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Prior information for geophysical models

True velocity model
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Physical parameter estimation

m

p
min f(m) s.t. m & ﬂ Vi
i=1

Geophysical applications:

® single % (bounds) [Zeev et al. (2006) and Bello and Raydan (2007)]

® tWO sets [Lelievre and Oldenburg (2009), Baumstein (2013), Smithyman et al. (2015),
Esser et al. (2015ab, 2016ab), Peters and Herrmann (2017), Yong et al. (2018),
Trinh et al. (2018), Peters and Herrmann (2019)]




Physical parameter estimation

p
min f(m) s.t. m € ﬂ %
i=1

m

Projection based algorithms: SPG, PQN, projected Newton-type guarantee that m
satisfies all constraints, every iteration. [Birgin et. al. (1999); Schmidt et. al. (2009); Schmidt et. al. (2012)]
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min f(m) s.t. m & ﬂ Vi
i=1

m

Projection based algorithms: SPG, PQN, projected Newton-type guarantee that m
satisfies all constraints, every iteration. [Birgin et. al. (1999); Schmidt et. al. (2009); Schmidt et. al. (2012)]

m Tt = (1 — y)m” — yPy(m” — BV,, f(m"))

3 : Barzilai-Borwein scaling

7 : non-monotone line search step length



Physical parameter estimation

m

p
min f(m) s.t. m & ﬂ Vi
i=1

Prior knowledge as constraint sets especially practical if we have many sets.

Each constraint set defined independently of all others.




Complex models

Models with smooth, blocky and diagonal features do not fit any of the
standard constraints (rank, total-variation, smoothness promoting).
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Question:

How to construct (convex) sets suitable to regularize this type of models?



Inspiration

cartoon-texture decomposition / morphological component analysis

[Osher et al. (2003); Starck et al. (2005); Schaeffer and Osher (2013); Ono et al. (2014)]

often stated as: min ||m — u — v|| H 2||AuH - — || B

U,V

approximately decompose m into
1. u : cartoon/background/piecewise-smooth or constant component
2. U :texture/details/pattern/oscillatory component

closely related to to robust PCA and variants [Candes et al. (2011); Gao et al., 2011a ;
Gao et al., 2011b]




Example

. cartoon part
original image

. o

texture part

[Szolgay D, & Sziranyi T., 2012]



http://www.numerical-tours.com/matlab/inverse_6_image_separation/
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Minkowski sum consiraint sets

ldea:

merge strengths of additive models and intersections of constraint sets
represent a complex model as a sum of simple ones

use different constraint on each part of the sum

avoid penalties

no explicit spatial segmentation, components may overlap
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Minkowski sum consiraint sets

|dea:
® merge strengths of additive models and intersections of constraint sets
® represent a complex model as a sum of simple ones
e use different constraint on each part of the sum
® avoid penalties
® no explicit spatial segmentation, components may overlap

The resulting model is an element of the Minkowski set (vector sum):

V=Ci+Ci={m=u+v|u€eCl,veCl}

convex if both sets are convex
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Minkowski sum

- NS

Knife (516 tris) Scissors (6306 tris)

N

Knife @ Scissors

Accurate Minkowski Sum Approximation of
Polyhedral Models

Gokul Varadhan, Dinesh Manocha,

Pacific Graphics, 2004

https://en.wikipedia.org/wiki/Minkowski_addition


https://en.wikipedia.org/wiki/Minkowski_addition
http://gamma.cs.unc.edu/RECONS/minkowski.pdf
http://gamma.cs.unc.edu/RECONS/minkowski.pdf
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Minkowski sum constraint sets
YV =Cq1 +Cq :{m:u—l—v\uéCl,vECg}

Minkowski set not suitable by itself:
® need bound constraints and more onm
e would like more than one constraint on vwand v




Zz [m]

Minkowski decomposition

true model (m)

sum of components

0
1000
2000
3000 L4 i -
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
X [m] X [m]
monotonic vertical slope component TV component
0 0 | | |
1000
2000
3000 -
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
x [m] X [m]



16

Definition 1: Generalized Minkowski set

p q r
M={m=utv|ue(\Dyve ()& me () Fu)
1=1 k=1

j=1

e m is an element of the intersection of two sets, one is the Minkowski set
(sum of to intersections), the other is another intersection.

® can extend to more than two components




Definition 1: Generalized Minkowski set

p q T
Mz{m:u+v|uEﬂDi,vE ﬂSj,me ﬂfk}
i=1 k=1

j=1

Proposition 1. The generalized Minkowski set is convex if D;, &£;, and F;. are
convex sets for all 1, ] and k.

