 20 22 24 0 5 10 15 20 25 30 35 40 45 50
Iteration— Iteration—
(@ p=0. ) p=5.0
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Preonditioner Performance: Test Case 2 TEXAS

Checkerboard diffusion coefficient, and p = 1 constant
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Preonditioner Performance: Test Case 2
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The number of Hessian matvecs to solve the optimality conditions for one iteration (tol=1E-3,

N = 1282). AP: Analytical Preconditioner, MLP; Coarse Grid Preconditioner (level i coarsening).

T NoPrec Py P MLP,  MLP,  MLP;
02 6 34001 3+022 2+1.31 3+037 3+008
05 7 4+001 44014 3+219 3+40.39 4+0.12
1 9 6+000 5+0.12 3+284 4+0.61 6+0.18
2 15 124001 8+0.15 5+7.77 6+1.46 10+0.39
4 22  23+000 16+020 10+23.84 9+3.79 14+005
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Preonditioner Performance: Test Case 2 TEXAS
The fotal of Hessian matvecs to required to reduce the L2 norm of the gradient below 1E-3.

T=02 T=05 T=10 T=20 T=40

Method
UnPrec. Newton 12 12 27 43 96
Prec. Newton 8.37 8.37 16.63 27.06 54.41
Hybrid Newton 2.63 5.90 11.81 22.13 54.60
o -
. &

Iteration— Iteration—
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Preonditioner Performance: Test Case 3 TEXAS

P V.(k(x)Ve) — pe(1 —¢c) =0

Diffusion coefficient for test case 4.
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Preonditioner Performance: Test Case 3 TEXAS

The number of Hessian matvecs to solve the optimality conditions for one iteration (tol=1E-3,
N = 643). AP: Analytical Preconditioner, MLP; Coarse Grid Preconditioner (level i coarsening).

p  No Prec AP, AP, MLP, MLP,

1.0 7 3.00 3+0.05 3+0.25 3+0.02
2.0 8 5+001 3+0.06 5+0.63 6+0.10
4.0 9 10+0.02 3+0.06 12+0.06 12+0.24
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Preonditioner Performance: Test Case 3
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Total number of Hessian matvecs necessary to reach convergence (.e. || g—; ll2 < 1E-3)

Method p=1.0 p=2.0 p=4.0
UnPrec. Inexact Newton 69 74 137
Prec. Inexact Newton 34.34 38.42 47.66
28.06 28.01 42.6

Hybrid Inexact Newton

1520

10°
10° |

T 10!

0
10
1077

TOTs 0 6 s 10 12 14 16 08 w0 2 2 U5 0 5w B 0 % a0 i
Iteration— Iteration—
(@p=1.0 ®) p=40
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