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PDE-constrained optimization under uncertainty

Decision-making under uncertainty is often the ultimate goal of UQ:
@ Inverse problem: Infer uncertain model parameters given data

@ Optimal experimental design problem: How should we acquire data to
reduce uncertainty in inferred parameters?

@ Forward problem: Propagate uncertain parameters through forward model

@ Optimal design/control problem: Find design/control variables that optimize
a desired uncertain objective

Fundamental difficulty: OUU amounts to many forward UQ problems

Sessions here at UQ18:

@ |P8: Johannes Royset: Good and bad uncertainty: Consequences in UQ and
design

@ MT8: Drew Kouri: Optimization and control under uncertainty
@ OED sessions: MS2/15, MS31/37, MS51/64/77
@ OUU sessions: MS11/24, CP9, MS46/60, MS73, MS97/110
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Example: Groundwater contaminant remediation
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Classes of PDE-constrained optimization under uncertainty

@ Inverse problem

o Infer initial contaminant field from measurements of pressure at wells
and from a model of subsurface flow and transport with random log
permeability field

@ Optimal experimental design problem

o Where should new observation wells be placed so that initial condition
is “best” inferred? (alphabetic optimality criteria, Bayes risk, expected
information gain)

@ Optimal design problem

o Where should remediation wells be placed so that (uncertain)
contaminant concentrations at municipal wells are minimized?

@ Optimal control problem

o What should the rates of pumping/injection at remediation wells be so
that (uncertain) contaminant concentrations at municipal wells are
minimized?
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PDE-constrained optimal control under uncertainty

Find control/design variables =~ (pumping rates ¢ () and locations =7 of

remediation wells) so that the expected value of the contaminant concentration ¢
at the drinking wells is minimized:

ming(=) := Z/ / /wc m, 2) 0 (") dae dt dpu(m) +Zﬁj/OT(Q§)2dt

where concentration ¢ depends on random log permeability field m, control

variables ¢;(f), and design variables ; through the coupled groundwater flow
and contaminant transport equations

¢pct% -V Zq qu de(x5)
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Mean-variance PDE-constrained optimal control

@ Weak form of forward PDE model with random and control variables:
find u € U such that r(u,v,m,z) =0 Yv eV

where u € U is state, v € V adjoint, m € M random field, z € Z control

@ Objective function: Consider mean—variance of control functional
Q(, ) UxM—-R:

() = E[Q] + BVar[Q] + P(z)

where P(z) is cost of controls (or regularization)
@ Optimal control problem: find z* € Z, s.t.

z* = argmin_ ., J(2), subject to r(u,v,m,z) =0

Omar Ghattas (UT Austin) Scalable PDE optimization under uncertainty SIAM UQ18 6 /41



Mean-variance PDE-constrained optimal control

@ Weak form of forward PDE model with random and control variables:
find u € U such that r(u,v,m,z) =0 Yv eV

where u € U is state, v € V adjoint, m € M random field, z € Z control

@ Objective function: Consider mean—variance of control functional
Q(, ) UxM—-R:

() = E[Q] + BVar[Q] + P(z)

where P(z) is cost of controls (or regularization)
@ Optimal control problem: find z* € Z, s.t.

z* = argmin_ ., J(2), subject to r(u,v,m,z) =0

@ Sample average approximation (SAA) is prohibitive: entails as many
(nonlinear) PDE constraints as required for accurate estimation of E[Q]

2* = argmin, ¢, JM°(2), subject to r(u,v,m;,2) =0 i=1,....,M

= “Many-PDE-constrained optimization”
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Some existing approaches for PDE-constrained OUU

Schulz & Schillings, Problem formulations and treatment of uncertainties in aerodynamic design, AIAA J, 2009.
Borzi & von Winckel, Multigrid methods and sparse-grid collocation techniques for parabolic optimal control problems
with random coefficients, SISC, 2009.

Borzi, Schillings, & von Winckel, On the treatment of distributed uncertainties in PDE-constrained optimization,
GAMM-Mitt. 2010.

Borzi & von Winckel, A POD framework to determine robust controls in PDE optimization, Computing and
Visualization in Science, 2011.

Gunzburger & Ming, Optimal control of stochastic flow over a backward-facing step using ROM, SISC 2011.

Hou, Lee, & Manouzi, Finite element approximations of stochastic optimal control problems constrained by stochastic
elliptic PDEs, J Math Anal Appl, 2011.

