# Designing Aluminum Members

Randy Kissell, P.E. Trinity Consultants

#### Learning Outcomes

- Know the major aluminum alloy groups and their uses
- Know the principal structural properties of aluminum
- Become proficient in designing aluminum structural members and connections

### Course Outline

- 6 Tension members
- 7 Compression members
- 8 Flexural members
- 9 Members in shear or torsion

### 6. Tension Members

- SAS Chapter D covers axial tension
- Tensile limit state is reached at:
  - Rupture on the net section ( $\Omega$  = 1.95)
  - Yield on the gross section ( $\Omega$  = 1.65)
- Same criteria as in AISC for steel
- It's assumed that the net section exists only over a short portion of the member length, so yielding there won't cause much elongation

#### Net and Gross Sections



#### Rupture on the Net Section



#### Allowable Tension Stress Example

• 6061-T6 Extrusions:

 $F_{ty} = 35$  ksi,  $F_{tu} = 38$  ksi

• Allowable stress on the gross section:

 $F / \Omega_y = F_{ty} / \Omega_y = 35 / 1.65 = 21.2$  ksi

• Allowable stress on the net section:

 $F / \Omega_u = F_{tu} / (\Omega_u k_t) = 38 / [(1.95)(1.0)]$ = 19.5 ksi

Net section always governs

#### Allowable Tensile Stress Example

• 6063-T5 Extrusions:

 $F_{ty} = 16$  ksi,  $F_{tu} = 22$  ksi

• Allowable stress on the gross section:

 $F / \Omega_y = F_{ty} / \Omega_y = 16/1.65 = 9.7$  ksi

• Allowable stress on the net section:

 $F / \Omega_u = F_{tu} / (\Omega_u k_t) = 22/[1.95)(1.0)]$ = 11.3 ksi

Gross or net section could govern

### Tension Coefficient k<sub>t</sub>

- $k_t$  is a notch sensitivity factor
- For alloys in SAS,  $k_t \ge 1$  only for :
  - 2014-T6, 2219-T87, 6005-T5, and 6105-T5,  $k_t = 1.25$
  - 6066-T6 and 6070-T6,  $k_t = 1.1$
- 6005A-T61 has same  $F_{ty}$  and  $F_{tu}$  as 6005-T5, but  $k_t = 1.0$  for 6005A-T61

#### LRFD Tension Example

• 6061-T6 Extrusions:

 $F_{ty} = 35$  ksi,  $F_{tu} = 38$  ksi

• LRFD design stress on the gross section:

 $\phi_y F = \phi_y F_{ty} = 0.90(35) = 31.5$  ksi

• LRFD design stress on the net section:

$$\phi_u F = \phi_u F_{tu} / k_t = 0.75(38) / (1.0) = 28.5 \text{ ksi}$$

So just like ASD, net section governs.

#### Net Area

- SAS Section D.3.1
- Net area = gross area (hole area)
- For staggered hole patterns net width =  $w - \Sigma D_{he} + \Sigma s^2/4g$ where w = gross width  $D_{he}$  = hole effective diameter
  - *s* = pitch (spacing II to load)
  - g = gauge (spacing  $\perp$  to load)



### Hole Effective Diameter $(D_{he})$

- SAS uses, for  $D_h$  = nominal hole diameter:
  - For drilled holes,  $D_{he} = D_h$
  - For punched holes,  $D_{he} = D_h + 1/32''$
- AISC Steel Spec uses  $D_{he} = D_h + 1/16''$  for all holes, regardless of how they are fabricated

#### Shear Lag in a Channel



### Effective Net Area in Tension A<sub>e</sub>

- SAS Section D.3.2
- If all parts of x-section aren't connected to joint, full net area isn't effective in tension
- Example: Channel bolted through its web only (not flanges)
- SAS addresses angles, channels, tees, zees, rectangular tubes, and I beams

# 

### Effective Net Area A<sub>e</sub>

• Effective net area =  $A_e$  $A_e = A_n(1 - x/L_c)(1 - y/L_c)$ 

#### but no less than A<sub>n</sub> of connected elements

 $A_n$  = net area

- *x* = eccentricity in *x* direction
- y = eccentricity in y direction
- $L_c$  = length of connection in load direction