Proof. It follows from the definition (almost)
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Proposal: Generalized Minkowski set

M = {m—u—l—v|uEﬂD@,vE ﬂSJ,mE ﬂfk

1=1

Projection:

q r
argmm—Hw mHQ—I—Z LD, ( Zu)—I—E: LE, (ij)—l—z LF, (Crw) 4 toy—y o (W, U, V)
U, i=1 i=1 k=1
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Proposal: Generalized Minkowski set

M = {m—u+v|u€ﬂDz,vE ﬂEJ,mE ﬂfk

1=1

Projection:

q r
argmm—Hw m||2—|—z LD, ( Zu)—l—z LE, (iju)—l—z LF, (Crw) 4 Loy—y o (W, U, V)
U, i=1 i=1 k=1

discrete derivatives matrices, DFT, Wavelet T, .....



_ Newdlgorithm (1)
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Goals:
Construct an algorithm to project onto an intersection

¢ allow non-orthogonal linear operators in set definitions
o exploit similarity between sets
e use coarse and fine-grained parallel resources
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Goals:
Construct an algorithm to project onto an intersection

¢ allow non-orthogonal linear operators in set definitions
o exploit similarity between sets
e use coarse and fine-grained parallel resources

[Afonso et. al., 2011], [Combettes & Pesquet, 2011 ; Kitic et. al. 2016]

Merge ideas from SALSA/SDMM and ARADMM
e recast as known algorithm for known problem —» convergence guarantees

e automatic (acceleration) parameter selection [Xuet.al.,2016a; Xu et. al. ,2017]




_ Newdlgorithm (2)
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p

Reformulate projection onto L |

an intersection: . |z —mlz + 21 e (Aiz)
1=
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New algorithm (2)

Reformulate projection onto
an intersection:

Split indicators and linear
operators:

1 p
min o o —ml3 + D e, (i)

1
min 5l — ] +Zm ;)
L1Yq

S.t.

Aix =y
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New algorithm (2)

Reformulate projection onto
an intersection:

Split indicators and linear
operators:

put smooth and non-smooth
terms on same footing

1 p
min o o —ml3 + D e, (i)

1
min 5l — ] +Zm ;)
L1Yq

1

iz = mll3 = Fupsr)

F@) = f(yps1) + Z te, (Vi)

1=1

S.t.

Aix =y



_ New algorithm (3)
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Define matrix and vectors:

Final problem formulation:

Ay
A= :
Ap 1 — IN
min f(§) s.t. A
z,7




_ New algorithm (3)
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Define matrix and vectors:

Final problem formulation:

Augmented Lagrangian:

A =




_ Newdlgorithm (4)
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Iterations for our problem: (equivalent to SDMM + over/under relaxation)

b p+1
1
pF =N C(pF AT A) b I T
=1 i=1
z T = A+ (1= ) ys
k-1 k1 Ol
y; = Pproxy, (T, ,02’)

k+1 Kk ko k+1l k41
v, = iy —x).

Al (pFyF 4+ oF)




_ New dlgorithm (5)

PARSDMM:
projection adaptive-relaxed simultaneous direction method of multipliers
lterations for our problem: (equivalent to SDMM + over/under relaxation)

Y p+1 _
gl = Z(p,’fAZTAZ) + pl;HIN}_l Z A (pFy; + vF)| —> warm-start CG
=1 =1 )
B = AT (1= )y
k41 k+1 vy
y; = Pproxy, (T, ,02’)

k+1 Kk ko k+1l k41
v, = iy —x).



New algorithm
PARSDMM:
projection adaptive-relaxed simultaneous direction method of multipliers

lterations for our problem: (equivalent to SDMM + over/under relaxation)
(il

Tl Z( kATA ) + Pp+1@ Z Az'T (Pf]ff‘/f T vf)
1=1 _
k+1 __ k k—|—1 \
r, =y Ay (1 =y, )3/7, system-mat always pos-def,

[

k
k+1 k+1  Y;
Yi prOXfiapf (CE’L k;)

Pi
k+1 Kk k1 _ k1
vy T =+ i (y; ;)



New algorithm
PARSDMM:
projection adaptive-relaxed simultaneous direction method of multipliers

lterations for our problem: (equivalent to SDMM + over/under relaxation)

b p+1 _
k41 kAT T/ k k k
" = Z(pz A; Ai) + A; (piy; + i)
=1 - _
azf e vaiaf,]fH + (1 — yf)yf we can decide on how many CG
iy iterations we need for the sub-problem
k+1 k11 (o
(

k+1 _ k k¢ k+1  —k+1
v =g Ay =T )

