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A jet hitting an inclined plane

Plane inclined at 45°. The flow rate is Q ~ 120 cm3s 1.

[with Andrew Belmonte in Claudia Cenedese and Karl Helfrich's lab at Woods
Hole, GFD 2008]
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Inviscid theory \

Try steady potential flow: u = Vi, with

V2o =0, mass conservation;

% \V¢|2 +——g-r=H. Bernoulli’'s law;



Inviscid theory \/

Try steady potential flow: u = Vi, with

V2p =0, mass conservation;
3 Vo|* + -l g-r=H, Bernoulli's law;
P
Boundary conditions:
g — arz=—G no-throughflow at substrate;
Veo-Vh=0,p atz=h, kinematic condition at free surface;
p—@ akz—h constant pressure at free surface.

Here z is normal to the substrate, x; and x» are parallel to it.



Small-parameter expansion

Expand Bernoulli's law in the small fluid depth &:

2
(0j)* + €2(8.)° + 7p —2g - (X+czé3) =2H,

2
j:

1
where X = x1€1 + x2€>. Also expand o:

p(x1,%2,2) = po) +€pa) + = P+ ---
to obtain at leading order 9, ) = 0, so that

P0) = ®(x1,x2)-



Small-parameter expansion || Y

At next order:

2p

2
(9;9)* + (9z¢1))” + i 2g - X =2H,

—

Evaluate at z = h and use the boundary conditions:

(0;9)* —2g - X = 2H,
1

2
J:



Solution in terms of characteristics

Differentiate to get rid of constant:

2
Zﬁjcbé),-jd):g-(?,-x, i=1,2.
j=1
Introduce the characteristics x;(7), x2(7):
x1 = 1 P(x), x2 = hP(x),

We have 0,'j¢ = é),-ig and & — (8Jx,)xj = 8j<b 0,-j<b, so that

[Rienstra (1996)]
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Characteristics for a jet striking an inclined plane

The characteristics have a parabolic envelope (blue dashed):
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Characteristics for a jet striking an inclined plane

The characteristics have a parabolic envelope (blue dashed):

Edwards et al. (2008) used the ‘delta-shock’ framework to account for
characteristics crossing: this lowers the rise distance by 5/9, and the
profile remains essentially parabolic (black dashes).



Curved substrates

Rienstra (1996) also applied his inviscid model to curved surfaces (spheres,
cylinders). Here's my attempt at an experiment [Thiffeault & Kamhawi (2008)]:
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General curved substrates W

Rienstra (1996) treated surfaces with global orthogonal coordinates (plane,
cylinder, sphere).

What about more general surfaces?

Write x!, x? for general 2D coordinates that locate a point on the
substrate.



General curved substrates W

Rienstra (1996) treated surfaces with global orthogonal coordinates (plane,
cylinder, sphere).

What about more general surfaces?

Write x!, x? for general 2D coordinates that locate a point on the
substrate. A small-thickness expansion similar to Rienstra’s yields for the
characteristics [Thiffeault & Kamhawi (2008)]:

L= —g-f

where ['7 , are the Christoffel symbols for the shape of the substrate.

This is the geodesic equation with a gravitational forcing. The fluid
particles (characteristics) are trying to follow straight lines, but their
trajectories are bent by the substrate curvature and gravity.
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The geodesic equations are actually a fourth-order autonomous system.

Hence, chaos is a possibility, as long as the substrate does not possess a
continuous symmetry! (Ruled out for plane, cylinder, sphere.)

Consider a simple substrate shape parametrized by:

f(x', x?) = fy cos x* cos x*
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Horizontal substrate: fy = 0.2

First take g = 0 and keep the surface horizontal.
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Horizontal substrate: fy = 1.2
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Experiments with 3D-printed substrate

Flat substrate Patterned substrate
Jump is about 50% larger for a flat substrate. [Experiments with Jay Johnson]
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Inclined substrate: f; = 0.6




Experiments: an inclined substrate )

The simple model correctly predicts the multiple ‘paths’.