#### Effective Net Area Example

• For a tee bolted through its flange only:



- Other examples are in ADM Part II D.3.2
- When only a single row of fasteners is used, L<sub>C</sub> = 0 and A<sub>e</sub> = A<sub>n</sub> of connected elements only

### 7. Compression Members

- Column = axial compression member
- SAS Chapter E addresses columns
- Column strength is the least of:
  - Member buckling strength
  - Local buckling strength
  - Interaction between member buckling and local buckling strengths

#### Compressive Limit States

- Yielding (squashing)
- Inelastic buckling
- Elastic buckling



### Elastic Buckling

- Elastic buckling stress =  $F_e = 0.85\pi^2 E / \lambda^2$
- *E* is the only material property that elastic buckling strength depends on
- $\lambda = kL/r = largest slenderness ratio for buckling about any axis$
- All other things equal,  $F_e$  for aluminum is 1/3  $F_e$  for steel since  $E_a = E_s$  /3

### Member Buckling

- 0.85 factor accounts for member out-of-straightness
- *k* = 1 for all members (see Section C.3)
- Allowable member buckling strengths really haven't changed from 2005 SAS:

$$\frac{\pi^2 E}{1.95(kL/r)^2} \approx \frac{0.85\pi^2 E}{1.65(kL/r)^2}$$

#### Inelastic Buckling

- Inelastic buckling strength =  $F_c$  =  $(B_c - D_c \lambda)[0.85 + 0.15(C_c - \lambda)/(C_c - \lambda_1)]$ 
  - When  $\lambda = C_c$ ,  $F_c = 0.85 \pi^2 E / C_c^2$
  - When  $\lambda = \lambda_1$ ,  $F_c = F_{cy}$

### Inelastic Buckling Constants

- Inelastic buckling strength =  $F_c$  =  $(B_c - D_c \lambda)[0.85 + 0.15(C_c - \lambda)/(C_c - \lambda_1)]$
- $B_c$  (y intercept) and  $D_c$  (slope) are buckling constants that depend on  $F_{cy}$  and E
- Calculate them by SAS equations in:
  - Table B.4.1 for O, H, T1 thru T4 tempers
  - Table B.4.2 for T5 thru T9 tempers
- *B<sub>c</sub>*, *D<sub>c</sub>*, and *C<sub>c</sub>* are tabulated in ADM Part VI Table 1-1 (unwelded) and 1-2 (welded)

## Yielding

- Yield strength is simply  $F_c = F_{cy}$
- Yielding depends only on material strength



Slenderness Limits  $\lambda_1$ ,  $\lambda_2$ 

- $\lambda_1$  is the slenderness for which yield strength = inelastic buckling strength
- $\lambda_2$  is the slenderness for which inelastic buckling strength= elastic buckling strength
- Slenderness ratios (*kL/r*) are not *limited* by  $\lambda_1$  and  $\lambda_2$ ;  $\lambda_1$  and  $\lambda_2$  are just the limits of applicability of compressive strength equations

#### 6061-T6 Column Strength

- ADM Part VI, Table 2-19 gives allowable stresses based on SAS rules
- For  $kL/r \le 17.8$ ,  $F_{cy}/\Omega = 21.2$  ksi
- For 17.8 < *kL/r* < 66,
- $F_c/\Omega = 25.2 0.232(kL/r) + 0.000465(kL/r)^2$
- For  $kL/r \ge 66$ ,  $F_c / \Omega = 51,350/(kL/r)^2$

#### Slenderness Limits Demonstrated

- For  $kL/r = \lambda_2 = 66$ :
  - Inelastic buckling allowable stress is
  - $25.2 0.232(66) + 0.000465(66)^2 = 11.9$  ksi
  - Elastic buckling allowable stress is
  - 51,350/(66)<sup>2</sup> = 11.8 ksi ≈ 11.9 ksi
  - Difference is only due to round off in allowable stress expressions

