Generalized Minkowski sets for the regularization of inverse problems

Bas Peters (UBC) & Felix J. Herrmann (Georgia Tech)

SIAM Conference on Mathematical & Computational Issues in the Geosciences- March 2019 Practical Aspects of Large-scale Sparsity-promoting Seismic Inversion

Prior information for geophysical models

- smoothness
- blockiness
- approximately layered media
- number of velocity jumps up or down

• maximum & minimum values, well-log information, reference models

Geophysical applications:

- single \mathcal{V} (bounds) [Zeev et al. (2006) and Bello and Raydan (2007)]
- Trinh et al. (2018), Peters and Herrmann (2019)]

$\min_{m} f(m) \quad \text{s.t.} \quad m \in \bigcap_{i=1}^{p} \mathcal{V}_{i}$

• two sets [Lelièvre and Oldenburg (2009), Baumstein (2013), Smithyman et al. (2015), Esser et al. (2015ab, 2016ab), Peters and Herrmann (2017), Yong et al. (2018),

 $\min_{m} f(m) \quad \text{s.}$

Projection based algorithms: SPG, PQN, projected Newton-type guarantee that m satisfies all constraints, every iteration. [Birgin et. al. (1999); Schmidt et. al. (2009); Schmidt et. al. (2012)]

t.
$$m \in \bigcap_{i=1}^{p} \mathcal{V}_i$$

 $\min_{m} f(m)$ s. m

Projection based algorithms: SPG, PQN, projected Newton-type guarantee that msatisfies *all* constraints, *every* iteration. [Birgin et. al. (1999); Schmidt et. al. (2009); Schmidt et. al. (2012)]

$$m^{k+1} = (1 - \gamma)m^k - \gamma \mathcal{P}_{\mathcal{V}}(m^k - \beta \nabla_m f(m^k))$$

 β : Barzilai-Borwein scaling γ : non-monotone line search step length

t.
$$m \in \bigcap_{i=1}^{p} \mathcal{V}_i$$

Each constraint set defined independently of all others.

$\min_{m} f(m) \quad \text{s.t.} \quad m \in \bigcap_{i=1}^{p} \mathcal{V}_i$

- Prior knowledge as constraint sets especially practical if we have many sets.

Complex models

Models with smooth, blocky and diagonal features do not fit any of the standard constraints (rank, total-variation, smoothness promoting).

Question:

How to construct (convex) sets suitable to regularize this type of models?

Inspiration

[Osher et al. (2003); Starck et al. (2005); Schaeffer and Osher (2013); Ono et al. (2014)]

often stated as: $\min_{u,v} ||m - u - u||$

approximately decompose m into 1. *u* : cartoon/background/piecewise-smooth or constant component 2. v : texture/details/pattern/oscillatory component

closely related to to robust PCA and variants [Candes et al. (2011); Gao et al., 2011a; Gao et al., 2011b]

cartoon-texture decomposition / morphological component analysis

$$v\| + \frac{\alpha}{2} \|Au\| + \frac{\beta}{2} \|Bv\|.$$

original image

texture part

Minkowski sum constraint sets

Idea:

- merge strengths of additive models and intersections of constraint sets • represent a complex model as a sum of simple ones • use different constraint on each part of the sum

- avoid penalties
- no explicit spatial segmentation, components may overlap

Minkowski sum constraint sets

Idea:

- merge strengths of additive models and intersections of constraint sets • represent a complex model as a sum of simple ones • use different constraint on each part of the sum

- avoid penalties
- no explicit spatial segmentation, components may overlap

$$\mathcal{V} \equiv \mathcal{C}_1 + \mathcal{C}_1 = \{ m = u + v \mid u \in \mathcal{C}_1, v \in \mathcal{C}_2 \}$$

convex if both sets are convex

The resulting model is an element of the Minkowski set (vector sum):

Minkowski sum

Knife(516 tris)Scissors(636 tris)

