Diffusion Tensor Imaging: Reconstruction Using Deterministic Error Bounds

Yury Korolev¹, Tuomo Valkonen² and Artur Gorokh³

 $^1 \text{Queen}$ Mary University of London, UK $^2 \text{University}$ of Cambridge, UK $^3 \text{Cornell}$ University, USA

SIAM Conference on Imaging Science 2016 May 23-26, 2016. Albuquerque NM, USA

1 Introduction: Diffusion Tensor Imaging

2 Inverse Problems in Banach Lattices

3 Validation on Synthetic Data

4 Reconstruction of Real Images

Diffusion Tensor Imaging

Stejskal-Tanner equation

$$s_i(x) = s_0(x) exp(-\langle b_i \otimes b_i, u(x) \rangle), \quad i = 1, \dots, n$$
(1)

Rician noise in the values s_i .

Reconstruction based on L_2 fidelity

• L₂ reconstruction in the non-linear model¹

$$\min_{u\geq 0}\sum_{i=1}^{n}\|s_{i}-T_{i}(u)\|_{L_{2}}^{2}+\alpha R(u), \qquad (2)$$

where $[T_i(u)](x) := s_0(x)exp(-\langle b_i \otimes b_i, u(x) \rangle).$

• Regression and denoising in the linearised model²

$$\min_{u\geq 0}\sum_{i=1}^{n}\|f-u\|_{L_{2}}^{2}+\alpha R(u),$$
(3)

where each f is solved by regression for u from Eq. 1.

¹Valkonen (2014). A primal-dual hybrid gradient method for non-linear operators with applications to MRI, Inv. Prob. 30, 055012

²Valkonen, Bredies, Knoll (2013). *Total generalised variation in diffusion tensor imaging*, SIAM J. Imaging Sci. 6, 487- 525

Y. Korolev, T. Valkonen, A. Gorokh DTI with Dete

- L₂ fidelity not fully justified in the non-linear model (2) because the noise in the data is not Gaussian (it is Rician);
- In the linearised model (3), the Gaussian noise assumption is even more removed from truth;

- L₂ fidelity not fully justified in the non-linear model (2) because the noise in the data is not Gaussian (it is Rician);
- In the linearised model (3), the Gaussian noise assumption is even more removed from truth;
- We forgo with accurate noise modelling and propose reconstruction using a novel type of fidelity based on confidence intervals (treated as bounds in a partial order).

Reconstruction based on Order Intervals

Suppose that (pointwise) error bounds for the data are available:

$$s_i^I(x)\leqslant s_i(x)\leqslant s_i^u(x)$$
 a.e., $i=0,1,\ldots,N.$

Bounds preserved under the monotone $log(\cdot)$ transformation:

$$g_i^l(x) = \log \frac{s_i^l(x)}{s_0^u(x)} \leqslant \langle b_i \otimes b_i, u(x) \rangle \leqslant \log \frac{s_i^u(x)}{s_0^l(x)} = g_i^u(x) \text{ a.e.}, \quad i = 1, \dots, N.$$

Reconstruction based on Order Intervals

Suppose that (pointwise) error bounds for the data are available:

$$s_i^I(x)\leqslant s_i(x)\leqslant s_i^u(x)$$
 a.e., $i=0,1,\ldots,N.$

Bounds preserved under the monotone $log(\cdot)$ transformation:

$$g_i^l(x) = \log \frac{s_i^l(x)}{s_0^u(x)} \leqslant \langle b_i \otimes b_i, u(x) \rangle \leqslant \log \frac{s_i^u(x)}{s_0^l(x)} = g_i^u(x) \text{ a.e.}, \quad i = 1, \dots, N.$$

Linear reconstruction using error bounds

$$\begin{array}{ll} \min_{u} R(u) \quad \text{subject to} \quad u \geq 0, \\ g_{i}^{I} \leqslant A_{i}u \leqslant g_{i}^{u}, \quad i = 1, \dots, N, \end{array}$$
where $[A_{i}u](x) := \langle b_{i} \otimes b_{i}, u(x) \rangle.$

Reconstruction based on Order Intervals

Suppose that (pointwise) error bounds for the data are available:

$$s_i^I(x)\leqslant s_i(x)\leqslant s_i^u(x)$$
 a.e., $i=0,1,\ldots,N.$

Bounds preserved under the monotone $log(\cdot)$ transformation:

$$g_i^l(x) = \log \frac{s_i^l(x)}{s_0^u(x)} \leqslant \langle b_i \otimes b_i, u(x) \rangle \leqslant \log \frac{s_i^u(x)}{s_0^l(x)} = g_i^u(x) \text{ a.e.}, \quad i = 1, \dots, N.$$

Linear reconstruction using error bounds

$$\begin{array}{ll} \min_{u} \ R(u) & \text{subject to} & u \geqq 0, \\ g_{i}^{I} \leqslant A_{i} u \leqslant g_{i}^{u}, & i = 1, \dots, N, \end{array}$$
where $[A_{i}u](x) := \langle b_{i} \otimes b_{i}, u(x) \rangle.$

What's the theory behind this ?