Gunzburger, Lee, & Lee, Error estimates of stochastic optimal Neumann boundary control problems, SINUM, 2011.
Rosseel & Wells, Optimal control with stochastic PDE constraints and uncertain controls, CMAME, 2012.

Tiesler, Kirby, Xiu, & Preusser, Stochastic collocation for optimal control problems with stochastic PDE constraints,
SICON, 2012.

Kouri, Heinkenschloss, Ridzal, & Van Bloemen Waanders, A trust-region algorithm with adaptive stochastic collocation
for PDE optimization under uncertainty, SISC, 2013.

Chen, Quarteroni, & Rozza, Stochastic optimal Robin boundary control problems of advection-dominated elliptic
equations, SINUM, 2013.

Kunoth & Schwab, Analytic regularity and gPC approximation for control problems constrained by linear parametric
elliptic and parabolic PDEs, SICON, 2013.

Kouri, A multilevel stochastic collocation algorithm for optimization of PDEs with uncertain coefficients, JUQ, 2014.
Chen & Quarteroni, Weighted reduced basis method for stochastic optimal control problems with elliptic PDE
constraint, JUQ, 2014.

Ng & Willcox, Multifidelity approaches for optimization under uncertainty, IJNME, 2014.

Kouri, Heinkenschloss, Ridzal, & van Bloemen Waanders, Inexact objective function evaluations in a trust-region
algorithm for PDE-constrained optimization under uncertainty, SISC, 2014.

Chen, Quarteroni, & Rozza, Multilevel and weighted reduced basis method for stochastic optimal control problems
constrained by Stokes equations, Num. Math. 2015.

Ng & Willcox, Monte Carlo information-reuse approach to aircraft conceptual design optimization under uncertainty, J
Aircraft, 2015.

P. Benner, A. Onwunta, and M. Stoll. Block-diagonal preconditioning for optimal control problems constrained by PDEs
with uncertain inputs. SIMAX, 2016.

A.A. Ali, E. Ullmann, & M. Hinze, Multilevel Monte Carlo analysis for optimal control of elliptic PDEs with random
coefficients, SIAM/ASA JUQ, 2017.
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Quadratic approximation in infinite dimensions

@ We approximate ) by a quadratically-truncated Taylor expansion

Q(m) ~ Qquad(m) = Q) + (gm (M), m —m)
1
2

+

(Fm (M) (m — m),m —m)
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Quadratic approximation in infinite dimensions

@ We approximate ) by a quadratically-truncated Taylor expansion

Q(m) ~ Qquad(m) = Q) + (gm (M), m —m)

+ %(ﬂ{m(m)(m ), m — m)

@ For a Gaussian random field m with m ~ N(m, €), Qquad is non-Gaussian,
but we can still express?

IE[Cunad] = Q(ﬁl) + %tl’(j:f)

VarlQuuad] = {gm(1), €9 (m)) + 51(5¢7)

where H = @1/29(,, (im)C'/? is the covariance-preconditioned Hessian

1
A. Alexanderian, N. Petra, G. Stadler, and O. Ghattas, Mean-variance risk-averse optimal control of systems governed by
PDEs with random parameter fields using quadratic approximations, SIAM/ASA JUQ, 2017.
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Quadratic approximation in infinite dimensions

@ We approximate ) by a quadratically-truncated Taylor expansion

Q(m) ~ Qquad(m) = Q) + (gm (M), m —m)

+ %(ﬂ{m(m)(m ), m — m)

@ For a Gaussian random field m with m ~ N(m, €), Qquad is non-Gaussian,
but we can still express?

1 -
E[Qquad] = Q(m) + Etr(ﬂ{)
_ _ 1 .
Var[Qquad] = (gm(m), Com (m)> + 5”(%2)
where H = @1/29(,, (im)C'/? is the covariance-preconditioned Hessian

@ (Qquad is corrected by using it as a control variate (cf. multifidelity methods?

@ Need to efficiently evaluate tr(7() and tr((2) and their gradients w.r.t. z

1
A. Alexanderian, N. Petra, G. Stadler, and O. Ghattas, Mean-variance risk-averse optimal control of systems governed by
PDEs with random parameter fields using quadratic approximations, SIAM/ASA JUQ, 2017.

2L. Ng & K. Willcox, Multifidelity approaches for optimization under uncertainty, IJNME, 2014.
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How to compute tr() efficiently?