### Column Example

- What's the allowable member buckling compressive stress for a column given:
  - 6061-T6
  - Pinned-end support conditions
  - Length = 95"
  - Shape is AA Std I 6 x 4.03
    - $r_x = 2.53$ ",  $r_y = 0.95$ "
  - No bracing

### Column Example Answer

- Column will buckle about minor axis since slenderness ratio *kL/r* is larger there:
- kL/r = (1.0)(95'')/0.95'' = 100
- Since  $kL/r = 100 > \lambda_2 = 66$  (buckling is elastic), so  $F_c / \Omega = 51,350/(100)^2 = 5.1$  ksi
- We need to check local buckling, too

#### Flexural & Torsional Column Buckling





I.

#### Types of Column Member Buckling

- Flexural (lateral movement)
- Torsional (twisting about longitudinal axis)
- Flexural-Torsional (combined effect)

## Torsional and Flexural-Torsional Buckling

- SAS Section E.2.2 addresses
  - a) doubly symmetric sections
  - b) singly symmetric sections
  - c) unsymmetric sections

## Torsional and Flexural-Torsional Buckling

- Calculate torsional or flexural-torsional elastic buckling stress  $F_e$  using equations given for the above cases
- Use  $F_e$  to calculate the slenderness ratio  $\lambda = \pi \sqrt{E/F_e}$
- Use  $\lambda$  in member buckling equations of E.2 to determine compressive strength

### Torsional Buckling Example

 I 6 x 4.03 is doubly symmetric; E.2.2a gives the torsional buckling stress as:

$$F_{e} = \left(\frac{\pi^{2} E C_{w}}{(k_{z} L_{z})^{2}} + G J\right) \frac{1}{I_{x} + I_{y}}$$

$$F_{e} = \left(\frac{\pi^{2} (10,100)(25.3)}{(95)^{2}} + (3800)(0.0888)\right) \frac{1}{22.0 + 3.1}$$

$$F_{e} = 24.6 \text{ ksi}$$

#### Torsional Buckling Example

$$\lambda = \pi \sqrt{\frac{E}{F_e}} = \pi \sqrt{\frac{10,100}{24.6}} = 63.7 < 100$$

Because the torsional buckling slenderness (63.7) is less than the flexural buckling slenderness (100), the torsional buckling strength is greater than the flexural buckling strength, and does not govern.
# Local Buckling

- Local buckling is buckling of an element of a shape (i.e., a flange or web)
- Buckle length ≈ width of element
- If local buckling strength of all elements > yield strength, the shape is compact, and local buckling won't occur
- Since aluminum shapes vary widely (extrusions, cold-formed shapes), we can't assume aluminum shapes are compact

## Local Buckling Examples



#### Local Buckling of a Tube



# Elements of Shapes are Called:

- Element
- Flange or web
- Component
- (Plate)

# Dividing a Shape Into Elements



# Elements of Shapes

- Cross sections can be subdivided into two types of elements:
  - Flat elements (slenderness = b/t)
  - Curved elements (slenderness =  $R_b/t$ )
- Longitudinal edges of elements can be:
  - Free
  - Connected to another element
  - Stiffened with a small element

## Element Support Conditions



#### Elements in Uniform Compression Addressed by the SAS

- B.5.4.1 Flat element supported on one edge (flange of an I beam or channel) -
- B.5.4.2 Flat element supported on both edges (web of I beam or channel) –
- B.5.4.3 Flat element supported on one edge, other edge with stiffener
- B.5.4.4 Flat element supported on both edges, with an intermediate stiffener
- B.5.4.5 Curved element supported on both edges

# Local Buckling Strengths

- Yielding  $F_c = F_{cy}$
- Inelastic buckling  $F_c = B_p D_p (kb/t)$
- Elastic buckling  $F_c = \pi^2 E / (kb/t)^2$  $F_c = k_2 (B_p E)^{1/2} / (kb/t)$
- *k* = edge support factor
  - *k* = 5.0 for elements supported on 1 edge
  - *k* = 1.6 for elements supported on both edges
- $k_2$  = postbuckling factor  $\approx 2$  (Table B.4.3)

