Control of Thin-Layer Flows with Patterned Surfaces

Jay Johnson and Jean-Luc Thiffeault

SIAM Dynamical Systems Meeting Snowbird, UT, 21 May 2015

Supported by NSF grants DMS-1109315 and CMMI-1233935

A jet hitting an inclined plane

Plane inclined at 45°. The flow rate is $Q \simeq 120 \text{ cm}^3 \text{ s}^{-1}$.

[with Andrew Belmonte in Claudia Cenedese and Karl Helfrich's lab at Woods Hole, GFD 2008]

Inviscid theory

Try steady potential flow: $\mathbf{u} = \nabla \varphi$, with

$$abla^2 \varphi = 0,$$
 mass

$$\nabla^2\varphi=0,\qquad \text{mass conservation;}$$

$$\tfrac{1}{2}\left|\nabla\varphi\right|^2+\frac{p}{\rho}-\mathbf{g}\cdot\mathbf{r}=H,\qquad \text{Bernoulli's law;}$$

Inviscid theory

Try steady potential flow: $\mathbf{u} = \nabla \varphi$, with

$$\nabla^2\varphi=0,\qquad \text{mass conservation;}$$

$$\frac{1}{2}\left|\nabla\varphi\right|^2+\frac{p}{\rho}-\mathbf{g}\cdot\mathbf{r}=H,\qquad \text{Bernoulli's law;}$$

Boundary conditions:

$$\partial_z \varphi = 0$$
 at $z = 0$, no-throughflow at substrate; $\nabla \varphi \cdot \nabla h = \partial_z \varphi$ at $z = h$, kinematic condition at free surface; $p = 0$ at $z = h$, constant pressure at free surface.

Here z is normal to the substrate, x_1 and x_2 are parallel to it.

Small-parameter expansion

Expand Bernoulli's law in the small fluid depth ε :

$$\sum_{j=1}^{2} (\partial_{j}\varphi)^{2} + \varepsilon^{-2}(\partial_{z}\varphi)^{2} + \frac{2p}{\rho} - 2\mathbf{g} \cdot (\mathbf{X} + \varepsilon z \,\hat{\mathbf{e}}_{3}) = 2H,$$

where $\mathbf{X} = x_1 \hat{\mathbf{e}}_1 + x_2 \hat{\mathbf{e}}_2$. Also expand φ :

$$\varphi(x_1,x_2,z)=\varphi_{(0)}+\varepsilon\,\varphi_{(1)}+\varepsilon^2\,\varphi_{(2)}+\ldots,$$

to obtain at leading order $\partial_z \varphi_{(0)} = 0$, so that

$$\varphi_{(0)}=\Phi(x_1,x_2).$$

Small-parameter expansion II

At next order:

$$\sum_{j=1}^{2} (\partial_j \Phi)^2 + (\partial_z \varphi_{(1)})^2 + \frac{2p}{\rho} - 2\mathbf{g} \cdot \mathbf{X} = 2H,$$

Evaluate at z = h and use the boundary conditions:

$$\sum_{j=1}^{2} (\partial_j \Phi)^2 - 2\mathbf{g} \cdot \mathbf{X} = 2H,$$

Solution in terms of characteristics

Differentiate to get rid of constant:

$$\sum_{j=1}^{2} \partial_{j} \Phi \, \partial_{ij} \Phi = \mathbf{g} \cdot \partial_{i} \mathbf{X} \,, \qquad i = 1, 2.$$

Introduce the characteristics $x_1(\tau)$, $x_2(\tau)$:

$$\dot{x}_1 = \partial_1 \Phi(\mathbf{x}), \qquad \dot{x}_2 = \partial_2 \Phi(\mathbf{x}),$$

We have $\partial_{ij}\Phi = \partial_i\dot{x}_j$ and $\ddot{x}_i = (\partial_j\dot{x}_i)\dot{x}_j = \partial_j\Phi\,\partial_{ij}\Phi$, so that

$$\ddot{x}_i = \mathbf{g} \cdot \hat{\mathbf{e}}_i$$
, $i = 1, 2$.

[Rienstra (1996)]

Characteristics for a jet striking an inclined plane

The characteristics have a parabolic envelope (blue dashed):

Characteristics for a jet striking an inclined plane

The characteristics have a parabolic envelope (blue dashed):

Edwards et al. (2008) used the 'delta-shock' framework to account for characteristics crossing: this lowers the rise distance by 5/9, and the profile remains essentially parabolic (black dashes).

Curved substrates

Rienstra (1996) also applied his inviscid model to curved surfaces (spheres, cylinders). Here's my attempt at an experiment [Thiffeault & Kamhawi (2008)]:

Compare to characteristics on a cylinder:

General curved substrates

Rienstra (1996) treated surfaces with global orthogonal coordinates (plane, cylinder, sphere).

What about more general surfaces?

Write x^1 , x^2 for general 2D coordinates that locate a point on the substrate.

General curved substrates

Rienstra (1996) treated surfaces with global orthogonal coordinates (plane, cylinder, sphere).

What about more general surfaces?

Write x^1 , x^2 for general 2D coordinates that locate a point on the substrate. A small-thickness expansion similar to Rienstra's yields for the characteristics [Thiffeault & Kamhawi (2008)]:

$$\ddot{x}^{\sigma} + \Gamma^{\sigma}_{\alpha\beta} \dot{x}^{\alpha} \dot{x}^{\beta} = \mathbf{g} \cdot \mathbf{e}^{\sigma}$$

where $\Gamma^{\sigma}_{\alpha\beta}$ are the Christoffel symbols for the shape of the substrate.

This is the geodesic equation with a gravitational forcing. The fluid particles (characteristics) are trying to follow straight lines, but their trajectories are bent by the substrate curvature and gravity.

Chaos?

The geodesic equations are actually a fourth-order autonomous system.

Hence, chaos is a possibility, as long as the substrate does not possess a continuous symmetry! (Ruled out for plane, cylinder, sphere.)

Consider a simple substrate shape parametrized by:

$$f(x^1, x^2) = f_0 \cos x^1 \cos x^2$$

Horizontal substrate: $f_0 = 0.2$

First take g = 0 and keep the surface horizontal.

Horizontal substrate: $f_0 = 1.2$

Experiments with 3D-printed substrate

Flat substrate

Patterned substrate

Jump is about 50% larger for a flat substrate. [Experiments with Jay Johnson.]

Inclined substrate: $f_0 = 0.6$

Experiments: an inclined substrate

The simple model correctly predicts the multiple 'paths'.