Exceptional Model Mining with Tree-Constrained Gradient Ascent

Thomas Krak Ad Feelders

Department of Information and Computing Sciences
Faculty of Science
Utrecht University

Presentation Overview

- Problem Introduction
 - Exceptional Model Mining
- Algorithm
 - Motivation
 - Tree-Constrained Gradient Ascent
 - Algorithm Sketch
- Experimental Results
 - Synthetic Data
 - Real Data
- Conclusion

Exceptional Model Mining (EMM)

EMM generalizes Subgroup Discovery (SD).

Given:

- Data set \mathcal{D} , containing n records.
- Record $r_i \equiv \langle a_1^i, \dots, a_k^i, x_1^i, \dots, x_p^i \rangle$, for $i = 1, \dots, n$.
 - $\mathbf{a}^i \equiv \langle a_1^i, \dots, a_k^i \rangle$ are attributes, domain \mathcal{A} .
 - $\mathbf{x}^i \equiv \langle x_1^i, \dots, x_p^i \rangle$ are targets, domain \mathcal{X} .
- ullet Model class ${\mathcal M}$ on ${\mathcal X}$.
 - E.g., linear regression.
- Quality function $\varphi_{\mathcal{D}}: \mathcal{P}(\mathcal{D}) \to \mathbb{R}$.

A pattern is a function $P: A \to \{0,1\}$ that induces a subgroup $G_P \subseteq \mathcal{D}$,

$$G_P \equiv \left\{ r_i \mid P(\mathbf{a}^i) = 1 \right\} .$$

Example:

$$P(\mathbf{a}^i) = \begin{cases} 1 & \text{if (age>23)} \land (\text{sex=F}), \text{ and} \\ 0 & \text{otherwise.} \end{cases}$$

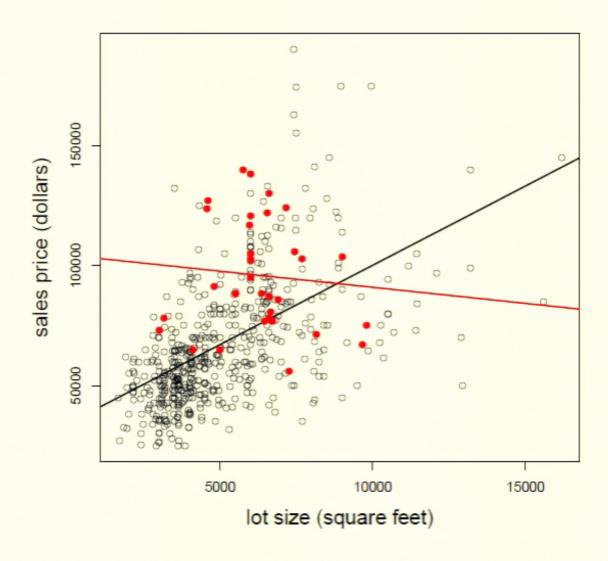
Given two models from \mathcal{M} :

- Model M_D fitted to entire data set D,
- Model M_{G_P} fitted to subgroup induced by pattern P.

Quality measure $\varphi_{\mathcal{D}}$ defines a distance function between $M_{\mathcal{D}}$ and M_{G_P} .

Goal is to find P s.t. $\varphi_{\mathcal{D}}(G_P)$ has high value.

I.e., we want to find subgroups with models that differ from the norm.



Pattern: $(drive=1) \land (rec_room=1) \land (nbath \ge 2)$.

So, goal is to find P s.t. $\varphi_{\mathcal{D}}(G_P)$ has high value.

Problem (in general):

Checking all patterns is intractable.

Hence, heuristics are often used.

Heuristically search space of all patterns.

Beam search is commonly used.

Question:

• Can we do better?

Motivation

Actually two different search spaces:

- All patterns (pattern language)
- All subgroups (extension space)

These spaces do not (necessarily) "contain the same information".

• See [van Leeuwen, 2010].

Idea:

Use information from both spaces instead of just searching in one.

Extension Space

Consider extension space.

Subgroup represented with inclusion indicators

$$\mathbf{w} = \langle w_1, \dots, w_n \rangle, w_i \in \{0, 1\}.$$

Quality of subgroup could be optimized using e.g. a hillclimber.

Our approach:

Generalize to soft subgroup, with inclusion weights:

$$w_i \in [0, 1]$$
.

Extension Space (cont.)

Parameterize $\varphi_{\mathcal{D}}(\cdot)$ as objective function $O:[0,1]^n\to\mathbb{R}$.

• Use weighted-data scheme to estimate M_G .

Use numerical optimization to maximize $O(\mathbf{w})$.

We use gradient ascent to find (local) optimum w*.

Extension Space (cont.)

Parameterize $\varphi_{\mathcal{D}}(\cdot)$ as objective function $O:[0,1]^n\to\mathbb{R}$.

• Use weighted-data scheme to estimate M_G .

