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In UQ we often meet integrals with hundreds or thousands of variables.

Let’s define the s-dimensional integral,

Is(F ) :=

∫ 1

0

. . .

∫ 1

0

F (y1, . . . , ys)dy1 · · · dys,

where s may be large.

The main classes of methods for
∫

[0,1]s
F (y)dy are:

Monte Carlo (MC)

Sparse grids

Quasi Monte Carlo (QMC)

And when s is very large, only MC and QMC remain.
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MC and QMC

Both MC and QMC approximate Is(F ) by an equal-weight sum:

QN,s(F ) :=
1

N

N
∑

k=1

F (tk),

where t1, . . . , tN are points in [0, 1]s.

MC: For MC t1, . . . , tN are chosen randomly and independently from

a uniform distribution on [0, 1]s.

QMC: For QMC t1, . . . , tN are deterministic (and cleverly chosen).

But how to choose good QMC points t1, . . . , tN?

And how to prove that your choice is good?
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The traditional view e.g. Wikipedia

The famous Koksma-Hlawka inequality says,

|Is(F )−QN,s(F )| ≤ D∗
N(t1, . . . , tN) V (F ),

– V (F ) is the variation of F in the sense of Hardy-Krause

– D∗
N is the star discrepancy,

D∗
N(t1, . . . , tN) = sup

B

∣

∣(fraction of points inB) − (volume ofB)
∣

∣.

where the supremum is over all rectangular boxes B ⊆ [0, 1]s with

bottom left-hand corner at the origin.



The traditional view (continued)

“Good” point sets are the first N members of a low-discrepancy

sequence:

Definition: A low-discrepancy sequence t1, t2, . . . (such as the

Sobol sequence) satisfies

D∗
N ≤ Cs

(logN)s

N

=⇒ |Is(F )−QN,s(F )| ≤ Cs

(logN)s

N
V (F ) .

Cf.
√

E[(Is(F )−QN,s(F )MC)2] ≤ 1√
N

√

Is(F 2) − (Is(F ))2.

This is fine if s is not too large, but if s is large ...
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The KH inequality isn’t useful if s is large!

It isn’t useful because for fixed s the bound is increasing with N –

it continues to increase until N ≈ es.

And by the time N = es the bound can be truly astronomical:

(logN)s

N
=

(

s

e

)s

.

For example, if s = 100 then

(

s

e

)s

≈ 10150.

.



The contemporary point of view on QMC

is that the dependence on s is as important as the dependence N !

But how should we characterise the dependence on s?

How much harder does a problem become as the dimension

increases?



The contemporary point of view on QMC

is that the dependence on s is as important as the dependence N !

But how should we characterise the dependence on s?

How much harder does a problem become as the dimension

increases?



Applications are the key

The dependence on s should be driven by applications.

In applications (an example is coming!), we often have a sequence of

integrands Fs = Fs(y1, . . . , ys), with s → ∞. So we may want a

sequence of QMC rules for ever increasing dimension s.

Given an application, how to decide what would be good QMC rules?

A convincing way is to make some error bound small.
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What sort of error bound would we wish for?

What sort of error bound do we want? An ideal result might look like:

|Is(Fs) −QN,s(Fs)| ≤
C

Nκ
‖Fs‖ ≤

C′

Nκ
,

where

‖ · ‖ is some norm that depends on the smoothness of Fs,

κ is as large as possible,

and C and ‖Fs‖ (and their product C′) are independent of s.
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But if we want to have

|Is(Fs) −QN,s(Fs)| ≤
C

Nκ
‖Fs‖s ≤

C′

Nκ
,

with C,C′ independent of s, then clearly

we cannot use star discrepancy, because of its (logN)s factor

the norms ‖Fs‖ must be bounded, so

the norm ‖ · ‖ MUST depend on the application

and we may need an essentially different QMC rule for each s.