1
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New algorithm
PARSDMM:
projection adaptive-relaxed simultaneous direction method of multipliers

lterations for our problem: (equivalent to SDMM + over/under relaxation)

P p+1 )
—1
LRl Z(pfAjAz) +P];+1[N} Z A, (pfyi +vf)
=1 i=1 )
B =t A+ (1= ))y;
k+1 k+1 vy
Y = ProXy. ok (z;" pZ) in parallel for every index i
vp T =of + pp(yf T — 2,
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New algorithm
PARSDMM:
projection adaptive-relaxed simultaneous direction method of multipliers

lterations for our problem: (equivalent to SDMM + over/under relaxation)

D p+1 )
—1
LRt Z(ﬂfAzTAz) +ppiidn Z A (piys + o)
i=1 i=1 )
:Ef = vaix,]fH + (1 — *yf)yf —> over/under relaxation
k41 b1 U
y; = Pproxy, (T, ,02’)

k+1 Kk ko k+1l k41
v, = iy —x).
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New algorithm
PARSDMM:
projection adaptive-relaxed simultaneous direction method of multipliers

lterations for our problem: (equivalent to SDMM + over/under relaxation)

Y p+1 _
1
LRt Z(pfAjAz) + P 1IN Z A (pfys +v7)
=1 =1 )
T = AT AT 4 (1 = yF)yr simple projection onto set:
. norm-ball/bounds/cardinality/rank

k+1 _ k+1 Yy / (all closed-form solutions)
Yi = PIOXyg, ok (Z; k;) \
Pi I=p: prox for distance-squared
vt = oF 4 pF(yi Tt — 2. (closed form)
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lterations are just iterations...

For a fast algorithms we also need:

stopping conditions

adaptive parameter selection

hybrid coarse-fine parallel implementation
multilevel acceleration

use multithreaded compressed diagonal MVPs for banded matrices

e couple more things...
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Projections onto the generalized Minkowski set

M = {m—u—l—fu|u€ﬂDL,v€ ﬂé’],me ﬂfk

71=1

Projection:

q r
argmm—Hw m||2—|—z LD, ( Zu)—l—z LE, (iju)—l—z LF, (Crw) 4 toy—y o (W, U, V)
U, i=1 i=1 k=1

e follow same recipe as for intersections
e matrices -> block-structured linear systems
e same algorithm in the end, different inputs
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number of sequential /; projections

relative set feasibility error
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Bounds & lateral smoothness & vertical

monotonicity consiraints
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Example: video segmentation

Decompose video T € R™**™v*™t into background and anomaly

Proposed constrained formulation:
2 4

1
min - [l — vee(T)|3 st. @ € Fi () () Di+ () &)

i=1 i=1

e constraints on tensor
e simultaneously apply constraints to time-frames
e simultaneously apply constraints to other tensor slices
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Example: video segmentation
2 4
o1
m;n?\x—vec(T)H% s.t. xéflﬂ(ﬂD,;—l—mgj) CIZ‘Z(

i=1 i=1

Constraints on background (D) :

e every time slice is an element of the subspace spanned by the last 20 frames
(there are no people in those)

e bounds per fiber along time-axis

Constraints on sum (F) :
e bounds (grayscale)

Constraints on anomaly ( £) :
e bounds on sum minus bounds on background
¢ cardinality on each time-frame and on horizontal, vertical derivative
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(a) X,L, and S matrices found by (from top to bottom) (b) X,L., and S matrices found by (from top to bottom)
Split-SPCP, LagQN, and GoDec. FPCP, IALM, and LMakF'it.

[Comparison of RPCA algorithms by Driggs et al., 2017]
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Conclusions

Intersections of sets are particularly suitable in case of many constraint sets.

Generalized Minkowski sets allow for more convenient use of prior info.

Dedicated algorithm suitable for 2D and larger 3D videos and models.

A larger number of constraint sets does not increase computational cost
much.
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Code: SetintersectionProjection.||
O
Software available for julié

Algorithms and software for projections onto intersections of convex and
non-convex sets with applications to inverse problems

[B. Peters & F.J. Herrmann (2019) , arXiv preprint arXiv:1902.09699]

https://github.com/slimgroup/SetintersectionProjection.jl

Generalized Minkowski sets for the regularization of inverse problems
[B. Peters & F.J. Herrmann (2019), arXiv preprint arXiv:1903.03942]

https://petersbas.github.io/GeneralizedMinkowskiSetDocs/



https://github.com/slimgroup/SetIntersectionProjection.jl/