Use numerical optimization to maximize $O(\mathbf{w})$.

We use gradient ascent to find (local) optimum w*.

This representation gives useful information:

$$\operatorname{Sign}\left\{\frac{\partial O(\mathbf{w})}{\partial w_i}\right\}$$

- If positive, increasing w_i improves subgroup.
- If negative, decreasing w_i improves subgroup.

Information about influence of individual records on quality.

Extension Space (cont.)

However:

• Interested in P^* , not (really) in \mathbf{w}^* .

Solution:

- Fit classifier to w* to find P*.
 - See [van Leeuwen, 2010].

Problems:

- P* could be very complex.
- No guarantees that P^* even exists.

Tree-Constrained Gradient Ascent (TCGA)

Tree-Constrained Gradient Ascent

- Numerically optimize $O(\mathbf{w})$ to find \mathbf{w}^* .
- Constrain search to ensure P^* exists and is simple.
- Ensure that constraint hinders search as little as possible.

TCGA Algorithm Sketch

Basic idea:

ullet Construct classification tree on ${\cal A}$ with

$$class_label(\mathbf{a}^i) = Sign\left\{\frac{\partial O(\mathbf{w})}{\partial w_i}\right\}$$

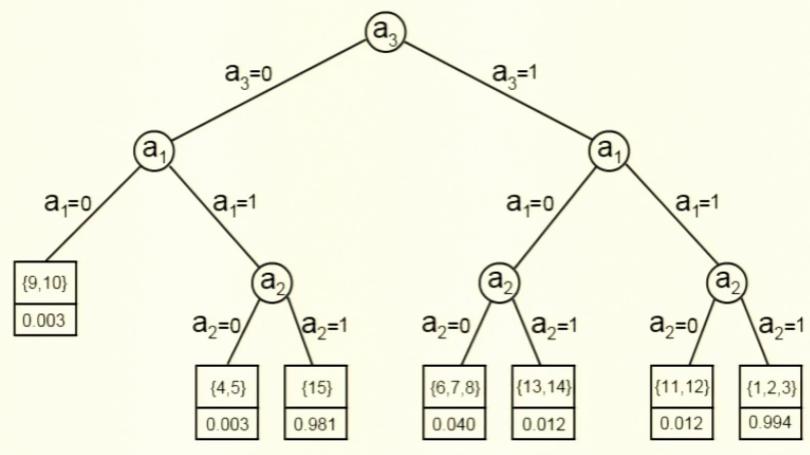
Intuition:

- Separate what you want to include from what you want to exclude.
- Assign same inclusion weight to all records in same leaf of tree.
- Optimize these weights numerically.

Because derivatives (class labels!) can change sign:

Alternate tree construction and weight optimization.

TCGA Algorithm Output



Finally:

- Round inclusion weights to {0, 1}.
- Read P* from the tree.
 - Here: $(a_3 = 0 \land a_1 = 1 \land a_2 = 1) \lor (a_3 = 1 \land a_1 = 1 \land a_2 = 1)$.

TCGA (cont.)

Some details:

- Find multiple subgroups by random restarts.
- Perform post-processing on output.

Experiments

TCGA with linear regression model class.

Experiments on:

- Synthetic data.
- Real data.

Comparison to:

- Beam search (BS).
- Beam search with post-processing (BSPP).

Synthetic Data

Known high-quality subgroups.

Performance measured in F_1 score and $\varphi_{\mathcal{D}}(\cdot)$ -based measure.

Results (at $\alpha = 0.01$ level):

- TCGA significantly outperformed both BS and BSPP.
- BSPP significantly outperformed BS.

Synthetic Data

Known high-quality subgroups.

Performance measured in F_1 score and $\varphi_{\mathcal{D}}(\cdot)$ -based measure.

Results (at $\alpha = 0.01$ level):

- TCGA significantly outperformed both BS and BSPP.
- BSPP significantly outperformed BS.

Further experiments showed significant correlation between:

- TCGA's relative performance and global model R^2 .
- TCGA's relative performance and subgroup quality.

(TCGA performed worse than BS when R^2 or quality were low).

Real Data

10 dataset/model pairs from different sources.

Performance measured in $\varphi_{\mathcal{D}}(\cdot)$ -based measure.

Results (at $\alpha = 0.05$ level):

- No significant difference between TCGA and BS/BSPP.
- BS significantly outperformed BSPP.

Here also:

 Significant correlation between TCGA's relative performance and global model R².

BS performed better when global R^2 was low, TCGA performed better when it was high.

Summary & Conclusion

Tree-Constrained Gradient Ascent (TCGA):

- New heuristic for EMM.
- Performs numerical optimization in extension space.
- Constrains search to ensure corresponding pattern exists.
- Tries to hinder search as little as possible.

TCGA outperforms BS when:

- Quality of subgroups is not too low.
- Global model R^2 is not too low.

And, these are really the cases that matter.