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Physical Motivation 1

› Well-known that surfaces exhibit different behavior than
interior (bulk)

Interaction
Radius
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Physical Motivation 2

Example of Surface Influence

› Iron, platinum, and gold exhibit HCP lattice structure in the
{100} surfaces as opposed to square lattice of interior due to
tensile stress at surface

Length-Scale Dependence

› At the nanoscale, surface stresses can drive structural changes
beyond the surface into interior
› Size-dependent material properties and phase transformations

Goal

› Solve a molecular statics problem to find ground states and
predict surface-driven effects in nanostructures
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Challenges with Common Approaches

Atomistic Continuum Atomistic to Continuum

› Purely atomistic approach is computationally expensive

› Bulk continuum models do not account for surface effects and
are length-scale independent

› Atomistic-to-Continuum coupling methods may lose their
efficiency with certain surface geometries
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New Approach
Goal
› Solve a molecular statics problem to find ground states and
predict surface-driven effects in nanostructures
› Balance needs of accuracy and computational efficiency

Key Points
› Continuum methods already capture bulk behaviors efficiently
and well
› Surface effects are extremely localized

Continuum Correction

Correct over 
Boundary Layer
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Atomistic Model
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Atom Index

› Atoms interact via nearest-neighbor, many-body forces
› 0-th atom held fixed

Site Energy Formulation in Terms of Strain

Ea(u) := V surf(u00) +
1X
‘=1

V (u0‘`1; u
0
‘);

› Strain represents change in reference bond length
› u is displacement, u0 is displacement gradient (strain)
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Site Energy Properties

Assumptions

(i) V 2 Ck (R2) and V surf 2 Ck (R) with k – 3;

(ii) V ;V surf and all permissible partial derivatives are bounded;

(iii) V (0; 0) = 0;

(iv) @2V (0; 0) > 0;

(v) inffj(r ;s)j>"g V (r ; s) > 0 for any " > 0;

(vi) For any s 2 R, limr!1 V (r ; s) = V surf(s).

Energy Cost of Surface

inf
s2R
V surf(s) > 0
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Atomistic Problem
Space of Displacements

U := fu : Z–0 ! R j u(0) = 0 and u0 2 ‘2(Z–0)g

› Finite-energy configurations
› Equip U with H1-seminorm jujH1 = ku0k‘2(Z–0)

Applied Forces

› f : Z–0 ! R with f 2 U˜

› Permanently applied, static forces

Atomistic Problem

Given a force f 2 U˜, we seek a minimizer

ua 2 argminfEa(u)` hf ; uiZ–0 j u 2 Ug
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Existence and Decay

Theorem (Existence)
There exists a minimizer of Ea : U ! R [ f+1g.

› No explicit solution in general
› Not necessarily unique

Theorem (Exponential Decay)
Let uacr be a critical point of Ea. Then, there exists 0 » —a < 1
such that

j(uacr)0‘j . —‘a = elog(—a)‘ for all ‘ 2 Z–0:
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Example of Surface Effects
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Stability

› Assume that there exists an atomistic stability constant ca > 0
such that

h‹2Ea(uagr)v ; vi – cakv 0k2‘2(Z–0) for all v 2 U:

› An element ua 2 U is a strongly stable solution to the
atomistic problem iff it satisfies the Euler-Lagrange equation

h‹Ea(ua); vi = hf ; vi for all v 2 U

as well as the above stability condition.

Corollary
There exist ";C > 0 such that, for all f 2 U˜ with kf kU˜ < ", the
atomistic problem has a unique, strongly-stable solution with
k(ua ` uagr)0k‘2 » Ckf kU˜.
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Cauchy-Born (Continuum) Model

› Derived from a limiting process involving the underlying
lattice and potential

Energy

Ecb(u) :=

ˆ 1
0
W (ru(x)) dx for u 2 Ucb; where W (F ) = V (F ;F )

Space of Displacements

Ucb :=
n
u 2 H1

loc(0;1) j ru 2 L2(0;1) and u(0) = 0
o

Cauchy-Born Problem

ucb 2 argminfEcb(u)` hf ; uiR+ j u 2 Ucbg

12 Binder | CSE17



Error in Cauchy-Born Method

Proposition
The unique minimizer of Ecb in Ucb is ucb = 0. Its atomistic
residual is bounded by

sup
v2U;kv 0k‘2(Z–0)=1

jh‹Ea(0); vij = k‹Ea(0)kU˜ = j@FV surf(0)j:

In particular, k(uagr ` ucb)0k‘2 – M`1j@FV surf(0)j, where M is the
global Lipschitz constant of ‹Ea.
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Corrector Model
Given predictor ucb, let

EΓ(q;F0) = V surf(F0 + q00)`W (F0)` q00@FW (F0)

+
1X
j=1

“
V (F0 + q0j`1;F0 + q0j)`W (F0)` q0j@FW (F0)

”
;

where F0 := rucb(0).

Corrector Problem

For L 2 N [ f1g, corrector strain on [0;L] is found by solving

qL 2 argminfEΓ(q;F0) j q 2 QLg;

where

QL := fq 2 U j q0‘ = 0 for all ‘ – Lg: In particular, Q1 = U:
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Predictor-Corrector Solution

› For kf kU˜ sufficiently small and L sufficiently large, solutions
exist for the Cauchy-Born and corrector problems

Predictor-Corrector Solution

upcL := Πaucb + qL

Theorem
There exists an " > 0 such that, for all f 2 U˜ with kf kU˜ < ",
there exists an atomistic solution ua 2 U to the atomistic problem
satisfying‚‚‚(ua)0`(upcL )0

‚‚‚
‘2
. —Lq+jr2ucb(0)j+kr2ucbk2L4 +kr3ucbkL2 +krf kL2:
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Ground States
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Higher Dimensions

Computational Cells
› Tangential periodic boundary conditions
› Apply uniform strain from surface elements
› Additional approximations possible

Continuum Correction

Correct over
Computational Cells
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Conclusion

› Surface effects are extremely localized

› Cauchy-Born method can be post-processed to capture surface
effects

› Error analysis is sharp

Theorem
There exists an " > 0 such that, for all f 2 U˜ with kf kU˜ < ",
there exists an atomistic solution ua 2 U to the atomistic problem
satisfying‚‚‚(ua)0`(upcL )0

‚‚‚
‘2
. —Lq+jr2ucb(0)j+kr2ucbk2L4 +kr3ucbkL2 +krf kL2:
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Exponential Convergence Due to Surface Error
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Long Wavelength Limit

Error estimate in terms of force:‚‚‚(ua)0 ` (upcL )0
‚‚‚
‘2
. —Lq + jf (0)j + kf k2L4 + krf kL2

Let –`1 denote a length-scale over which we expect elastic strains
to vary. Consider

f (–)
‘ := –f̂ (–‘):

Then, ‚‚‚(ua)0 ` (upcL )0
‚‚‚
‘2
. —Lq + – + –3=2:

Define f̂ (x) = cos(3ıx=8)ffl[0;4)(x), where fflA(x) denotes the
characteristic function, and f‘ = –f̂ (–‘).
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Long Wavelength Error
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Residual Error in Presence of Forces
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