# Postbuckling Strength

- Only elements of shapes have postbuckling strength members do not
- Postbuckling strength is not recognized by SAS for all types of elements
- After buckling elastically, some elements are capable of supporting more load
- If the appearance of buckling is unacceptable, don't include postbuckling

#### Element Strength vs. Slenderness



#### 6061-T6 Column Flange Strength

| <ul> <li>Yielding</li> </ul>           | $F_c / \Omega = F_{cy} / \Omega$                         |
|----------------------------------------|----------------------------------------------------------|
| $\lambda_{1} = 6.7$                    | $F_c / \Omega = 35 / 1.65 = 21.2$ ksi                    |
| <ul> <li>Inelastic buckling</li> </ul> | $F_c / \Omega = [B_p - D_p (5.0b/t)] / \Omega$           |
| $\lambda_2 = 12$                       | $F_c / \Omega = 27.3 - 0.910 b / t$                      |
| <ul> <li>Elastic buckling</li> </ul>   | $F_c/\Omega = [\pi^2 E/(5.0b/t)^2]/\Omega$               |
| $\lambda_{2} = 10.5$                   | $F_c / \Omega = 2417 / (b/t)^2$                          |
| <ul> <li>Postbuckling</li> </ul>       | $F_c / \Omega = [k_2 (B_p E)^{1/2} / (5.0b/t)] / \Omega$ |
|                                        | $F_c/\Omega = 186/(b/t)$                                 |

# Column Local Buckling - Flange

• Shape is AA Std I 6 x 4.03: flange slenderness = b/t b/t = (4'' - 0.19'')/2/0.29'' = 6.6  $\lambda_1 = 6.7 > 6.6$  so  $F_c/\Omega = 21.2$  ksi You can deduct the flange-web fillet radius from b if  $R \le 4t$ , or conservatively neglect it



# Column Local Buckling - Web

• Shape is AA Std I 6 x 4.03: web slenderness = b/t b/t = [6'' - 2(0.29'')]/0.19'' = 28.5  $\lambda_1 = 20.8 < 28.5 < 33 = \lambda_2$ , so  $F_c/\Omega = 27.3 - 0.291b/t =$   $F_c/\Omega = 27.3 - 0.291(28.5) = 19.0$ You can deduct the flange-web fillet radius from b if  $R \le 4t$ , or conservatively neglect it



# Local Buckling Strength

- Methods for local buckling strength:
  - Conservative, but easy approach: Use the least of local buckling strengths of the shape's elements, or
  - More accurate, but more work : Use the weighted average (SAS Section E.3.1) of the local buckling strengths
  - Direct strength method

# Weighted Average Allowable Compressive Stress of I 6 x 4.03

- $F_{cf}/\Omega$  = 21.2 ksi
- $F_{cw}/\Omega = 19.0$  ksi
- $A_f = 2(4'')(0.29'')$ = 2.32 in<sup>2</sup>

• 
$$A_w = (6'' - 2(0.29''))(0.19'')$$
  
= 1.03 in<sup>2</sup>

• 
$$F_{ca} / \Omega = \frac{21.2(2.32) + 19.0(1.03)}{(2.32 + 1.03)}$$
  
= 20.5 ksi



#### Local Buckling/Member Buckling Interaction

- If the elastic local buckling stress < member buckling stress, member buckling stress must be reduced (SAS Section E.4)
- Reduced member buckling stress is  $F_{rc}$ :

 $F_{rc} = (F_c)^{1/3} (F_e)^{2/3}$ 

where  $F_c$  = elastic member buckling stress

 $F_e$  = elastic local buckling stress

This only governs if elements are very slender and postbuckling strength is used

## Local/Member Buckling Interaction Example

• Flange elastic buckling stress  $F_{ef}$ 

$$F_{ef} = \frac{\pi^2 E}{(5.0b/t)^2} = \frac{\pi^2 (10,100)}{(5.0(6.6))^2} = 91.5 \text{ ksi}$$

