Structured Dagger: Supporting
Asynchrony with Clarity

Jonathan Lifflander, Laxmikant V. Kale
{§j1i££12 kale}@illinois.edu

University of lllinois Urbana-Champaign

March 16, 2015 k

Motivation

= Parallel programming models are becoming more

asynchronous
= Jo fully exploit asynchrony we need to define the
dependencies
» Describing DAGs in terms of nodes and edges is difficult to

program and intuitively understand
» Describing sequences tends to be more natural to program

=« What is Structured Dagger?
» A scripting language that can describe a subset of DAGs
with an implicit ordering
» Part of the Charm++ ecosystem (in C++)

Struciumd Dagger: Supportng Asynchrony waith Clarnty L] Jongthgn Litanger

What is Charm++?

« A parallel runtime system used for scientific
applications
~ NAMD: molecular dynamics app for large biomolecular
systems

» OpenAtom: quantum chemistry app (CPAIMD)

» ChaNGa: n-body app for cosmological simulations

» EpiSimdemics: contagion app for simulating spread of
disease

shuctumed Uagoer Supporing Agpormieney wally Ly Jonaihmn e

What is Charm++?

The computation is decomposed into objects

» Objects that are parallel are notated by the user as parallel
objects, called chares

» Chares are parallel entities that can migrate between
processors

Some methods for each parallel object are notated

as entry methods

= Entry methods can be invoked remotely if you have a proxy
to the object

» When an entry methods is called it causes the method
parameters to be packed and sent over the network and
then invoked on the other end

el [ladpes Surpmriing Al pu—=ry el e L] o S ol e S

Page 20 of 76

Structured Dagger: Suppartng Asynctvony wath Claty *

Charm++ Execution Model

= Several chares will live on a single processor

= As a result:
» Method invocations directed at chares on that processor
will have to be stored in a pool.
» And a user-level scheduler will select one invocation from
the queue and runs it to completion.

= Execution is triggered by availability of a “message’

(a method invocation)
= When an entry method executes:

» It may generate messages for other chares
» The RTS deposits them in the message queue on the

target processor Page 28 of 76

Siructured Lagger: Supportng Asynchromy walh L ianty L] Jonmitan Littianger

What is Charm++?

Reactive Nature of Method Description

= By just using entry methods, a chare’'s description is
very reactive

k

Structured Dagger. Supporting Asynchrony with Clanty Jonathan Lfftanger

Structured Dagger

= Make implicit dependencies embedded in entry method's
behavior more explicit

= Computations depend on remote method invocations. and
completion of other local computations

s We assume a sequence by default, and allow the user to
override it

= Wait for A to complete and then proceed to B

A

5 [

= |f A and B can execute in any order, this must be explicitly
defined using the overlap construct, implicit join

overiap {

Struciured Dagger: Supporhng Asynchrmny waih Clanity Jonathan Liflanom

Structured Dagger: Waiting for Messages

s The when construct is used to wait for a remote method
invocation

= The when construct allows you malch a message using the
name of the method and a reference number

s Syntax: when methods-to-wait-on block-to-execute

when recvData(int size, double datalsize)) | « go sometfing + |
..1“_ -

= When a message is matched to a when, the associated block of
code execules

= The data trom that method is put into scope in the
corresponding block

sShuco) e rulaortieg Ay ity wift [Jaefas bl L ilsshhe

Structured Dagger: Waiting for Messages

8 The when construct can be nested

when myMethod 1{int param1. int param2) |
when myMethod2(boel param3),
myMethod3(int size. int arrfsize]) /+ blockT «/
when myMathod4(bbol paramd) '« block2 «