@ When the eigenvalues decay rapidly (as is common for Hessians), the trace
can be approximated efficiently with small N by

N
tr(H) ~ Z)‘J(j:() and tr(H?) ~ Z)\2
j=1
where )\, j =1,..., N, are the dominant eigenvalues of f]:f or the

dominant generalized eigenvalues of (3(,,(m),C71), i.e.,

Hom (M)1h; = A€ 10,

where 1; are the C~!-orthonormal eigenfunctions, i.e., (1;, C™11);) = &;;

@ Prohibitive to compute H,, by itself; instead can form action in a given
direction at cost of pair of linearized forward/adjoint PDE solves

@ — Need operator-free eigensolver that can capture dominant spectrum in
number of operator applications that scales with effective rank
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via randomized

. . Randomized SVD (double pass algorithm)
Double-pass randomized SVD algorithm

estimates trace at cost of 2r products of @ Generate i.i.d. Gaussian matrix R € R"*"

H with random vectors (r = N + p with 7 = numerical rank of H (r < n)
N is rank of H, p is oversampling #) Q@ FormY =HR

Resulting cost is 27 pairs of incremental © Compute Q = orthonormal basis for Y’
forward/adjoint solves w/same PDE @ Define Be R™*" := QTHQ

operator and 47 Poisson solves © Decompose B = ZAZT

Covariance operator _and He_ssi.an are often @ Low-rank approximation: H ~ VAVT,
compact (Q is sensitive to limited number where V € R**" .= QZ

of modes) so composition is low-rank @ Trace estimation: tr(H) ~ tr(B)

Thus often r < n, independent of parameter dimension n, and with high probability

tr(E) — tr(B)| < c(p) 3 [\a(H)]
r<i<n
Quadratic-based approximations of E[Q] and Var[Q] require 47 linearized PDE solves
with same PDE operator (small multiple of highly nonlinear forward solve)
See Saibaba, Alexanderian, Ipsen, Numerische Mathematik 2017 for analysis of trace
estimate by more general randomized subspace iterations
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Eigenproblem-constrained optimization

With the trace computed via randomized SVD, we obtain

gquad( ”’ ZA +/B (an(n7> eq": 7TL

w\m

E[Q] BVar[Q]
where ()(7m) := Q is obtained by solving the forward problem for u € 10
(0,0,F(u,v,2)) =0, YoeV

with 7(u, 0, 2) = r(u, 0, m, z) for short.
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Eigenproblem-constrained optimization

With the trace computed via randomized SVD, we obtain

gquad( ”7 ZA +/B (],,,(777) GQm 7TL

w\m

E[Q] BVar(Q]

where ()(7m) := Q is obtained by solving the forward problem for u € 10
(0,0,F(u,v,2)) =0, YoeV
with 7(u, 0, 2) = r(u, 0, m, z) for short. By defining the Lagrangian
L(u,v,m, 2) = Q(u) + 7(u, v, 2)
the gradient g,,,(m) is found from
(M, gm(m))y = (M, 0y, L) = (M, O 7(u,v,2)), VmeM

for which we need to compute v € V by solving the adjoint problem

(@, 07 (u, v, 2)) = —(,0,Q), Vel
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Eigenproblem constrained optimization

To compute \;, which satisfies for j =1,..., N
Hon (M) = N;C M5, and (1, C 1) = 4y
we need Hessian action in a direction m, for which we form the Lagrangian
L (u,v,m, 250, 0,1m) = (1, 0, F) + (0, 0,7) 4 (1, 0,7 + 0,Q)

which involves the gradient, the forward problem, and the adjoint problem.
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Eigenproblem constrained optimization

To compute \;, which satisfies for j =1,..., N
Hon (M) = NjC 14, and (1, C™1ep;) = 4y
we need Hessian action in a direction m, for which we form the Lagrangian
L (u,v,m, 250, 0,1m) = (1, 0, F) + (0, 0,7) 4 (1, 0,7 + 0,Q)

which involves the gradient, the forward problem, and the adjoint problem. The
Hessian action is given by the variation of £ with respect to m:

(1, H () 1) = (10, O L 1) = (W1, Oy T 0 4 O T 0 + O™ 101), Vi € M
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To compute \;, which satisfies for j =1,..., N
Hon (M) = NjC 14, and (1, C™1ep;) = 4y
we need Hessian action in a direction m, for which we form the Lagrangian
L (u,v,m, 250, 0,1m) = (1, 0, F) + (0, 0,7) 4 (1, 0,7 + 0,Q)

which involves the gradient, the forward problem, and the adjoint problem. The
Hessian action is given by the variation of £ with respect to m:

(1, H () 1) = (10, O L 1) = (W1, Oy T 0 4 O T 0 + O™ 101), Vi € M
where @ € U is the solution of the incremental forward problem, 8,£% =0

(0, Opu T 4) = —(0, OpuT101), YO EV
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Eigenproblem constrained optimization

To compute \;, which satisfies for j =1,..., N
Hm(m)% = )‘jeilev and <wj,6717/}j> - 5ij
we need Hessian action in a direction m, for which we form the Lagrangian

LH (u,v,m, 250, 0,1) = (1, 0m) + (0,0,7) + (@, 0,7 + 0,Q)
—_——— —m — Y—— -
gradient forward adjoint

which involves the gradient, the forward problem, and the adjoint problem. The
Hessian action is given by the variation of £ with respect to m:

(1, H () 1) = (10, O L 1) = (W1, Oy T 0 4 O T 0 + O™ 101), Vi € M
where @ € U is the solution of the incremental forward problem, 8,£% =0

(0, Opu T 4) = —(0, OpuT101), YO EV
and ¥ € V is the solution of the incremental adjoint problem, 9,LH =0

(T, Oy D) = — (1, Oy U + Oy Q0 + Oy T 111), Vi € U
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OUU problem with quadratic approximation Jquad

N N
. 1 ~ _ _ 1 ~
min Jawsa(2) 1= Q1) + 5 > ON(F) +8 <<gm(m), Cgm(m)) + 5> A?(j—f)) +P(2)
j=1 j=1
where:
forward W*,0,F) =0 Yo' eV
adjoint (u",0uT +0,Q) =0 Vu" €U

eigenvalue (W, (Hom(m) = NC DY) =0 Vi eM j=1,...,N
orthonormality ~ Aj((1;,C ') —1)=0 VA;€R j=1,...,N
incremental forw (0}, OpuT U5 + OumT ;) =0 Vo; €V j=1,...,N

incremental adj (4}, OuoT 0 + OuuT Gy + OuuQ Gy + OumT ;) =0 Va; €U j=1,..
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Lagrangian of the OUU problem

Lquad (u7 v, {)‘j}a {1/11}7 {ﬁj}v {'f}j}a U*a 'U*a {X]k}a {1/];}7 {ﬂ;}’ {@;}7 Z) =

quad obj (m) Z)\ < m (1), Cgm (M ZV > (2)

forward + (v*,0,7T)
adjoint  + < *, 0uT + 0uQ)

eigen. prob. + Z 5, (H )

X (1, €7 y) — 1)

M- 1

orth. cond. +

Jj=1
N
inc. fwd.  + > (0}, QuuT iy + QumT ;)
j=1
N
inc. adj. + Z(ﬁ;,awf@j + OuuT G + OuuQ Uj + OumT ;)

.
Il
=
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Gradient of Jquad (assuming A; distinct)

@ Variation of Lquaq Wrt A; vanishes:
L, 1+ QﬁA .
1/)] qubj) ,7:1’7N
@ Variation of Lqyaq Wrt 9, vanlshes.

1428\
@ = %ﬂjuj j=1,...,N
@ Variation of Lqyad Wrt @, vanishes:

. 14+28X; . .

05 = ijj, j=1,...,N
@ Variation of Lgyad Wrt v vanishes: find u* € U s.t. (incr forward operator)

(0, OpuTu™) = 725@ Oym T (COm 7))
- Z vmur ug w + 8vmmr ’(/}] w >

N
- Z</‘~)u avuu":aj 7:5; + OpumT Z/Jj ﬁ;k>, Vo eV

Jj=1
SIAM UQ18 15/ 41
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Computing the gradient of the OUU problem

@ Variation of Lguad Wrt u vanishes: find v* € V s.t. (incr adjoint operator)
(T, OypyT V™) =
— (i, 0, Q) — 2B{il, Oy (COmT))
— (T, OuuT U™ + Oy Q u*)
N
— > iy QumT 0505 + OugnadT 1 0} + O 15 07

J

Il
—

M-

(il DT 15 0 + DT 5 07)

<.
I
—

(@, OuunT 05 T

v

Il
-

; + OuuuT ’[Lj ’LAL;< + 6uuuQ ﬂj ﬂ; + OuumT ’(/)j ft;>, Vu € U,
J

@ Finally the gradient of the cost functional can be computed as
D.dquad(2) = 0.Lquad(primal, dual, z)

