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Motivation

= Parallel programming models are becoming more

asynchronous
= Jo fully exploit asynchrony we need to define the
dependencies
» Describing DAGs in terms of nodes and edges is difficult to

program and intuitively understand
» Describing sequences tends to be more natural to program

=« What is Structured Dagger?
» A scripting language that can describe a subset of DAGs
with an implicit ordering
» Part of the Charm++ ecosystem (in C++)
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What is Charm++?

« A parallel runtime system used for scientific
applications
~ NAMD: molecular dynamics app for large biomolecular
systems

» OpenAtom: quantum chemistry app (CPAIMD)

» ChaNGa: n-body app for cosmological simulations

» EpiSimdemics: contagion app for simulating spread of
disease
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What is Charm++?

The computation is decomposed into objects

» Objects that are parallel are notated by the user as parallel
objects, called chares

» Chares are parallel entities that can migrate between
processors

Some methods for each parallel object are notated

as entry methods

= Entry methods can be invoked remotely if you have a proxy
to the object

» When an entry methods is called it causes the method
parameters to be packed and sent over the network and
then invoked on the other end
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Charm++ Execution Model

= Several chares will live on a single processor

= As a result:
» Method invocations directed at chares on that processor
will have to be stored in a pool.
» And a user-level scheduler will select one invocation from
the queue and runs it to completion.

= Execution is triggered by availability of a “message’

(a method invocation)
= When an entry method executes:

» It may generate messages for other chares
» The RTS deposits them in the message queue on the

target processor Page 28 of 76

Siructured Lagger: Supportng Asynchromy walh L ianty L ] Jonmitan Littianger



What is Charm++?




Reactive Nature of Method Description

= By just using entry methods, a chare’'s description is
very reactive

k
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Structured Dagger

= Make implicit dependencies embedded in entry method's
behavior more explicit

= Computations depend on remote method invocations. and
completion of other local computations

s We assume a sequence by default, and allow the user to
override it

= Wait for A to complete and then proceed to B

A

5 [

= |f A and B can execute in any order, this must be explicitly
defined using the overlap construct, implicit join

overiap {
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Structured Dagger: Waiting for Messages

s The when construct is used to wait for a remote method
invocation

= The when construct allows you malch a message using the
name of the method and a reference number

s Syntax: when methods-to-wait-on block-to-execute

when recvData(int size, double datalsize)) | « go sometfing + |
..1“_ -

= When a message is matched to a when, the associated block of
code execules

= The data trom that method is put into scope in the
corresponding block
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Structured Dagger: Waiting for Messages

8 The when construct can be nested

when myMethod 1{int param1. int param2) |
when myMethod2(boel param3),
myMethod3(int size. int arrfsize]) /+ blockT «/
when myMathod4(bbol paramd) '« block2 «

}

= Sequence defined in the above example

» Wait for myMethodl, upon arrival execute body of myMethod1

» Wait for myMethod2 and myMethod3, upon arrival of both. execute /=
blockl «/

» Wait for myMethod4, upon arrival execute /+ block2 «/

s |f messages arrive out of order, the Structured Dagger buffers them
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Fibonacci without Structured Dagger

‘chare Fib |

int saved val. response _counter;

entry void dowork() |
if (n <« THRESHOLD) | respond(seqFib(n)); |
else | Fib::ckNew(n — 1); Fib::ckNew(n — 2): |

}
entry void resmnslé{lm val) {

response counter++;
if (response_counter == 1) saved val = val;
else respond(val + saved val);
i
void respond(int val) {
if (lisRoot) parenLresponse(val)
else printf("Fibonacci numbeggis. S
}
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Fibonacci with Structured Dagger

chare Fib |
entry void dowork()
if (n < THRESHOLD) { respond(seqFib(n)): }
else |
Fib::ckNew(n — 1); Fib::ckNew(n — 2);
when response(int val), response(int val2) {respond(val+val2);}
}

i
void respond(int val) {

if (lisRoot) parent.response(val);
else printf("Fibonacci number is: %d\n")
t

'
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Structured Dagger: Reference Numbers

® The when clause can wait on a certain reference number

= |f a reference number is specified for a when, the first parameter for
the entry method must be the reference number

= The when will not be matched until a message arrives with that
reference number

when method1[100](short ref, bool param1) /+ block =/

Two sends: i

proxy.method1 (20_0,_13139): /+ will not b; d;mrered to the when =/
proxy.method1(100, true); /« will be delivered to the when +/
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Structured Dagger: More Advanced Constructs

s The language includes for, forall, while
® for and while are ordered in their iteration space
® forall allows the iterations to execute in any order

for (iter = 0, ler < maxier; ++-iter) |
overiap {
when recviellfiter|(short num, int len, double datallen]) | computeKernel (LEFT, data). )
when recvRight{iter |(short num, Int len. double dataflen]) | computeKermnel(RIGHT. data); |
|
|

while (i < numNexghbors) |
when recvData(int len, double datallen)) { » execute keme/ « )

Ly

}

i

e

forall [Diock] (0 . numBlocks -~ 1, 1) {
when method1[block|(short ref, bool someVal) « code block? «
}
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Example Program: Stencil 3D (Jacobi)
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Example Program: Stencil 3D (Jacobi)
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Example Program: Stencil 3D (Jacobi)

while ('converged) {
copy ToBoundaries();
sendToNeighbors();
freeBoundanes ),
for (remoteCount = 0; remoteCount < 6; remoteCount++)
when updateGhosts{iter](int ref, int dir, int w, int h, double buffjw+h]) {
updateBoundary(dir, w, h, buf);
!

double error « computeKernel();
int conv = emror < DELTA;
if (iter % 5 == 1)
contrnibute._async._reduction(conv, logical.and, q\odtCocmrgod}:
if (++iter% 5 ==0)
when checkConverged(bool result)
if (result) { mainChare.done(iter), converged = true; }

e

T W
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Conclusion

« Structured Dagger is the result of many years of
research
» Charm++ started with Dagger, which allowed any DAG to
be specified and had not assumed order
» We found that Dagger was difficult and error prone to
program

« Structured Dagger makes DAGs natural to express

« Lessons learned
- We may need to limit expressibility to some extent for
better programmability
» Most DAGs can be expressed in Structured Dagger, but not
all




Questions?
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