Knife \oplus Scissors

Accurate Minkowski Sum Approximation of Polyhedral Models Gokul Varadhan, Dinesh Manocha, Pacific Graphics, 2004

https://en.wikipedia.org/wiki/Minkowski_addition

Minkowski sum constraint sets

$$\mathcal{V} \equiv \mathcal{C}_1 + \mathcal{C}_1 = \{m = \{m \in \mathcal{C}_1 \} \}$$

- Minkowski set not suitable by itself:
 - \bullet need bound constraints and more on m
 - \bullet would like more than one constraint on $u \, {\rm and} \, v$

$= u + v \mid u \in \mathcal{C}_1, v \in \mathcal{C}_2 \}$

Definition 1: Generalized Minkowski set

$$\mathcal{M} \equiv \{ m = u + v \mid u \in \bigcap_{i=1}^{p} \mathcal{D}_{i}, v \in \bigcap_{j=1}^{q} \mathcal{E}_{j}, m \in \bigcap_{k=1}^{r} \mathcal{F}_{k} \}$$

- *m* is an element of the intersection of two sets, one is the Minkowski set (sum of to intersections), the other is another intersection.
- can extend to more than two components

Definition 1: Generalized Minkowski set

$$\mathcal{M} \equiv \{m = u + v \mid u \in \int_{i=1}^{n}$$

Proposition 1. The generalized Minkowski set is convex if \mathcal{D}_i , \mathcal{E}_j , and \mathcal{F}_k are convex sets for all i, j and k.

Proof. It follows from the definition (almost)

 $\bigcap_{k=1}^{p} \mathcal{D}_{i}, v \in \bigcap_{j=1}^{q} \mathcal{E}_{j}, m \in \bigcap_{k=1}^{r} \mathcal{F}_{k} \}$

Proposal: Generalized Minkowski set

Projection:

$$\underset{u,v,w}{\operatorname{arg\,min}} \frac{1}{2} \|w - m\|_{2}^{2} + \sum_{i=1}^{p} \iota_{\mathcal{D}_{i}}(A_{i}u) +$$

 $\bigcap_{k=1}^{p} \mathcal{D}_{i}, v \in \bigcap_{j=1}^{q} \mathcal{E}_{j}, m \in \bigcap_{k=1}^{r} \mathcal{F}_{k} \}$

Proposal: Generalized Minkowski set

$$\mathcal{M} \equiv \{ m = u + v \mid u \in \int_{i=1}^{n} u \in v \in u \in v \}$$

Projection:

$$\underset{u,v,w}{\operatorname{arg\,min}} \frac{1}{2} \|w - m\|_{2}^{2} + \sum_{i=1}^{p} \iota_{\mathcal{D}_{i}}(A_{i}u) +$$

 $\bigcap_{k=1}^{p} \mathcal{D}_{i}, v \in \bigcap_{j=1}^{q} \mathcal{E}_{j}, m \in \bigcap_{k=1}^{r} \mathcal{F}_{k} \}$

New algorithm (1)

Goals:

Construct an algorithm to project onto an intersection

- allow non-orthogonal linear operators in set definitions • exploit similarity between sets
- use coarse and fine-grained parallel resources

New algorithm (1)

Goals:

Construct an algorithm to project onto an intersection

- allow non-orthogonal linear operators in set definitions • exploit similarity between sets • use coarse and fine-grained parallel resources

- [Afonso et. al., 2011], [Combettes & Pesquet, 2011 ; Kitic et. al. 2016] • automatic (acceleration) parameter selection [Xu et. al., 2016a; Xu et. al., 2017]
- Merge ideas from SALSA/SDMM and ARADMM recast as known algorithm for known problem

 —> convergence guarantees

New algorithm (2)

Reformulate projection onto an intersection:

 $\min_{x} \frac{1}{2} \|x - m\|_{2}^{2} + \sum_{i=1}^{p} \iota_{\mathcal{C}_{i}}(A_{i}x)$

New algorithm (2) Reformulate projection onto an intersection:

Split indicators and linear operators:

 $\min_{x,\{y_i\}} \frac{1}{2} \|x - m\|_2^2 + \sum_{i=1}^p \iota_{\mathcal{C}_i}(y_i) \quad \text{s.t.} \quad A_i x = y_i$

 \mathcal{D} $\tilde{f}(\tilde{y}) = f(y_{p+1}) + \sum \iota_{\mathcal{C}_i}(y_i)$ i=1

$$\|x - m\|_{2}^{2} + \sum_{i=1}^{p} \iota_{\mathcal{C}_{i}}(y_{i}) \quad \text{s.t.} \quad A_{i}x = y_{i}$$

Final problem formulation:

$$\begin{array}{c} A_1 \\ \vdots \\ 1 = I_N \end{array} \right), \quad \tilde{y} = \begin{pmatrix} y_1 \\ \vdots \\ y_{p+1} \end{pmatrix}, \quad \tilde{v} = \begin{pmatrix} v_1 \\ \vdots \\ v_{p+1} \end{pmatrix}$$

s.t.
$$\tilde{A}x = \tilde{y}$$

Final problem formulation:

Augmented Lagrangian:

$$\begin{array}{c} A_1 \\ \vdots \\ 1 = I_N \end{array} \right), \quad \tilde{y} = \begin{pmatrix} y_1 \\ \vdots \\ y_{p+1} \end{pmatrix}, \quad \tilde{v} = \begin{pmatrix} v_1 \\ \vdots \\ v_{p+1} \end{pmatrix}$$

s.t.
$$\tilde{A}x = \tilde{y}$$

$$+ v_i^{\top}(y_i - A_i x) + \frac{\rho_i}{2} \|y_i - A_i x\|_2^2$$

New algorithm (4)

Iterations for our problem: (equivalent to SDMM + over/under relaxation)

$$\begin{aligned} x^{k+1} &= \left[\sum_{i=1}^{p} (\rho_i^k A_i^\top A_i) + \rho_{p+1}^k I_N\right]^{-1} \sum_{i=1}^{p+1} \left[A_i^\top (\rho_i^k y_i^k + v_i^k)\right] \\ \bar{x}_i^{k+1} &= \gamma_i^k A_i x_i^{k+1} + (1 - \gamma_i^k) y_i^k \\ y_i^{k+1} &= \operatorname{prox}_{f_i, \rho_i^k} (\bar{x}_i^{k+1} - \frac{v_i^k}{\rho_i^k}) \\ v_i^{k+1} &= v_i^k + \rho_i^k (y_i^{k+1} - \bar{x}_i^{k+1}). \end{aligned}$$

$$x^{k+1} = \left[\sum_{i=1}^{p} (\rho_i^k A_i^\top A_i) + \rho_{p+1}^k \\ \bar{x}_i^{k+1} = \gamma_i^k A_i x_i^{k+1} + (1 - \gamma_i^k) y \\ y_i^{k+1} = \operatorname{prox}_{f_i, \rho_i^k} (\bar{x}_i^{k+1} - \frac{v_i^k}{\rho_i^k}) \right]$$

$$v_i^{k+1} = v_i^k + \rho_i^k (y_i^{k+1} - \bar{x}_i^{k+1}).$$

projection adaptive-relaxed simultaneous direction method of multipliers Iterations for our problem: (equivalent to SDMM + over/under relaxation) ${}_{1}I_{N}]^{-1}\sum_{i=1}^{p+1}\left[A_{i}^{\top}(\rho_{i}^{k}y_{i}^{k}+v_{i}^{k})\right] \longrightarrow \text{warm-start CG}$ i=1

 k_{i}

$$x^{k+1} = \left[\sum_{i=1}^{p} (\rho_i^k A_i^\top A_i) + \rho_{p+1}^k \right]$$