@ Total cost: 1 forward PDE solve, 1 + 4(N + p) + 2N + 2 linearized PDE
solves (independent of uncertain parameter or control dimensions!)
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Quadratic approximation as a variance reduction

@ Statistics computed by quadratic approximation may be biased

@ Use Monte Carlo quadrature to correct quadratic approximation

210) = ElQuni] + BIQ ~ Qo] ~ B0 + I
by estimator

@ Mean squared error (MSE) of MC estimate of E[Q] and E[Y]
1 1
MSE(Q) =< MVar[Q] vs. MSE(Y) =< MVar[Y]

@ A much smaller number of MC samples is required for E[Y] as
Var[Y] <« Var[Q)]

provided Qquad is @ good approximation of (highly correlated to) @

@ Similar variance reduction can be applied for the variance Var[Q)].
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The unbiased cost functional with variance reduction

We obtain an unbiased evaluation of the cost functional as

I (2) = Qquad + BVE + P(2)

where
Qquad = QM) + Ztr(20)
1 M
2 (Qmy) = Q) — (m; — 1w, g ()
2 (i = 17, H () (s — 7))
2
and

T = (Com (m), g (M) + + (r(30)? + ~tr(36%)
1 M s
X ((@(mi) — @(m)
_ _ 1 _ _ _ 2
= ((ms =, g () + —(mi =, Hon (7) (i — 7)) ")
1 1 M2 N _
(w0 + o = (Qma) = (ms = 1, gm ()

1
= (mi =, 3 () (i =) ) )
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OUU Lagrangian w/variance reduction using quad approx

£t (v, i, O 1 {5 {851 4051, {8 ), {03},
“o*, i O ) (5 ) 8]}, 0] ), (al ), {97}, =)

M
= IMea + (07, 00T + (u”, BuT + B0 Q) + 3 r(ug, vi, my, 2).
i=1

+
Mz

(W5, (Hm () = Az )

<.
I
—

+
Mz

A5y, ety — 1)

<.
Il
—

+

<
Il
-

(07, QuuT iy + Dum T ¥j)

*

(@}, QuvT 0j + OuuT Gy + OuuQ Gj + umT ¥;)

+
AMZ

<
Il
A

(07, OuuT @i + OumT my)

+

...
Il
A

ME

+ (4 :aaquf’i“'auuFﬁi+auuQﬂi+aumrFmi><

o
1
—

Total: 1+ M forward PDE solves and 3 + 4(N + p) + 4N + 5M linearized PDE solves
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Optimal design of acoustic metamaterial cloak: Setup

Helmholtz equation: ST

Au+k*u=0 in D s L
u = uj, on L,
lim, o 7(0pu® — tku®) =0

medium §
Absorbing BC on T'o,: via PML :

incident plane wave

" metamaterial .

|

u: (complex) total field =
incident field + scattered field

u=u"+u’
k: wavenumber w?/c?, given by

km in medium
k= ko in obstacle
kme™ T in metamaterial

incident field total field
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Optimal design of acoustic cloak: Setup

@ The complex field u = u, + iu; and adjoint v = v, + iv;, are defined in the Hilbert
space (ur, u;), (Vp,v5) €V = H%in X Hllin, where

Hy, = {w € L*(D),|Vw| € L*(D),wlr, = 0}.
@ The weak form is given by: find (ur,u;) € V such that
r(u,v,m,z) =0 V(vr,v;) €V,

with 7(u, v, m, z) = r1(u, vr, m, 2) + ir2(u, vi, m, 2), where

71 (U, vp,m, 2) = / A, Vu, - Vv, + A;Vu; - Vu,.dx — / Krurv, + Kjujvede,
D D

ro(u,vi,m, z) = / —A,Vu; - Vu; + A;Vu, - Vudr — / Kruiv; — Kijurvide,
D D

where A,., A;, K, K; depend on (m, z) through the wavenumber k.

@ The objective function is given by the misfit in the background medium Dypack

Qu(m, z)) = / |w(m, z) — Upack|*dez.