Introduction: Diffusion Tensor Imaging

2 Inverse Problems in Banach Lattices

3 Validation on Synthetic Data

Banach Lattices³

 A vector space X endowed with a partial order relation ≤ is called an ordered vector space if

$$\begin{array}{ll} x \leqslant y \implies x + z \leqslant y + z & \forall \ x, y, z \in X, \\ x \leqslant y \implies \lambda x \leqslant \lambda y & \forall \ x, y \in X \text{ and } \lambda \in \mathbb{R}_+. \end{array}$$

• If the partial order \leq is a lattice, i.e.

$$\forall x, y \in X \quad \exists x \lor y \in X,$$

then X is called a vector lattice (or a Riesz space).

$$x \lor 0 = x_+, \quad (-x)_+ = x_-, \quad x = x_+ - x_-, \quad |x| = x_+ + x_-.$$

• If a vector lattice X is equipped with a monotone norm, i.e.

$$\forall x, y \in X \quad |x| \ge |y| \implies ||x|| \ge ||y||,$$

then X is called a *Banach lattice* (if X is norm complete).

³H. Schaefer. Banach Lattices and Positive Operators, Springer, 1974

Equation:

$$Ax = y, \quad x \in X, y \in Y,$$

where X, Y are Banach lattices, A is a regular operator.

Error bounds:

$$\begin{aligned} y_n^l \colon y_{n+1}^l \geqslant y_n^l, & A_n^l \colon A_{n+1}^l \geqslant A_n^l, \\ y_n^u \colon y_{n+1}^u \leqslant y_n^u, & A_n^u \colon A_{n+1}^u \leqslant A_n^u, \\ y_n^l \leqslant y \leqslant y_n^u, & A_n^l \leqslant A \leqslant A_n^u \quad \forall \ n \in \mathbb{N}, \\ \|y_n^u - y_n^l\| \to 0, & \|A_n^u - A_n^l\| \to 0 \quad \text{as } n \to \infty. \end{aligned}$$

Feasible set:

$$X_n = \{x \ge 0 \colon A_n^l x \leqslant y_n^u, \ A_n^u x \ge y_n^l\}.$$

Theorem Let

$$x_n = rgmin_{x \in X_n} \mathcal{R}(x)$$

lf

- $\mathcal{R}(x)$ is bounded from below on X,
- $\mathcal{R}(x)$ is lower semi-continuous on X,
- the level-sets $\{x : \mathcal{R}(x) \leq C\}$ are strong compacts in X,

then $||x_n - \bar{x}|| \to 0$ and $\mathcal{R}(x_n) \to \mathcal{R}(\bar{x})$.

⁴Y.K. (2014) *Making use of a partial order in solving inverse problems: II*, Inv. Probl. 30, 085003

Our Choice of the Regulariser: Total Generalised Variation⁵

Total Generalised Variation is a higher-order extension of Total Variation. It turns out that the standard BV norm

$$\|u\|_{\mathsf{BV}(\Omega;\mathsf{Sym}^k(\mathbb{R}^m))} := \|u\|_{L^1(\Omega;\mathsf{Sym}^k(\mathbb{R}^m))} + \mathsf{TV}(u)$$

and the "BGV norm"

$$\|u\|' := \|u\|_{L^1(\Omega; \operatorname{Sym}^k(\mathbb{R}^m))} + \operatorname{TGV}^2_{(\beta,\alpha)}(u)$$

are topologically equivalent norms on $BV(\Omega; Sym^k(\mathbb{R}^m))$, yielding the same convergence results for TGV and TV regularisation.

If the L_1 -norm of u is bounded a priori then the level sets $\{u: \operatorname{TGV}^2_{(\beta,\alpha)}(u) \leq C\}$ are strong compacts in $L_1(\Omega; \operatorname{Sym}^k(\mathbb{R}^m))$.