$$\bar{x}_i^{k+1} = \gamma_i^k A_i x_i^{k+1} + (1 - \gamma_i^k) y$$

$$y_i^{k+1} = \operatorname{prox}_{f_i, \rho_i^k} (\bar{x}_i^{k+1} - \frac{v_i^k}{\rho_i^k})$$

$$v_i^{k+1} = v_i^k + \rho_i^k (y_i^{k+1} - \bar{x}_i^{k+1}).$$

projection adaptive-relaxed simultaneous direction method of multipliers Iterations for our problem: (equivalent to SDMM + over/under relaxation) $\prod_{1 \in \mathbb{N}} 1^{-1} \sum_{i=1}^{p+1} \left[A_i^\top (\rho_i^k y_i^k + v_i^k) \right]$ i=1 $'_{i}^{k}$ system-mat always pos-def,

$$\begin{aligned} x^{k+1} &= \left[\sum_{i=1}^{p} (\rho_i^k A_i^\top A_i) + \rho_{p+1}^k \right] \\ \bar{x}_i^{k+1} &= \gamma_i^k A_i x_i^{k+1} + (1 - \gamma_i^k) y \\ y_i^{k+1} &= \operatorname{prox}_{f_i, \rho_i^k} (\bar{x}_i^{k+1} - \frac{v_i^k}{\rho_i^k}) \\ v_i^{k+1} &= v_i^k + \rho_i^k (y_i^{k+1} - \bar{x}_i^{k+1}). \end{aligned}$$

projection adaptive-relaxed simultaneous direction method of multipliers Iterations for our problem: (equivalent to SDMM + over/under relaxation) $[I_N]^{-1} \sum_{i=1}^{p+1} \left[A_i^{\top} (\rho_i^k y_i^k + v_i^k) \right]$ i=1 r_i^k we can decide on how many CG iterations we need for the sub-problem

$$x^{k+1} = \left[\sum_{i=1}^{p} (\rho_i^k A_i^\top A_i) + \rho_{p+1}^k\right]$$

$$\bar{x}_{i}^{k+1} = \gamma_{i}^{k} A_{i} x_{i}^{k+1} + (1 - \gamma_{i}^{k}) y$$
$$y_{i}^{k+1} = \operatorname{prox}_{f_{i},\rho_{i}^{k}} (\bar{x}_{i}^{k+1} - \frac{v_{i}^{k}}{\rho_{i}^{k}})$$
$$v_{i}^{k+1} = v_{i}^{k} + \rho_{i}^{k} (y_{i}^{k+1} - \bar{x}_{i}^{k+1}).$$

projection adaptive-relaxed simultaneous direction method of multipliers Iterations for our problem: (equivalent to SDMM + over/under relaxation) ${}_{1}I_{N}]^{-1}\sum_{i=1}^{p+1}\left[A_{i}^{\top}(\rho_{i}^{k}y_{i}^{k}+v_{i}^{k})\right]$ i=1

k

in parallel for every index i

$$x^{k+1} = \left[\sum_{i=1}^{p} (\rho_i^k A_i^\top A_i) + \rho_{p+1}^k \\ \bar{x}_i^{k+1} = \gamma_i^k A_i x_i^{k+1} + (1 - \gamma_i^k) y \\ y_i^{k+1} = \operatorname{prox}_{f_i, \rho_i^k} (\bar{x}_i^{k+1} - \frac{v_i^k}{\rho_i^k}) \\ k+1 = k + k \in k+1 - k+1$$

projection adaptive-relaxed simultaneous direction method of multipliers Iterations for our problem: (equivalent to SDMM + over/under relaxation) ${}_{1}I_{N}]^{-1}\sum_{i=1}^{p+1}\left[A_{i}^{\top}(\rho_{i}^{k}y_{i}^{k}+v_{i}^{k})\right]$ i=1

over/under relaxation

$$v_i^{k+1} = v_i^k + \rho_i^k (y_i^{k+1} - \bar{x}_i^{k+1}).$$

projection adaptive-relaxed simultaneous direction method of multipliers Iterations for our problem: (equivalent to SDMM + over/under relaxation)

to set: ardinality/rank tions)

e-squared (closed form)

Iterations are just iterations...