• Web elastic buckling stress  $F_{ew}$ 

$$F_{ew} = \frac{\pi^2 E}{(1.6b/t)^2} = \frac{\pi^2 (10,100)}{(1.6(28.5))^2} = 47.9 \text{ ksi}$$

# Local/Member Buckling Interaction Example

• Member buckling stress  $F_c$ 

$$F_c = \frac{0.85\pi^2 E}{(kL/r)^2} = \frac{0.85\pi^2(10,100)}{(100)^2} = 8.5 \text{ ksi}$$

• Since  $F_e = 47.9$  ksi >  $F_c = 8.5$  ksi, the member buckling strength need not be reduced for interaction between local and member buckling

# Column Design Summary

- Column strength is the least of:
  - Member buckling strength
  - Local buckling strength
  - Interaction between member and local buckling strengths

• 
$$P_n = F_c A_g$$

# 8. Flexural Members

- Beam = flexural member
- Beam strength limit states are:
  - F.2 Yielding
  - F.2 Rupture  $\Omega = 1.95$
  - F.3 Local buckling
  - F.4 Member buckling (LTB)



 $\Omega = 1.65$ 

 $\Omega = 1.65$ 

 $\Omega = 1.65$ 

## Yielding and Rupture in Beams



## Plastic Modulus Z

- When both sides of n.a. are fully yielded,  $F_{ty} A_t = F_{cy} A_c$
- Use  $F_{cy}$  for both  $F_{cy}$  and  $F_{ty}$  to determine Z



# Yielding in a Beam



# Beam Yielding Strength M<sub>np</sub>

- For wrought products M<sub>np</sub> shall not exceed
   ZF<sub>cy</sub>, 1.5S<sub>t</sub> F<sub>ty</sub>, 1.5S<sub>c</sub> F<sub>cy</sub>
- For cast products  $M_{np}$  shall not exceed
  - $S_t F_{ty}$ ,  $S_c F_{cy}$
- Before 2015 SAS used only part of the plastic modulus Z for yield strength
- 1.5S limit on Z is to prevent yielding at service loads (AISC limit is 1.6S)

# Beam Yielding Strength M<sub>np</sub>

- Example I 12 x 14.3:
  - $S = 52.89 \text{ in}^3$  elastic section modulus
  - $Z = 58.36 \text{ in}^3$  plastic section modulus
  - $Z = 2[5.38^2(0.31)/2 + 7(0.62)(5.38 + 0.62/2)]$

web\_\_\_\_\_\_flange \_\_\_\_\_

- *Z*/*S* = 1.10 = shape factor < 1.5
- $M_{np} = (58.36 \text{ in}^3)(35 \text{ k/in}^2) = 2043 \text{ in-k}$
- $M_{np}/\Omega$ = (2043 in-k)/1.65 = 1238 in-k

# Beam Rupture Strength M<sub>nu</sub>

- For wrought products and cast products  $M_{nu} = Z F_{tu} / k_t$
- Before 2015 SAS used only part of the plastic modulus Z for rupture strength
- For I 12 x 14.3,

$$M_{nu} = (58.36 \text{ in}^3)(38 \text{ k/in}^2)/1 = 2218 \text{ in-k}$$
  
 $M_{nu}/\Omega = (2218 \text{ in-k})/1.95 = 1137 \text{ in-k}$ 

# Local Buckling Flexural Strength

- Determine by one of these methods:
  - F.3.1 Weighted average
  - F.3.2 Direct strength
  - F.3.3 Limiting element

#### Local Buckling of Beam Elements

• Beam elements in uniform compression (flanges) are just like column elements in uniform compression (see B.5.4)

#### Beam Flange Stress



# Local Buckling of a Flange



# Local Buckling - Flange

• Shape is AA Std I 12 x 14.3: flange slenderness = b/t b/t = (7'' - 0.31'')/2/0.62'' = 5.4  $5.4 < 6.7 = \lambda_1$  so  $F_c /\Omega = 21.2$  ksi You can deduct the flange-web fillet radius from b if  $R \le 4t$ , or

conservatively neglect it



#### Beam Elements in SAS – Elements in Flexure (Webs)

- B.5.5.1 Flat element both edges supported (web of I beam or channel)
- B.5.5.2 Flat element compression edge free, tension edge supported
- B.5.5.3 Flat element with a longitudinal stiffener both edges supported (see B.5.5.3 for <u>stiffener</u> requirements