⁵Bredies, Kunisch, Pock (2011). *Total generalized variation*, SIAM J. Imaging Sci. 3, 492-526

Error Bounds Derived from Data

- Pointwise error bounds in the data may not be directly available
- attempt to use confidence intervals as pointwise bounds, i.e. to find for each true signal f individual *random* upper and lower bounds \hat{f}^u and \hat{f}^l such that

$$P(\hat{f}^u \leq f \leq \hat{f}^I) = 1 - \theta$$

• In the *i*-th voxel, the measured value \hat{f}^i is the sum of the true value f^i and additive noise ν^i :

$$\hat{f}^i = f^i + \nu^i$$

- \bullet all ν^i assumed i.i.d., but their distribution is unknown
- background regions with zero mean $(f_i = 0)$ provide us with a number of independent samples from the unknown distribution of ν , which can be used to estimate this distribution.

Introduction: Diffusion Tensor Imaging

2 Inverse Problems in Banach Lattices

Test Case with Synthetic Data

Figure: The principal eigenvector field of the ground-truth tensorfield

We plot the colour-coded principal eigenvector with intensity modulation by fractional anisotropy.

Table: For the L^2 and non-linear L^2 reconstruction models the 'free parameter' is the regularisation parameter α , and for the error bounds approach it is the confidence interval.

Method	Parameter choice	Frobenius	Pr. e.val.	Pr. e.vect.
		PSNR	PSNR	angle PSNR
Regression		33.90dB	25.04dB	47.86dB
Linear L ²	Discr. Principle	32.93dB	27.81dB	61.89dB
Linear L ²	Frob. Error-optimal	34.51dB	28.42dB	60.93dB
Non-linear L^2	Discr. Principle	37.33dB	27.81dB	61.89dB
Non-linear L^2	Frob. Error-optimal	37.44dB	28.03dB	61.12dB
Err. bounds	90%	32.28dB	28.86dB	65.65dB
Err. bounds	95%	30.97dB	28.14dB	64.80dB
Err. bounds	99%	27.86dB	24.51dB	61.41dB

Errors in Fractional Anisotropy

Y. Korolev, T. Valkonen, A. Gorokh DTI with Deterministic Error Bounds SI

Introduction: Diffusion Tensor Imaging

2 Inverse Problems in Banach Lattices

3 Validation on Synthetic Data

Slice of a real MRI measurement

We are grateful to Karl Koschutnig for giving us access to the in vivo data set of a human brain, with the measurements of a volunteer performed on a clinical 3T system (Siemens Magnetom TIM Trio, Erlangen, Germany),

Y. Korolev, T. Valkonen, A. Gorokh

DTI with Deterministic Error Bounds

SIAM IS16 20 / 26

- No ground truth available, pseudo-ground-truth estimated using regression from four repeated measurements;
- Only one measurement per gradient is used for reconstruction.

Real Data: Colour-Coded Directions of the Principal Eigenvector

Y. Korolev, T. Valkonen, A. Gorokh DTI with Deterministic Error Bounds

Table: For the L^2 and non-linear L^2 reconstruction models the 'free parameter' is the regularisation parameter α , and for the error bounds approach it is the confidence interval.

Method	Parameter choice	Frobenius	Pr. e.val.	Pr. e.vect.
		PSNR	PSNR	angle PSNR
Regression		32.35dB	33.67dB	28.56dB
Linear L ²	Discr. Principle	34.80dB	36.35dB	24.81dB
Linear L^2	Frob. Error-optimal	34.81dB	36.32dB	24.97dB
Non-linear L^2	Discr. Principle	33.53dB	35.87dB	27.12dB
Non-linear L^2	Frob. Error-optimal	33.57dB	36.03dB	27.58dB
Err. bounds	90%	33.71dB	34.93dB	27.00dB
Err. bounds	95%	33.70dB	34.97dB	26.91dB
Err. bounds	99%	33.67dB	34.89dB	26.88dB

Fractional anisotropy of the corpus callosum in greyscale and principal eigenvector

Y. Korolev, T. Valkonen, A. Gorokh

DTI with Deterministic Error Bounds

SIAM IS16 24 / 26

Real Data: Tractography Results

(a) Pseudo-ground-truth (b) Regression result (c) Linear L^2 , discr. pr.

SIAM IS16

25 / 26

(d) Non-lin. L², discr. pr. (e) Constr., 95% C.I. Y. Koroley, T. Valkonen, A. Gorokh DTI with Deterministic Error Bounds

Conclusions

Conclusions:

- The error bounds based approach is a feasible, distribution independent alternative to standard modelling with incorrect Gaussian assumptions;
- Very good reconstruction of the direction of the principal eigenvector – potentially useful for tractography;
- But some problems with fractional anisotropy;
- PSNR increases as the confidence level gets smaller. Can the confidence level be used as a regularisation parameter?

Details:

• A. Gorokh, Y. Korolev, T. Valkonen (2016). *Diffusion tensor imaging with deterministic error bounds*, J. Math. Imaging Vis, 56(1), 137-157

THANK YOU FOR YOUR ATTENTION !