For a fast algorithms we also need:

- stopping conditions
- adaptive parameter selection
- hybrid coarse-fine parallel implementation
- multilevel acceleration
- couple more things...

• use multithreaded compressed diagonal MVPs for banded matrices

Projections onto the gen
$$\mathcal{M} \equiv \{m = u + v \mid u \in \int_{i=1}^{n} u \in V\}$$

$$\underset{u,v,w}{\operatorname{arg\,min}} \frac{1}{2} \|w - m\|_{2}^{2} + \sum_{i=1}^{p} \iota_{\mathcal{D}_{i}}(A_{i}u) +$$

- follow same recipe as for intersections
- matrices -> block-structured linear systems
- same algorithm in the end, different inputs

$\bigcap_{i=1}^{p} \mathcal{D}_{i}, v \in \bigcap_{j=1}^{q} \mathcal{E}_{j}, m \in \bigcap_{k=1}^{r} \mathcal{F}_{k} \}$

Parallel Dykstra-ADMM vs PARSDMM

relative set feasibility error

Bounds & lateral smoothness & vertical monotonicity constraints

time 3D vs grid size, JuliaThreads=4, BLAS threads=2

Example: video segmentation Proposed constrained formulation:

$$\min_{x} \frac{1}{2} \|x - \operatorname{vec}(T)\|_{2}^{2} \text{ s.t. } x \in \mathcal{F}_{1} \bigcap \left(\bigcap_{i=1}^{2} \mathcal{D}_{i} + \bigcap_{j=1}^{4} \mathcal{E}_{j}\right) \qquad x = \left(\sum_{i=1}^{2} \mathcal{D}_{i} + \sum_{j=1}^{4} \mathcal{E}_{j}\right)$$

- constraints on tensor
- simultaneously apply constraints to time-frames • simultaneously apply constraints to other tensor slices

Decompose video $T \in \mathbb{R}^{n_x \times n_y \times n_t}$ into background and anomaly

Example: video segments
$$\min_{x} \frac{1}{2} \|x - \operatorname{vec}(T)\|_{2}^{2}$$
 s.t.

Constraints on background (\mathcal{D}) :

- (there are no people in those)
- every time slice is an element of the subspace spanned by the last 20 frames • bounds per fiber along time-axis
- Constraints on sum (\mathcal{F}) :
 - bounds (grayscale)

Constraints on anomaly (\mathcal{E}) :

- bounds on sum minus bounds on background • cardinality on each time-frame and on horizontal, vertical derivative

ntation $x \in \mathcal{F}_1 \bigcap \big(\bigcap_{i=1}^2 \mathcal{D}_i + \bigcap_{j=1}^4 \mathcal{E}_j \big)$ $x = \begin{pmatrix} u \\ v \end{pmatrix}$

background, 25

05 7 02 17 32 15

100

-50

- 150

100

50

0

-50

-50

50

0

background, 75

background, 100

Split-SPCP, LagQN, and GoDec.

[Comparison of RPCA algorithms by Driggs et al., 2017]

(a) X,L, and S matrices found by (from top to bottom) (b) X,L, and S matrices found by (from top to bottom) FPCP, IALM, and LMaFit.

Conclusions

Generalized Minkowski sets allow for more convenient use of prior info.

Dedicated algorithm suitable for 2D and larger 3D videos and models.

A larger number of constraint sets does not increase computational cost much.

Algorithms and software for projections onto intersections of convex and non-convex sets with applications to inverse problems

[B. Peters & F.J. Herrmann (2019), arXiv preprint arXiv:1902.09699]

https://github.com/slimgroup/SetIntersectionProjection.jl/

Generalized Minkowski sets for the regularization of inverse problems [B. Peters & F.J. Herrmann (2019), arXiv preprint arXiv:1903.03942]

https://petersbas.github.io/GeneralizedMinkowskiSetDocs/

