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Problem Introduction

Exceptional Model Mining (EMM)

EMM generalizes Subgroup Discovery (SD).

Given:
@ Data set D, containing n records.

s I I I y
@ Record r; = (4}, .... = 0 I x,), fori=1,..., n.
e a' =(a,..., a, ) are attributes, domain A.

o X' =(x{,...,. X,) are targets, domain X'

@ Model class M on X o

e E.g., linear regression.

@ Quality function pp : P(D) —

|
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Problem Introduction

Exceptional Model Mining (cont.)

A pattern is a function P : A — {0.1} that induces a subgroup Gp C D,

Gp={r|P(d')=1}.

Example:

P(a’) = { 1 if (age>23)A(sex=F), and

0 otherwise. W
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Problem Introduction

Exceptional Model Mining (cont.)

Given two models from M:
@ Model Mp fitted to entire data set D,
@ Model Mg, fitted to subgroup induced by pattern P.

Quality measure pop defines a distance function between Mp and Mg, .

Goal is to find P s.t. op(Gp) has high value.

|.e., we want to find subgroups with models that differ from the norm.
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Problem Introduction

Exceptional Model Mining (cont.)

sales price (dollars)

100000 1650000

50000

| | |
5000 10000 15000

lot size (square feet)

Pattern: (drive=1)A(rec_room=1)A (nbath>2).
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Problem Introduction

Exceptional Model Mining (cont.)

So, goal is to find P s.t. op(Gp) has high value.

Problem (in general):

@ Checking all patterns is intractable.

Hence, heuristics are often used.

Heuristically search space of all patterns.

@ Beam search is commonly used.

Question:

@ Can we do better?
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Algorithm
Motivation

Actually two different search spaces:
@ All patterns (pattern language)

@ All subgroups (extension space)

These spaces do not (necessarily) “contain the same information”.

@ See [van Leeuwen, 2010].

|dea:

@ Use information from both spaces instead of just searching in one.

Thomas Krak, Ad Feelders Exceptional Model Mining with TCGA



Algorithm
Extension Space

Consider extension space.

Subgroup represented with inclusion indicators
w=(wy..... wn). w; € {0.1}.

Quality of subgroup could be optimized using e.g. a hillclimber.

Our approach:
Generalize to soft subgroup, with inclusion weights:

wW; € [O ].].
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Algorithm

Extension Space (cont.)

Parameterize op(-) as objective function O : [0.1]” — R.

@ Use weighted-data scheme to estimate Mg;.

Use numerical optimization to maximize O(w).

@ We use gradient ascent to find (local) optimum w*.
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Algorithm

Extension Space (cont.)

Parameterize op(-) as objective function O : [0.1]" — R.

@ Use weighted-data scheme to estimate Mg;.

Use numerical optimization to maximize O(w).

@ We use gradient ascent to find (local) optimum w*.

This representation gives useful information:

i {2200)

() W;

@ If positive, increasing w; improves subgroup.

@ If negative, decreasing w; improves subgroup.

Information about influence of individual records on quality.
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Algorithm

Extension Space (cont.)

However:

@ Interested in P*, not (really) in w*.

Solution:

e Fit classifier to w* to find P*.
o See [van Leeuwen, 2010].

Problems:
@ P* could be very complex.

@ No guarantees that P* even exists.
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Algorithm

Tree-Constrained Gradient Ascent (TCGA)

Tree-Constrained Gradient Ascent

@ Numerically optimize O(w) to find w*.
@ Constrain search to ensure P* exists and is simple.

@ Ensure that constraint hinders search as little as possible.
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Algorithm

TCGA Algorithm Sketch

Basic idea:

@ Construct classification tree on A with

", Wi

)

class_label(a') = Sign{ -

Intuition:
e Separate what you want to include from what you want to exclude.

@ Assign same inclusion weight to all records in same leaf of tree.

@ Optimize these weights numerically.

Because derivatives (class labels!) can change sign:

@ Alternate tree construction and weight optimization.
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Finally:

@ Round inclusion weights to {0.1}.

Algorithm

TCGA Algorithm Output

{4,5}

{15}

0.003

0.981

@ Read P* from the tree.
@ Here: (a3 =0Aa;=1Aay=1)V(as=1Aa;=1Aa,=1).
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TCGA (cont.)

Some details:
@ Find multiple subgroups by random restarts.

@ Perform post-processing on output.
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RESTHES
Experiments

TCGA with linear regression model class.

Experiments on:
@ Synthetic data.

@ Real data.

Comparison to:
@ Beam search (BS).
@ Beam search with post-processing (BSPP).
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RESTES
Synthetic Data

Known high-quality subgroups.
Performance measured in F; score and op(-)-based measure.

Results (at a = 0.01 level):
@ [ CGA significantly outperformed both BS and BSPP.

@ BSPP significantly outperformed BS.
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Results
Synthetic Data

Known high-quality subgroups.
Performance measured in F; score and op(-)-based measure.

Results (at a = 0.01 level):
@ [ CGA significantly outperformed both BS and BSPP.

@ BSPP significantly outperformed BS.

Further experiments showed significant correlation between:
@ TCGA's relative performance and global model R?.

@ [CGA's relative performance and subgroup quality.

(TCGA performed worse than BS when R? or quality were low).
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Results
Real Data

10 dataset/model pairs from different sources.
Performance measured in pop(-)-based measure.

Results (at a = 0.05 level):
@ No significant difference between TCGA and BS/BSPP.

@ BS significantly outperformed BSPP.

Here also:

@ Significant correlation between TCGA's relative performance and
global model R?.

BS performed better when global R? was low, TCGA performed better
when it was high.
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Conclusion
Summary & Conclusion

Tree-Constrained Gradient Ascent (TCGA):
@ New heuristic for EMM.
@ Performs numerical optimization in extension space.
@ Constrains search to ensure corresponding pattern exists.
5

Tries to hinder search as little as possible.

TCGA outperforms BS when:
@ Quality of subgroups is not too low.
@ Global model R? is not too low.

And, these are really the cases that matter.
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