

Amy Cerato, P.E., Ph.D.

Seismic Behavior of Helical Piles in Dense Sands

What are Helical Piles?

Individual Plate Bearing Method

Qult = KT

K = Correlation Factor T = Avg. Torque of Last 3 Feet

Installation Torque Correlation

Slenderness

Resistance to Tip Uplift

Global Cities & Earthquakes

High Damping Ratios

Ductility

We know they shake well!

From Hamada and O'Rourke 1992

Bore Hole Data No.1

1964 Niigata Earthquake

Slenderness

Resistance to Tip Uplift

Global Cities & Earthquakes

High Damping Ratios

Ductility

We know they shake well!

1810.3.3.1.9 Helical piles. The allowable axial design load, P_{a} , of helical piles shall be determined as follows:

 $P_{a} = 0.5 P_{a}$

(Equation 18-4)

where P_{u} is the least value of:

- Sum of the areas of the helical bearing plates times the ultimate bearing capacity of the soil or rock comprising the bearing stratum.
- 2. Ultimate capacity determined from well-documented correlations with installation torque.
- 3. Ultimate capacity determined from load tests.
- 4. Ultimate axial capacity of pile shaft.
- 5. Ultimate axial capacity of pile shaft couplings.
- Sum of the ultimate axial capacity of helical bearing plates affixed to pile.

This criteria are limited to helical pile systems and devices used under the following conditions:

1.2.1 Support of structures in IBC Seismic Design Categories A, B, or C, or UBC Seismic Zones 0, 1 or 2, only.

Helical Pile Design Evolution

- Single Pile Behavior
 - Repeatability multiple piles in the box that had same shaft shape, cross sectional area, helix configuration and coupling
 - Effect of helix double helix compared with single helix
 - Effect of pile type helical pile versus driven pile
 - Effect of shaft geometry square versus pipe
 - Effect of coupling threaded versus bolted
- Group Pile Behavior FIRST time ever tested
 - Effect of pile head connection; fixed versus pinned

Parameters to Study

Pile Instrumentation (152 strain gages)

Sand Bed (27 Accelerometers)

Instrumentation

Laminar Soil Box String Potentiometers (Direct Displacement Measurement) (15 + Skid)

Laminar Soil Box Accelerometers (23)

Instrumentation

Measurements and Calculations

0.3 6000 4000 0.2 2000 0.1 Acceleration (g) Load (Ibs) 0 0.0 -2000 -0.1 -4000 -0.2 -6000 -0.3 -8000 0 20 100 120 0 20 BO Time (sec)

Accelerometer Time History

Load Time History = Acceleration Time History * Structure (or Supported) Mass

Displacement Time History = **Double Integration of Accelerometer**

Measurements and Calculations

Quake	Intensity relative to	Absolute peak acceleration		
	unscaled (%)	(g)		
NR	100	0.50		
NF	75	0.37		
NR	50	0.25		
TAK	100	0.67		
TAK	75	0.50		
TAK	50	0.33		

Earthquake Records and Frequency Content

Repeatability

Effect of Natural Frequency

Effect of Natural Frequency

Effect of an Additional Helix

Effect of Coupling

Effect of Grouping Helical Piles

SK2

Day 5 -

PINNED

3,500

4,000

5,500

10,825

P10

		Takato	Takatori 100%		
		Day 4 (Fixed)	Day 5 (Pinned)		
		SKI	SKID 1		
Axial Load (lbs)		14,000	14,000		
Acceleration (g)		1.34	1.18		
Lateral Load (lbs)		19,000	16,000		
Displacement (in)		6.8	6.6		
		SKI	SKID 2		
Axial Load (lbs)		22,000	22,000		
Acceleration (g)		2.11	1.94		
Lateral Load (lbs)		47,000	43,300		
Displacement (in)		7.5	7		

SK1

SK2

Effect of Group – Damping

Effect of Group – Damping

Effect of Group – Damping

6000

Day	System and Condition	ndition Damping Ratio		System Stiffness
1	Soil Only	6.9%		
2	Soil With Single Piles No Weights	8.1%		
3	Soil With Single Piles Weighted	8.1%		
4	Soil With Group Piles Weighted : Fixed	3.5"	9.3%	38.4 kip/in
		5.5"	9.4%	49.6 kip/in
5	Soil With Group Piles Weighted : Pinned	3.5"	10.6%	32.6 kip/in
		5.5"	10.9%	49.1 kip/in

Effect of Group – Improve Damping

Validation of Skid Performance

- <u>**Repeatability**</u> Piles showed good repeatability within the testing matrix further validating results.
- <u>Effect of helix</u> The results from this testing program are inconclusive.
- <u>Effect of pile type</u> A direct comparison could not be made due to the different masses used, and therefore, different calculated natural frequencies.

Conclusions – Single Pile Behavior

- <u>Effect of shaft geometry</u> There was no clear advantage based on shaft geometry.
- <u>Effect of coupling</u> The type of coupling (threaded versus bolted) does not seem to affect seismic behavior when the couple is at least 13.5d below the ground surface.

Conclusions – Single Pile Behavior

- Piles placed in a group take load much more effectively, and deflect much less, than simply the load/number of piles.
- Seismic group pile head displacement can be approximated by using a static equivalent pile size in LPILE.
- Pile head connection has a significant impact on system behavior.
- Pinned connections showed higher damping ratios, lower stiffness, lower generated accelerations, lower lateral loads and lower displacements than "fixed" connections.

Conclusions – Group Behavior

Instrumentation and monitoring of production piles in seismic zones

Recommendations for Future Research

- How does the helical pile-structure connection effect seismic behavior?
 - Typical concrete pile cap connection with piles versus "steel-to-steel" versus retrofits?
 - How do we effectively transfer the damping advantages of helical piles to the structure?
 - Rocking: How does the helix effect tip uplift resistance (single versus multi-helix)

Recommendations for Future Research

The UNIVERSITY of OKLAHOMA Gallogly College of Engineering School of Civil Engineering and Environmental Science

Data Repository

Enrichment Week at Terra Verde Discovery School March 21 & 23, 2016 Mad Science I: Kindergarten - Second Grade

Educational Outreach

Questions?

Dr. Amy Cerato, P.E., Ph.D acerato@ou.edu http://cerato.ou.edu/