For guidance, let’s turn to an important class of problems:

PDE with random coefficients.
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PDE with random coefficients

A motivating example: flow through a porous medium

Darcy’s law is ~q(x) = −a(x)∇p(x),

where

p(x) is pressure of the fluid

~q(x) is velocity of the fluid

a(x) is “permeability” of the medium

Incompressibility: ∇ · ~q = 0

Together these give a second order elliptic PDE:

∇ · (a(x)∇p(x)) = 0
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Modeling the permeability

Describing all the microscopic pores and channels in a real material is

commonly considered much too hard. So it is common engineering

practice to model the permeability as a random field:



A simple model problem – the “uniform” case

−∇ · (a(x, y)∇u(x, y)) = f(x) for x ∈ D ,

u(x, y) = 0 on ∂D, y ∈ U := [0, 1]N,

with D a bounded Lipschitz domain in R
d, with d = 1, 2, or 3 and

a(x, y) = a+
∞
∑

j=1

(yj − 1
2
)ψj(x), x ∈ D, y ∈ U ,

where y1, y2, . . . are parameters representing independent random

variables uniformly distributed on [0, 1];

with a, ψj such that
∑

j ‖ψj‖∞ < ∞, and

amax ≥ a(x, y) ≥ amin > 0,

making the PDE strongly elliptic for every y.
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A simple model problem – the “uniform” case

In practice it is necessary to truncate the infinite sum to s terms:

−∇ · (a(x, y)∇u(x, y)) = f(x) in D ,

u(x, y) = 0 on ∂D, y ∈ U := [0, 1]N,

with D a bounded Lipschitz domain in R
d, and

a(x, y) = a+
s

∑

j=1

(yj −
1
2
)ψj(x), x ∈ D, y ∈ U ,

where y1, y2, . . . , ys are independent random variables uniformly

distributed on [0, 1].

Let’s call the solution of the truncated system us.



What might we want to compute?

The mean pressure at a particular point or over a particular small region

The effective permeability

The mean “breakthrough time”

. . .

All are expected values – and expected values are integrals.

And since there are s uniform random variables, the expected

value is an integral over [0, 1]s. And it is easy for s to be large!
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Suppose the problem is to compute the expected value of

F (y) := G(u(·; y)),

where G is the mean pressure u over some specified subregion or

some other linear functional.

The expected value is then an infinite-dimensional integral

I(F ) :=

∫

[0,1]N
F (y)dy.

This is now approximated by

Is(Fs) =

∫

[0,1]s
Fs(y1, . . . , ys)dy1 . . . dys,

where

Fs(y1, . . . , ys) := G(us(·; y1, . . . , ys,
1
2
, 1
2
, · · ·)),
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A bound of the desired shape

For this random PDE problem a recent paper [Kuo/Schwab/IHS,

SINUM 2012] obtained a first error bound of the desired form:

Theorem [KSS12] For all δ > 0,

|Is(Fs) −QN,s(Fs)| ≤
Cδ

N1−δ
‖Fs‖ ≤

C′
δ

N1−δ
,

with Cδ independent of s; AND sups ‖Fs‖ < ∞

if
∑

∞

j=1
‖ψj‖

2/3
∞ < ∞ and other technical conditions.
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So what was the norm?

So what was the norm ‖Fs‖ in [KSS12]?

Later!

And what was the QMC rule in [KSS12]?

The QMC rule in that work was a lattice rule (more precisely, a

randomly shifted lattice rule).
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Lattice rules

Lattice rules were introduced by number theorists in the late 1950s and

1960s, especially:

Korobov, Hlawka, Zaremba, L. K. Hua

They were designed for periodic functions.

Most integrands are not periodic, but lattice rules can still be useful.
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The simplest kind of lattice rule has the form

QN,s(z;F ) =
1

N

N−1
∑

k=0

F

({

k
z

N

})

,

where z ∈ {1, . . . , N − 1}s, and the braces mean that each

component of the s-vector in the braces is to be replaced by its

fractional part.



Example of a (good) 2-D lattice rule

s = 2, N = 34, z = (1, 21)
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For the lattice rule

QN,s(z;F ) =
1

N

N−1
∑

k=0

F

({

k
z

N

})

,

the corresponding shifted lattice rule is

QN,s(z,∆∆∆;F ) =
1

N

N−1
∑

k=0

F

({

k
z

N
+∆∆∆

})

,

where ∆∆∆ ∈ [0, 1)s is the “ shift”.



Lattice rule & shifted lattice rule

N = 34, z = (1, 21) N = 34, z = (1, 21),∆ = (0.8, 0.1)
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Randomly shifted lattice rule

In a randomly shifted lattice rule ∆ is a random vector, uniformly

distributed over [0, 1]s. In principle we now compute expected values.