}

= Sequence defined in the above example

» Wait for myMethodl, upon arrival execute body of myMethod1

» Wait for myMethod2 and myMethod3, upon arrival of both. execute /=
blockl «/

» Wait for myMethod4, upon arrival execute /+ block2 «/

s |f messages arrive out of order, the Structured Dagger buffers them

Stucumd Unggee Supooring Aseactrnty st (Zged, Jrrattig iU

Fibonacci without Structured Dagger

‘chare Fib |

int saved val. response _counter;

entry void dowork() |
if (n <« THRESHOLD) | respond(seqFib(n)); |
else | Fib::ckNew(n — 1); Fib::ckNew(n — 2): |

}
entry void resmnslé{lm val) {

response counter++;
if (response_counter == 1) saved val = val;
else respond(val + saved val);
i
void respond(int val) {
if (lisRoot) parenLresponse(val)
else printf("Fibonacci numbeggis. S
}

Stuctiru Lisgpee SuUpoting Aupanitrarsy st | ey druttan. | iNDInOw

Fibonacci with Structured Dagger

chare Fib |
entry void dowork()
if (n < THRESHOLD) { respond(seqFib(n)): }
else |
Fib::ckNew(n — 1); Fib::ckNew(n — 2);
when response(int val), response(int val2) {respond(val+val2);}
}

i
void respond(int val) {

if (lisRoot) parent.response(val);
else printf("Fibonacci number is: %d\n")
t

'

Structured Dagger Supporting Asynchrony with Clarty Jonathan Littance

Structured Dagger: Reference Numbers

® The when clause can wait on a certain reference number

= |f a reference number is specified for a when, the first parameter for
the entry method must be the reference number

= The when will not be matched until a message arrives with that
reference number

when method1[100](short ref, bool param1) /+ block =/

Two sends: i

proxy.method1 (20_0,_13139): /+ will not b; d;mrered to the when =/
proxy.method1(100, true); /« will be delivered to the when +/

Structured Dagger: Supporting Asynchrany weth Clarnty

Structured Dagger: More Advanced Constructs

s The language includes for, forall, while
® for and while are ordered in their iteration space
® forall allows the iterations to execute in any order

for (iter = 0, ler < maxier; ++-iter) |
overiap {
when recviellfiter|(short num, int len, double datallen]) | computeKernel (LEFT, data).)
when recvRight{iter |(short num, Int len. double dataflen]) | computeKermnel(RIGHT. data); |
|
|

while (i < numNexghbors) |
when recvData(int len, double datallen)) { » execute keme/ «)

Ly

}

i

e

forall [Diock] (0 . numBlocks -~ 1, 1) {
when method1[block|(short ref, bool someVal) « code block? «
}

Stk tisn Lagee Sl g Mownerrurey e, {Sgedly

Example Program: Stencil 3D (Jacobi)

Steuctuned Uagger Supoorting Asynchwtny wih Clarty

Example Program: Stencil 3D (Jacobi)

Structured Dagger: Supporbng Asynchirony wath Clarty

Example Program: Stencil 3D (Jacobi)

while ('converged) {
copy ToBoundaries();
sendToNeighbors();
freeBoundanes),
for (remoteCount = 0; remoteCount < 6; remoteCount++)
when updateGhosts{iter](int ref, int dir, int w, int h, double buffjw+h]) {
updateBoundary(dir, w, h, buf);
!

double error « computeKernel();
int conv = emror < DELTA;
if (iter % 5 == 1)
contrnibute._async._reduction(conv, logical.and, q\odtCocmrgod}:
if (++iter% 5 ==0)
when checkConverged(bool result)
if (result) { mainChare.done(iter), converged = true; }

e

T W

Structured Dagger: Supportng Asynchrony with Clarty

Conclusion

« Structured Dagger is the result of many years of
research
» Charm++ started with Dagger, which allowed any DAG to
be specified and had not assumed order
» We found that Dagger was difficult and error prone to
program

« Structured Dagger makes DAGs natural to express

« Lessons learned
- We may need to limit expressibility to some extent for
better programmability
» Most DAGs can be expressed in Structured Dagger, but not
all

Questions?

Structured Dagger Supporting Asynchwony weih Clarty L] Jonathan Liflancer ’ A

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20

