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• Coupled phase oscillators like Kuramoto model 

• Mean field order parameter for synchronization 

• Generalizes to amplitude cases like Stuart-Landau

Coupled oscillators

Original: Kuramoto in International symposium on mathematical problems in theoretical physics (1975) 
Kuramoto model Review: Acebrón et. al. Rev. Mod. Phys. 77 (2005) 
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• Kuramoto & Battogtokh demonstrated concurrence 
of synchrony and asynchrony in identical oscillators 

• Abrams & Strogatz termed these chimera states 
and presented a solvable model  

• Many other network examples have been found

Chimera states
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First report: Kuramoto & Battogtokh, Nonlinear Phenomena in Complex Science 5 (2002) 
Chimera term: Abrams & Strogatz, Phys. Rev. Lett. 93 (2004) 
Solvable model: Abrams et. al. Phys. Rev. Lett. 101 (2008) 
Review: Panaggio & Abrams, Nonlinearity 28 (2015)



Mean field approach
• Define a local order parameter 

• Assume a mean field which is 
harmonic in time, and find self-
consistent equations 

• Whether oscillators synchronize 
depends if this local mean field 
strength is sufficiently high

Kuramoto & Battogtokh, Nonlinear Phenomena in Complex Science 5 (2002) 
Abrams & Strogatz, Phys. Rev. Lett. 93 (2004)
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Coexisting order and 
disorder in continuous media
• Spiral turbulence in Taylor-Couette flow 

• Chemical spirals in reaction diffusion systems

Taylor-Couette states: Andereck et. al. J. Fluid Mech 164 (1986) 
Reaction diffusion experiments: Ouyang & Flesselles, Nature 379 (1996)



Complex Ginzburg-Landau
• A homogeneous medium in the vicinity of a type III 

(zero critical wavenumber) supercritical Hopf 
bifurcation evolves by a universal equation 

• We can interpret each point as a Stuart-Landau 
oscillator with differential local order parameter
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Dynamical Phases of CGLE
• Amplitude turbulence consists 

of finite disordered density of 
point defects where |A|=0 

• Frozen vortices are coherent 
structures with nearly time-
independent |A| - they form 
vortex glasses  

• We identified an intermediate 
state of frozen vortex 
chimeras between these 
known phases

Chaté & Manneville, Physica A 224 (1996) 
Aranson & Kramer, Rev. Mod. Phys. 74 (2002)

Figure 4: Snapshots of defect turbulence in a system of linear size L = 256 with parameters
(b

1

, b

3

) = (2, 1) (a-b) and (b
1

, b

3

) = (0, 0.56) (c-d). There are 268 defects in the first case, but
no well-formed spirals are observed; in the second case, on the other hand, spirals are clearly
visible. (a): field |A|; color scale from |A| = 0 (dark red) to |A| = 1.32 (light yellow); (b):
Re(A) = 0 (green) and Im(A) = 0 (red) lines; (c): field |A|; color scale from |A| = 0 (dark red)
to |A| = 1.0 (light yellow); (d): Re(A) = 0 (green) and Im(A) = 0 (red) lines.
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Figure 5: Frozen state in a system of linear size L = 256 with parameters b
1

= 2 and b

3

= 5. (a):
field |A|; color scale from |A| = 0 (dark red) to |A| = 1.17 (light yellow); (b): lines Re(A) = 0
(green) and Re(A) = 0 (red).

whether some kind of aging phenomena are taking place in these frozen structures.
The frozen states are easily observed in the region of the parameter space to the right of

line T, where they are the only asymptotic solutions possessing defects. Their total domain of
existence in the (b

1

, b

3

) plane can be estimated on the basis of the stability properties of spirals,
as discussed in Section 2. The frozen states do not exist to the left of line S2, since there the
spirals are absolutely unstable. On the other hand, nothing precludes their existence to the
right of S2. The size of the cells is not limited, except in the presence of noise, since in this
case, between S2 and S1, spirals have a maximum radius R

noise

. In practice, the dynamical
“history” which led to a given frozen structure greatly influences the distribution of sizes of
cells in the structure (see the discussion in section 4.1 below).

The actual observation of frozen states in the region between lines S2 and T, where de-
fect turbulence exists, is not easy, though, because these states are metastable with respect to
defect turbulence. Coming, for example, from a frozen asymptotic state to the right of line
T, the parameters have to be changed “adiabatically” to prevent the nucleation of defect tur-
bulence. Even then, the necessary rearrangements of the cellular structure, which involve the
rapid motion of some defects, most often trigger the “melting” of the frozen structure. Frozen
structures are most easily observed far to the right of line T, and especially to the right of S1.
Their domain of existence probably extends to large values of b

3

(except maybe for large |b
1

|).
At any rate, along the b

1

= 0 axis, it extends to the real Ginzburg-Landau (b
3

! 1) limit,
where the spirals become the vortex excitations of the XY model [23].

4 Transitions

The respective domains of existence of the three disordered phases described above are delimited
by the lines BF, T, L, and S2. We discuss now the nature of the various (phase) transitions
observed when crossing these lines and comment on the relative stability of the disordered
phases.
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Frozen vortex chimeras

• Frozen vortex 
chimeras consist of 
a coherent frozen 
spiral surrounded 
by amplitude 
turbulence

ρ - spiral radius 
Ω - spiral oscillation period



Continuity & Persistance
• Grid and timestep refinement shows convergence to 

continuum limit 

• Small perturbations do not destroy the chimera
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Phase diagram
• We defined a metric 

based on spiral 
nucleation rate out of 
amplitude turbulence 

• A phase diagram was 
obtained though 
systematic numerics
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Order parameter 
& fluctuations

• Kuramoto’s local mean field 
theory approach has analog 

• Fluctuations in the order 
parameter are not negligible 
and limit the coherent 
domain  

• Such fluctuations are a 
consequence of local 
coupling
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Mechanism validation
• We modified the AT domain with a force ±1/2∇2A 

• Reduced (enhanced) fluctuations caused spiral grow (shrink)
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Closing remarks
• Frozen vortex chimeras are 

continuous chimera states in 
an under-explored parameter 
regime of complex Ginzburg-
Landau equation 

• These states may be 
experimentally accessible in 
reaction-diffusion systems 

• Local order parameter 
fluctuations are essential in 
chimera mechanism 

Chimera States in Continuous Media:  
Existence and Distinctness 
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