## Local Buckling - Web

• Shape is AA Std I 12 x 14.3: web slenderness = b/t b/t = [12'' - 2(0.62'')]/0.31'' = 34.7  $\lambda_1 = 33.1 < 34.7 < 77 = \lambda_2$ , so  $F_c / \Omega = 40.5 - 0.262b/t =$   $F_c / \Omega = 40.5 - 0.262(28.5) = 31.4$ You can deduct the flange-web fillet radius from *b* if  $R \le 4t$ , or conservatively neglect it



#### Weighted Average Bending Strength (F.3.1)



tension side

## Weighted Average Example

• For I 12 x 14.3,  $M_{nLB} / \Omega = F_{cf} I_f / \Omega c_{cf} + F_{cw} I_w / \Omega c_{cw}$  = (21.2)(281.3)/5.69 + (31.4)(32.18)/5.38 = 1236 in-k


#### Direct Strength Method (F.3.2)

- Determine elastic local buckling stress  $F_e$  (one way is finite strip method, like for members in axial compression)
- Determine slenderness

ratio  $\lambda$  for the shape  $\lambda = \pi \sqrt{E/F_e}$ 

Use F.3.2 to determine the local buckling strength of the shape

#### Limiting Element Method (F.3.3)

- Stress in each element shall not exceed the local buckling strength of that element
- Determine F<sub>LB</sub> using B.5.4.1 thru B.5.4.4 for elements in uniform compression

Determine F<sub>LB</sub> using B.5.5.1 thru B.5.5.4 for elements in flexural compression



#### Lateral-Torsional Buckling (LTB)





LTB = Lateral-torsional buckling

#### 6061-T6 LTB Strength

• Inelastic buckling 
$$\lambda < C_c = 66$$
  
 $M_{nmb}/\Omega = [M_{np}(1 - \lambda/C_c) + \pi^2 E \lambda S_c / C_c^3]/\Omega$   
 $M_{nmb}/\Omega = M_{np}/1.65 - \lambda (M_{np}/109 - 0.210S_c)$ 

• Elastic buckling  $\lambda \ge C_c = 66$   $M_{nmb} / \Omega = \pi^2 E S_c / (\Omega \lambda^2)$  $M_{nmb} / \Omega = 60,400 S_c / \lambda^2$ 



#### Slenderness Ratio $\lambda$ for LTB

Section Shape Example λ  $\frac{L_b}{r_{ye}\sqrt{C_b}}$ F.4.2.1 sym about bending axis closed shape F.4.2.3 F.4.2.4 rectangular  $\frac{2.3}{t}\sqrt{\frac{dL_b}{C_t}}$ ---bar  $\pi \sqrt{\frac{ES_c}{C, M}}$ F.4.2.5 any shape

#### Unbraced Length for Beams L<sub>b</sub>

- Slenderness ratio depends on unbraced beam length L<sub>b</sub>
- L<sub>b</sub> = length between bracing points or between a brace point and the free end of a cantilever beam. Braces:
  - restrain the compression flange against lateral movement, or
  - restrain the cross section against twisting
- Appendix 6 addresses brace design

#### Bending Coefficient C<sub>b</sub>

• C<sub>b</sub> accounts for moment variation along the beam. For doubly symmetric sections:

• 
$$C_b = \frac{4M_{\text{max}}}{(M_{\text{max}}^2 + 4M_{\text{max}}^2 + 7M_{\text{B}}^2 + 4M_{\text{C}}^2)^{0.5}}$$

where

 $M_{\rm A}$  = moment at  $\frac{1}{4}$  point

 $M_{\rm B}$  = moment at midpoint

 $M_{\rm C}$  = moment at  $\frac{3}{4}$  point



C<sub>b</sub> = 1.13
It's always conservative to use C<sub>b</sub> = 1; max C<sub>b</sub> = 3.0

