A New Predictor-Corrector Method for Efficient Modeling of Surface Effects

Andrew Binder¹, Mitchell Luskin¹, Christoph Ortner²

¹University of Minnesota Twin-Cities

²University of Warwick

SIAM Conference on Computational Science and Engineering (CSE17) February 28, 2017

Physical Motivation 1

• Well-known that surfaces exhibit different behavior than interior (bulk)

Physical Motivation 2

Example of Surface Influence

• Iron, platinum, and gold exhibit HCP lattice structure in the {100} surfaces as opposed to square lattice of interior due to tensile stress at surface

Length-Scale Dependence

- At the nanoscale, surface stresses can drive structural changes beyond the surface into interior
- Size-dependent material properties and phase transformations

Goal

• Solve a molecular statics problem to find ground states and predict surface-driven effects in nanostructures

Challenges with Common Approaches

- Purely atomistic approach is computationally expensive
- Bulk continuum models do not account for surface effects and are length-scale independent
- Atomistic-to-Continuum coupling methods may lose their efficiency with certain surface geometries

New Approach

Goal

- Solve a molecular statics problem to find ground states and predict surface-driven effects in nanostructures
- Balance needs of accuracy and computational efficiency

Key Points

- Continuum methods already capture bulk behaviors efficiently and well
- Surface effects are extremely localized

Atomistic Model

- Atoms interact via nearest-neighbor, many-body forces
- 0-th atom held fixed

Site Energy Formulation in Terms of Strain

$$\mathcal{E}^{\mathsf{a}}(u) := \mathcal{V}^{\mathsf{surf}}(u_0') + \sum_{\ell=1}^{\infty} \mathcal{V}(u_{\ell-1}', u_\ell'),$$

- Strain represents change in reference bond length
- *u* is displacement, *u'* is displacement gradient (strain)

Site Energy Properties

Assumptions

(i) $V \in C^k(\mathbb{R}^2)$ and $V^{\text{surf}} \in C^k(\mathbb{R})$ with $k \ge 3$;

(ii) V, V^{surf} and all permissible partial derivatives are bounded;
(iii) V(0, 0) = 0;
(iv) ∂²V(0, 0) > 0;
(v) inf_{{|(r,s)|>ε}} V(r, s) > 0 for any ε > 0;
(vi) For any s ∈ ℝ, lim_{r→∞} V(r, s) = V^{surf}(s).

Energy Cost of Surface

$$\inf_{s\in\mathbb{R}}V^{\rm surf}(s)>0$$

Atomistic Problem

Space of Displacements

$$\mathcal{U} := \{ u : \mathbb{Z}_{\geq 0} \to \mathbb{R} \mid u(0) = 0 \text{ and } u' \in \ell^2(\mathbb{Z}_{\geq 0}) \}$$

- Finite-energy configurations
- Equip \mathcal{U} with H^1 -seminorm $|u|_{H^1} = ||u'||_{\ell^2(\mathbb{Z}_{\geq 0})}$

Applied Forces

- $f: \mathbb{Z}_{\geq 0} \to \mathbb{R}$ with $f \in \mathcal{U}^*$
- Permanently applied, static forces

Atomistic Problem

Given a force $f \in \mathcal{U}^*$, we seek a minimizer

$$u^{a} \in \arg \min \{ \mathcal{E}^{a}(u) - \langle f, u \rangle_{\mathbb{Z}_{\geq 0}} \mid u \in \mathcal{U} \}$$

Existence and Decay

Theorem (Existence)

There exists a minimizer of $\mathcal{E}^{a} : \mathcal{U} \to \mathbb{R} \cup \{+\infty\}$.

- No explicit solution in general
- Not necessarily unique

Theorem (Exponential Decay)

Let u^a_{cr} be a critical point of ${\cal E}^a.$ Then, there exists $0\leq \mu_a<1$ such that

$$|(u_{cr}^{a})'_{\ell}| \lesssim \mu_{a}^{\ell} = e^{\log(\mu_{a})\ell} \quad \text{for all} \quad \ell \in \mathbb{Z}_{\geq 0}.$$

Example of Surface Effects

Stability

• Assume that there exists an atomistic stability constant $c_a > 0$ such that

$$\langle \delta^2 \mathcal{E}^{\mathrm{a}}(u_{\mathrm{gr}}^{\mathrm{a}}) v, v \rangle \geq c_{\mathrm{a}} \|v'\|_{\ell^2(\mathbb{Z}_{\geq 0})}^2$$
 for all $v \in \mathcal{U}$.

 An element u^a ∈ U is a strongly stable solution to the atomistic problem iff it satisfies the Euler-Lagrange equation

$$\langle \delta \mathcal{E}^{a}(u^{a}), v \rangle = \langle f, v \rangle$$
 for all $v \in \mathcal{U}$

as well as the above stability condition.

Corollary

There exist ε , C > 0 such that, for all $f \in \mathcal{U}^*$ with $||f||_{\mathcal{U}^*} < \varepsilon$, the atomistic problem has a unique, strongly-stable solution with $||(u^a - u^a_{gr})'||_{\ell^2} \leq C ||f||_{\mathcal{U}^*}$.