In practice we make 20 or 30 random choices of ∆ ∈ [0, 1]s, do the calculation with

each choice, and average the results.

In a randomly shifted lattice rule the only thing to decide is how to

choose z!
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The true error bound

The true error bound found in [KSS12] (no fake news here!) was for a

randomly shifted lattice rule with a special choice of z, and was a

bound on the root mean square expected error averaged over

shifts:

For all δ < ∞,

√

E∆[|Is(Fs) −QN,s(z,∆;F )|2] ≤
Cδ

N1−δ
‖Fs‖ ≤

C′
δ

N1−δ
,



How to choose z?

Recall: the lattice rule for the integral over [0, 1]s is

QN,s(z;F ) =
1

N

N−1
∑

k=0

F

({

k
z

N

})

.

So we need to choose z. However, there is no known formula for a

“good” z, beyond s = 2.

But a good z can be constructed:

We choose a convenient Hilbert space H to which F belongs.

Then choose z to make the worst-case error for that space small.
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Worst-case error

Definition: The worst-case error in the space H of a given QMC rule

QN,s(z; ·) is

eN,s,z(H) := sup
‖F‖H≤1

|Is(F ) −QN,s(z;F )| ,

i.e. it is the largest error of QN,s(z;F ) for F in the unit ball of H.

But in practice we are given F , not H . For a given F we deduce

|Is(F )−QN,s(z;F )| ≤ eN,s,z(H)‖F‖H .

The shift averaged worst-case error has a similar error bound.
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So how to choose the function space H?

We choose H to be a Hilbert space of smooth enough functions,

for which the worst-case error is easily computable.

The space H also needs to have many free parameters, which

we can adjust to make the final error bound small.

Specifically, we take H to be a space of functions with

square-integrable mixed first derivatives, and the following norm:
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The space H for the uniform case

The norm squared in H is

‖F‖2
s,γγγ :=

∑

u⊆{1,...,s}

1

γu

∫

[0,1]|u|

∣

∣

∣

∣

∣

∂|u|F

∂yu

(yu;
111
222
)

∣

∣

∣

∣

∣

2

dyu,

where

(yu;
111
222
)j =











yj if j ∈ u,

1
2

if j /∈ u.

For example, for u = {1, 3} the corresponding term is

1

γγγ1.3

∫

1

0

∫

1

0

∣

∣

∣

∣

∂2F

∂y1∂y3
(y1,

1

2
, y3,

1

2
, 1

2
. . .)

∣

∣

∣

∣

2

dy1dy3.

The γu are weights - positive numbers chosen to fit the problem.



The space H for the uniform case

The norm squared in H is
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Weights

Weights are in most applications essential. They play a big role in the

contemporary QMC story.

Nowadays there are many kinds of weights (“order-dependent weights”,

“finite-order weights”, “POD" weights, “SPOD weights”, ...).

But the original weights, the simplest to handle, and still very

important, are PRODUCT WEIGHTS.
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Product weights

Product weights take the form

γu =
∏

j∈u

αj, u ⊆ {1, . . . , s},

where α1 ≥ α2 ≥ . . . > 0 (also called weights!) are positive numbers

chosen to quantify the decreasing importance of successive variables.



Product weights are nice!

For product weights γu =
∏

j∈u
αj , it has been known for 20 years

that:

Theorem (IHS/Woz̀niakowski 98). There exist QMC points for which the

worst case error is bounded independently of s iff

∞
∑

j=1

αj < ∞.

This is satisfied, for example, by αj = 1/j2.

It is not satisfied by αj = 1.
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The convergence rate can be N−1+δ

Theorem (IHS/Woźniakowski 01). If N is prime, and if

∞
∑

j=1

α
1/2
j < ∞,

then for each s there exists a shifted lattice rule Qlattice
N,s,z,∆ such that

eN,s,γ(Q
lattice
N,s,z,∆) ≤

Cγ,δ

N1−δ
∀δ > 0.

The original proofs of both theorems were non-constructive! They were

existence proofs only. (But now ...)

So now to choose z:
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Finding a good z for product weights

For product weights the shift-averaged WCE of a lattice rule is easily

computed:

eN,s,z(H)2 =
1

N

N−1
∑

k=0

s
∏

j=1

(

1 + αj

[

B2

(

{
kzj

N
}
)

+ 1
12

])

−

s
∏

j=1

(

1 +
αj

12

)

,

where B2(x) := x2 − x+ 1/6.