# $r_{ye}$ for Shapes Symmetric About the Bending Axis

- F.4.2.1 allows using  $1.2r_y$  or  $r_y d/(2r_x)$  for  $r_{ye}$ 
  - That's easy, but conservative in neglecting torsional strength, and unconservative if load is applied toward shear center
- It's worth determining r<sub>ye</sub> using more precise equations given in F.4.2.1
  - That's more work, but more accurate

### Calculating $r_{ye}$

- F.4.2.1 Shapes symmetric about the bending axis: uses equations based on  $I_y$ ,  $C_w$ ,  $S_x$ , J,  $L_b$ , and  $\Box$   $\Box$   $\Box$   $\Box$   $\Box$   $\Box$   $\Box$   $\Box$   $\Box$
- F.4.2.2 Singly symmetric shapes unsymmetric about the bending axis
  - If  $I_{yc} \leq I_{yt}$ , you can transform the tension flange to look like the compression flange and use F.4.2.1



#### Singly Symmetric Beam Unsymmetric About Bending Axis





- *r<sub>ye</sub>* for Shapes Symmetric about the Bending Axis
- Load applied toward shear center
- Load applied at shear center, or no load

$$r_{ye} = \sqrt{\frac{I_y}{S_x}} \left[ -\frac{d}{4} + \sqrt{\frac{d^2}{16} + \frac{C_w}{I_y} + 0.038 \frac{JL_b^2}{I_y^2}} \right]$$

$$C_{ye} = \sqrt{\frac{I_y}{S_x}} \sqrt{\frac{C_w}{I_y} + 0.038 \frac{JL_b^2}{I_y^2}}$$

$$r_{ye} = \sqrt{\frac{I_y}{S_x}} \left[ +\frac{d}{4} + \sqrt{\frac{d}{16}^2 + \frac{C_w}{I_y} + 0.038 \frac{JL_b^2}{I_y^2}} \right]$$

#### LTB Example

- What's the allowable LTB moment for a beam given:
  - 6061-T6
  - Length = 86"
  - Shape is AA Standard I 12 x 14.3,  $r_y = 1.71$ ,
    - $I_y = 35.48, S_x = 52.89, C_w = 1148, J = 1.26$
  - No bracing between beam ends
  - Transverse load applied toward shear center

#### LTB Example Answer

•  $r_{ve}$  for slenderness ratio  $L_b/r_{ve}$  is  $r_{ye} = \sqrt{\frac{I_y}{S_x}} - \frac{d}{4} + \sqrt{\frac{d^2}{16} + \frac{C_w}{I_y} + 0.038 \frac{JL_b^2}{I_y^2}} = 1.67$  $\lambda = L_b / r_{ve} = 86'' / 1.67'' = 51.5$ • Since  $L_b/r_v = 51.5 < 66 = C_c$ ,  $M_{nLTB} / \Omega = M_{np} / 1.65 - \lambda (M_{np} / 109 - 0.210S_c)$ = 2043/1.65 - 51.5(2043/109 - 0.210(52.89))= 845 in-k

#### Open Section LTB Strength

- Open section beam (e.g., I beam) resists lateral buckling mostly by warping strength; LTB strength is given by F.4.2.1 for shapes sym about the bending axis
- F.4.2.1 includes torsion strength (which increases as  $L_b$  increases) and warping strength if you don't use the approximation  $1.2r_y$  or  $r_y d/(2r_x)$  for  $r_{ye}$

#### Closed Section LTB Strength

- Closed section beam (e.g., rectangular tube) resists lateral buckling by torsion strength; LTB strength is given by F.4.2.3
- F.4.2.3 includes torsion strength only, not warping strength. If  $\overline{C_w} << 0.038 J L_b^2$ , this isn't overly conservative
- F.4.2.3 assumes shape is sym about bending axis & load acts at shear center; usually this isn't very unconservative