Cauchy-Born (Continuum) Model

• Derived from a limiting process involving the underlying lattice and potential

Energy

$$\mathcal{E}^{cb}(u) := \int_0^\infty W(\nabla u(x)) \, dx$$
 for $u \in \mathcal{U}^{cb}$, where $W(F) = V(F, F)$

Space of Displacements

$$\mathcal{U}^{\mathsf{cb}} := \left\{ u \in \mathcal{H}^1_{\mathsf{loc}}(0,\infty) \mid \nabla u \in L^2(0,\infty) \text{ and } u(0) = 0 \right\}$$

Cauchy-Born Problem

$$u^{\mathrm{cb}} \in \arg\min\{\mathcal{E}^{\mathrm{cb}}(u) - \langle f, u \rangle_{\mathbb{R}_+} \mid u \in \mathcal{U}^{\mathrm{cb}}\}$$

Error in Cauchy-Born Method

Proposition

The unique minimizer of \mathcal{E}^{cb} in \mathcal{U}^{cb} is $u^{cb} = 0$. Its atomistic residual is bounded by

 $\sup_{\boldsymbol{\nu}\in\mathcal{U},\|\boldsymbol{\nu}'\|_{\ell^2(\mathbb{Z}_{\geq 0})}=1}|\langle\delta\boldsymbol{\mathcal{E}}^{a}(0),\boldsymbol{\nu}\rangle|=\|\delta\boldsymbol{\mathcal{E}}^{a}(0)\|_{\mathcal{U}^*}=|\partial_{\boldsymbol{F}}\boldsymbol{V}^{\text{surf}}(0)|.$

In particular, $\|(u_{gr}^{a} - u^{cb})'\|_{\ell^{2}} \ge M^{-1}|\partial_{F}V^{surf}(0)|$, where M is the global Lipschitz constant of $\delta \mathcal{E}^{a}$.

Corrector Model

Given predictor u^{cb} , let

$$\mathcal{E}^{\Gamma}(q; F_0) = \mathcal{V}^{\text{surf}}(F_0 + q'_0) - \mathcal{W}(F_0) - q'_0 \partial_F \mathcal{W}(F_0) + \sum_{j=1}^{\infty} \left(\mathcal{V}(F_0 + q'_{j-1}, F_0 + q'_j) - \mathcal{W}(F_0) - q'_j \partial_F \mathcal{W}(F_0)
ight),$$

where $F_0 := \nabla u^{cb}(0)$.

Corrector Problem

For $L \in \mathbb{N} \cup \{\infty\}$, corrector strain on [0, L] is found by solving

$$q_L \in \arg \min\{\mathcal{E}^{\Gamma}(q; F_0) \mid q \in \mathcal{Q}_L\},\$$

where

$$\mathcal{Q}_L := \{ q \in \mathcal{U} \mid q'_{\ell} = 0 \text{ for all } \ell \geq L \}.$$
 In particular, $\mathcal{Q}_{\infty} = \mathcal{U}.$

Predictor-Corrector Solution

• For $||f||_{U^*}$ sufficiently small and *L* sufficiently large, solutions exist for the Cauchy-Born and corrector problems

Predictor-Corrector Solution

$$u_L^{
m pc} := \Pi_{
m a} u^{
m cb} + q_L$$

Theorem

There exists an $\varepsilon > 0$ such that, for all $f \in \mathcal{U}^*$ with $||f||_{\mathcal{U}^*} < \varepsilon$, there exists an atomistic solution $u^a \in \mathcal{U}$ to the atomistic problem satisfying

$$\left\| (u^{\mathsf{a}})' - (u_{L}^{\mathsf{pc}})' \right\|_{\ell^{2}} \lesssim \mu_{q}^{L} + |\nabla^{2} u^{\mathsf{cb}}(0)| + \|\nabla^{2} u^{\mathsf{cb}}\|_{L^{4}}^{2} + \|\nabla^{3} u^{\mathsf{cb}}\|_{L^{2}} + \|\nabla f\|_{L^{2}}.$$

Ground States

Higher Dimensions

Computational Cells

- Tangential periodic boundary conditions
- Apply uniform strain from surface elements
- Additional approximations possible

Continuum

Correct over Computational Cells

Correction

Conclusion

- Surface effects are extremely localized
- Cauchy-Born method can be post-processed to capture surface effects
- Error analysis is sharp

Theorem

There exists an $\varepsilon > 0$ such that, for all $f \in \mathcal{U}^*$ with $||f||_{\mathcal{U}^*} < \varepsilon$, there exists an atomistic solution $u^a \in \mathcal{U}$ to the atomistic problem satisfying

$$\left\| (u^{\mathsf{a}})' - (u_{L}^{\mathsf{pc}})' \right\|_{\ell^{2}} \lesssim \mu_{q}^{L} + |\nabla^{2} u^{\mathsf{cb}}(0)| + \|\nabla^{2} u^{\mathsf{cb}}\|_{L^{4}}^{2} + \|\nabla^{3} u^{\mathsf{cb}}\|_{L^{2}} + \|\nabla f\|_{L^{2}}.$$

Exponential Convergence Due to Surface Error

Long Wavelength Limit

Error estimate in terms of force:

$$\left\| (u^{\mathsf{a}})' - (u_{L}^{\mathsf{pc}})' \right\|_{\ell^{2}} \lesssim \mu_{q}^{L} + |f(0)| + \|f\|_{L^{4}}^{2} + \|\nabla f\|_{L^{2}}$$

Let λ^{-1} denote a length-scale over which we expect elastic strains to vary. Consider

$$f^{(\lambda)}_{\ell} := \lambda \hat{f}(\lambda \ell).$$

Then,

$$\left\| (u^{\mathsf{a}})' - (u_L^{\mathsf{pc}})' \right\|_{\ell^2} \lesssim \mu_q^L + \lambda + \lambda^{3/2}.$$

Define $\hat{f}(x) = \cos(3\pi x/8)\chi_{[0,4)}(x)$, where $\chi_A(x)$ denotes the characteristic function, and $f_{\ell} = \lambda \hat{f}(\lambda \ell)$.

Long Wavelength Error

Residual Error in Presence of Forces

