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Lampreys are model organisms for swimming 
and neurophysiology



Lamprey swimming mode is a traveling wave

Courtesy: E. Tytell (Tufts) and M. Leftwich (GWU)

Anguilliform (eel-like) swimming 

Passes waves of activation down the body to contract 
muscles and produce traveling curvature wave



SwimmingMusclesActivation Body

Fluid

Swimming behavior emergent from interacting 
systems
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Points describe body

Computational body
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Tytell, Hsu, William, Cohen, Fauci, PNAS 2011
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Springs describe passive tissues

Computational body
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Muscle model inserted on lateral sides

Computational body
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Connect signal to muscles
Activation generates a signal to induce muscle 
contractions 

Activation in the original model was a prescribed signal
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Numerically solve fluid structure interaction 
problem with immersed boundary method

Couples structure to a full Navier-Stokes fluid model



Computationally intensive model, interface with IBAMR 
(Boyce Griffith, UNC) 

Adaptive mesh refinement - coarse grid most of the 
domain, finer grids near immersed points and higher 
vorticity regions

IBAMR
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Generates a neural signal using a central pattern 
generators (CPG)

Activation wave drives system



CPGs - neural networks produce rhythmic signal 
patterns along the body without sensory input



Cohen, Holmes, Rand, J. Math Biol. 1982

Neural signals at different segments 
 on each side



Cohen, Holmes, Rand, J. Math Biol. 1982

Each segment has a periodic bursting pattern



Cohen, Holmes, Rand, J. Math Biol. 1982

Phase lag from head to tail on each side
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Signal on each side of a given segment 
 in antiphase



Modeling a CPG using oscillators

Cohen, Holmes, Rand, J. Math Biol. 1982



Periodic nature of CPG motivates modeling 
by an oscillator

Oscillator generates a signal at a given 
frequency

Sample signal

Choose threshold based on steady swimming 
duration and frequency from experiments



Oscillators generate a signal

Determine activation signal

Produces a signal that models steady state 
swimming as an emergent property



Couple oscillators to muscle segments
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ODE model of coupled oscillators

θ = phase



ODE model of coupled oscillators
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φs = phase lag
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Lamprey (black) immersed in a fluid (white region)
Oscillators given initial conditions

Muscle segments generate forces
Evolved in time in immersed boundary simulation

Immersed boundary simulations of a swimmer 
in an incompressible viscous fluid



Simulations show emergent swimming behavior

Hamlet, Fauci, Tytell, J.Theo. Bio  2015

Vorticity plots, lamprey model immersed in fluid
Red = counterclockwise vorticity
Blue = clockwise vorticity
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Feedback

Sensory feedback closes the loop

Proprioceptive (body-sensing) feedback affects 
activation 

Uses stretch receptors called edge cells



Edge cells and sensory feedback
Edge cells give inhibitory and excitatory 
signals along the body



If this side is  
stretched…..

Edge cells and sensory feedback



If this side is  
stretched…..

…this side gets 
an inhibitory 

signal…

Edge cells and sensory feedback



If this side is  
stretched…..

…this side gets 
an inhibitory 

signal…

…and this side  
gets an excitatory 
signal

Edge cells and sensory feedback
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Connect sensory feedback to oscillators
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ηk,i = g |κ̄|

Connect sensory feedback to oscillators
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Swimmer with negative gain slows down

ηk,i = (�0.05) |κ|Grey — No feedback
Black — Feedback



Swimmer with positive gain speeds up

Grey — No feedback
Black — Feedback

ηk,i = (0.05) |κ|



Center of mass speed increases to a point then 
starts to drop off
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Metabolic cost to swim decreases as gain 
increases

gain
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Frequency increases as gain increases 

Blue = left side 
Red = right side 
Grey = no feedback (gain = 0) 
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Increasing frequency reduces force development period 
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Summary
CPG produces swimming behavior without 
sensory input in the computational swimmer 

Adding curvature feedback closes the 
physiological loop in the organism 

Examine the interacting systems and physiological 
effects of coordination 

Explore effects of different functional forms of 
feedback based on experimental studies



Future work
Add perturbations to test ability of sensory 
feedback to stabilize swimming 

Add in time derivatives of curvature (rate of 
bending) 

Construct different functional forms of 
curvature driven feedback 
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