So we can compute the WCE for all possible choices of z, and choose

the best. Problem solved? No! For an exhaustive search would take

(N − 1)s evaluations of the worst-case error.

But there is a way: the CBC construction.
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CBC construction of a good z

In the component-by-component (or CBC) algorithm for product weights

(Korobov 1950s, IHS/Kuo/Joe 2002), a good generator z = (z1, . . . , zs) is

constructed one component at a time:

choose z1 = 1

choose z2 to minimise eN,2(z1, z2), then

choose z3 to minimise eN,3(z1, z2, z3), then

. . .

so that at each step there are only (at most) N − 1 choices.

A naive implementation costs O(s2N2) operations.
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Fast CBC for product weights weights and shift-averaged WCEs

For product weights Cools and Nuyens (2006) developed Fast CBC –

requires a time of order only O(sN logN).

The Nuyens and Cools implementation allows the CBC algorithm for

product weights to be run with s in thousands, N in millions.



The CBC algorithm has optimal convergence!

THEOREM Frances Kuo, J. Complexity, (2003)

Let N be prime, and let z1, z2, . . . , zs be chosen by the CBC

algorithm. Assume product weights, with

∞
∑

j=1

α
1/2
j < ∞.

Then ∀δ > 0

eN,s,γ(z) ≤
Cγ,δ

N1−δ
.

Thus the optimal rate is achieved by the CBC algorithm!



All that remains is to choose the weights γu

Recall that we can bound the error in terms of the worst case error:

|Is(F )−QN,s(z;F )| ≤ eN,s,z,γ‖F‖s,γ,

or more properly,

√

E∆[|Is(F ) −QN,s(z,∆;F )|2] ≤ eN,s,z,γ‖F‖s,γ ,

Both factors on the right depend on the weights γγγu.

In [KSS12] we chose weights to minimise the product.

Or rather, to minimise the product of known upper bounds on the two factors.
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The best weights weren’t product weights!

The weights found in [KSS12] by the minimising strategy above turned

out to be of the form

γu = (|u|!)(knownpower bigger than 1)
s
∏

j=1

αj ,

with known exponent, and known αj .

Such weights are called POD weights (for “product and order

dependent”).

And fast CBC also exists for POD weights (Kuo/Schwab/IHS 11).
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There exist many extensions

Similar analysis of the lognormal case (i.e log a(x) is a

Gaussian random field). (This is more difficult.)

Analysis of multilevel QMC for both uniform and lognormal cases.

Higher order QMC rules (Josef Dick): e.g. for the uniform case

we now have

|Is(F )−QN,s(F )| ≤
C

N2
‖F‖s ≤

C′

N2
.

Lattice rules are now replaced by interlaced polynomial lattice rules, and POD

weights by SPOD weights (standing for “smoothness-driven product and

order-dependent weights”). And now the norm needs mixed second derivatives;

and so on, to arbitrary order.



QMC in practice
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Summarising the contemporary view of QMC:

dependence on s is as important as dependence on N

applications should drive the study of dimension dependence

that we should try to construct methods with provably good error

bounds that are independent of dimension

(or grow only slowly with dimension)



Surveys and software

Surveys:

J. Dick, F. Kuo and I. Sloan, High dimensional integration – the

Quasi-Monte Carlo Way, Acta Numerica 22 (2013).

F. Kuo and D Nuyens, Application of quasi-Monte Carlo methods to

PDEs with random coefficients - a survey of analysis and

implementation, Found. Comput. Math. 16 (2016).

The qmc4pde software from Leuven:

http://people.cs.kuleuven.be/ dirk.nuyens/qmc4pde

The gMLQMC software from ETH:

http://www.sam.math.ethz.ch/HOQMC/gMLQMC



Contributors to the contemporary view of QMC

Ronald Cools, Leuven

Josef Dick, UNSW

Takashi Goda, Tokyo

Ivan Graham, Bath

Fred Hickernell, IIT

Stephen Joe, Waikato

Frances Kuo, UNSW

Q Thong Le Gia, UNSW

James Nichols, UNSW

Dirk Nuyens, Leuven

Andrei Reztsov

Rob Scheichl, Bath

Christoph Schwab, ETH

Elisabeth Ullmann, Hamburg

Grzegorz Wasilkowski, Kentucky
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