#### Any Shape LTB Strength

• F.4.2.5 gives LTB for any shape; eq F.4-9:

$$\lambda = , \frac{L_b}{r_{ye}\sqrt{C_b}} r_{ye} = \sqrt{\frac{I_y}{S_x}} \left[ U + \sqrt{U^2 + \frac{C_w}{I_y} + 0.038 \frac{JL_b^2}{I_y}} \right]$$

- $U = C_1 g_o + C_2 \beta/2$ , where
- $g_o$  = distance from load application to s.c.
- $\beta$  = coefficient of monosymmetry
- $C_1$  and  $C_2$  depend on loading;  $\approx 0.5$

#### I 12 x 14.3 Available Strengths

- Yielding  $M_{np}/\Omega = 1238$  in-k
- Rupture  $M_{nu}/\Omega = 1137$  in-k
- Local buckling  $M_{nLB}/\Omega = 1236$  in-k
- LTB  $M_{nLTB}/\Omega = 845$  in-k

The available flexural strength is the least of these:

 $M_n/\Omega$  = 845 in-k

#### 9. Members in Shear or Torsion

- Shear is addressed in SAS Chapter G
- Torsion is addressed in SAS Section H.2
- Safety factors:
  - Rupture ( $\Omega$  = 1.95, new in 2015)
  - Yield and buckling ( $\Omega$  = 1.65)

#### Shear Buckling



Mohr's circle

#### Web Shear Buckling



#### Elements in Shear in SAS

## G.2 Flat element supported on both edges

- G.3 Flat element supported on one edge
- G.4 Pipes and round or oval tubes
- G.5 Rods

#### 6061-T6 Web Shear Strength

- Yielding  $F_s / \Omega = F_{sy} / \Omega$ 
  - $\lambda_1 = 35$   $F_s / \Omega = 0.6(35) / 1.65 = 12.7$  ksi
- Inelastic buckling

$$F_{s} / \Omega = [B_{s} - D_{s} (1.25b / t)] / \Omega$$
  
$$\lambda_{2} = 63 \qquad F_{s} / \Omega = 16.5 - 0.107b / t$$

• Elastic buckling

$$F_{s} / \Omega = [\pi^{2} E / (1.25 b / t)^{2}] / \Omega$$
  
$$F_{s} / \Omega = 38,700 / (b / t)^{2}$$

#### Web Shear Example

- What's the allowable shear stress for a flat web given:
  - 6061-T6
  - Shape is AA Std I 6 x 4.69

$$d = 6$$
",  $t_f = 0.35$ ",  $t_w = 0.21$ "



#### Web Shear Example Answer

- Web height is  $b = d 2t_f = 6'' 2(0.35'')$ b = 5.3''
- Web slenderness ratio is

 $b/t_w = 5.3''/0.21'' = 25.2 < \lambda_1 = 35$ 

- For yield  $F_{sy} / \Omega = 0.6(35) / 1.65 = 12.7$  ksi
- For rupture  $F_{su} / \Omega = 0.6(38) / 1.95 = 11.7$  ksi

• 
$$V/\Omega = (dt_w)F_s/\Omega = (6'')(0.21'')(11.7 \text{ k/in}^2)$$

= 14.7 k

#### Torsion

- H.2.1 Pipes and Round or Oval Tubes
- H.2.2 Rectangular Tubes
- H.2.3 Rods
- H.2.4 Open Shapes



#### Torsion in a Round Tube

- 5050-H34 tube,  $F_{cy} = 0.9(20) = 18$  ksi
- 10" diameter x 0.050" thick
- 96" long
- Determine the allowable shear stress  $F_s/\Omega$



#### Torsion Example

- Section H.2.1, slenderness  $\lambda$ :
- $\lambda = 2.9(R/t)^{5/8}(L/R)^{1/4}$
- $\lambda = 2.9 (5''/0.05'')^{5/8} (96''/5'')^{1/4}$
- $\lambda = 108 \le 108 = \lambda_2$
- So  $F_s / \Omega = 10.0 0.061(108) = 3.4$  ksi

#### Thank You

- Please contact me with questions
  - rkissell@trinityconsultants.com
  - office: 919-493-8952; cell: 919-636-0072