Dpack
The regularization term uses Li-norm to promote design sparsity in metamaterial

P(z) = a/ |z|dx.
Dmeta

Omar Ghattas (UT Austin) Scalable PDE optimization under uncertainty SIAM UQ18 21 /41



Optimal design of acoustic cloak: Samples

DOF for FE discretization of state, random, and design variables (FEniCS)
DOF meshl | mesh2 mesh3 mesh4 meshb5
uw (P2) | 40,194 | 159,746 | 636,930 | 2,543,618 | 10,166,274
z (P1) 940 3,336 12,487 48,288 189,736

The random field m ~ N(m, C) with mean m = 0 and covariance

€= (—yA+6I)"? with correlation length ~ Z

Samples of the random field m (v = § = 50, corresponding to manufacturing
error of 10% ~ 15% of material property)
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Optimal design of acoustic cloak: Fields

Top: No cloak: Incident field and total field with obstacle

Bottom: Optimal cloak: Total field and scattered field
SIAM UQ18
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Optimal design of acoustic cloak: Optimal design

op: Random desig dete Botto quadra AA

Omar Ghattas (UT Austin) Scalable PDE optimization under uncertainty SIAM UQ18 24 /41



Optimal design of cloak: Deterministic vs stochastic

Table: Estimates of ¢ = (Q — @Q)? and mean square errors with 100 samples

design q MSE(G) | MSE(q — gin) | MSE(q — qquad)

Zrandom | 1.01e401 | 2.97e4-00 1.90e+-00 1.50e-03
Zdeter | 1.13e+01 | 4.89e4-00 4.89e+-00 7.32e-02
Zquad | 1.30e+00 | 4.06e-02 3.81e-02 1.07e-02
Zsaa 1.41e4+00 | 2.54e-02 1.54e-02 2.89e-04

Variance reduction of 100X-1000X by quadratic approximation

Figure: Std of the scattered field at optimal design zquad (left) and zgeter (right)
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Optimal design of acoustic cloak: Quad vs SAA

Table: Estimates of misfit ) and mean square errors with 100 samples

design Q MSE(Q) | MSE(Q — Qin) | MSE(Q — Qquad)

Zrandom | 6.56e+01 | 9.67e-02 9.80e-03 1.63e-05
Zdeter | 2.55e+00 | 4.75e-02 4.75e-02 7.30e-04
Zquad | 1.17e+00 | 4.85e-03 4.31e-03 6.74e-04
Zsaa | 0.46e+00 | 1.01e-02 1.29e-03 3.37e-05

Variance reduction of 10X-1000X by quadratic approximation

Figure: Mean of the scattered field at optimal design zqu.q (left) and zg,, (right
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Optimal design of acoustic cloak: Trace estimate

100 at random design 10! ___at optimal design with constant ion
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Eigenvalues Ay (€27, () €'/2) (first 100 out of 189,736)
and trace estimation errors by MC and randomized SVD
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Optimal design of acoustic cloak: Scalability |

at random design
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10° -
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= dim = 48,288
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10 «— dim = 189,736
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Spectrum decay of the covariance-preconditioned Hessian is scalable
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Optimal design of acoustic cloak: Scalability I

Table: Estimates of misfit (Q and mean square errors with 100 samples

dimension Q MSE(Q) | MSE(Q — Qiin) | MSE(Q — Qquad)
940 7.33e+01 | 1.25e-01 7.01e-03 7.16e-05
3,336 6.87e+01 | 1.56e-01 9.29e-03 7.51e-05
12,487 6.56e+01 | 9.67e-02 9.80e-03 1.63e-05
48,288 6.94e+01 | 1.00e-01 1.04e-02 1.13e-04

Variance reduction of 1000X (at random design) is scalable

Table: Estimates of ¢ = (Q — Qo)? and mean square errors with 100 samples

dimension q MSE(G) | MSE(g — gin) | MSE(q — qquad)
940 1.44e+01 | 3.19e+00 1.42e+00 7.53e-03
3,336 2.06e+01 | 1.13e+01 3.10e+00 1.99e-02
12,487 1.01e+01 | 2.97e+00 1.90e+00 1.50e-03
48,288 1.21e+01 | 4.82e4-00 2.52e+4-00 4.92e-03

Variance reduction of 1000X (at random design) is scalable
Scalable PDE optimization under uncertainty SIAM UQ18
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Optimal design of acoustic cloak: Scalability I

107 ___at optimal design with constant imation
— dim =940
= dim = 3,336
10 +— dim = 12,487
== dim = 48,288
<— dim = 189,736
g 10°
10"
107 B 10 15 20 25 30 35
# BFGS iterations
10° __at optimal design with quadratic imation 10° at optimal design with saa imation
— dim =940 — dim =940
= dim = 3,336 = dim = 3,336
+— dim = 12,487 ¢— dim = 12,487
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cost
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# BFGS iterations # BFGS iterations

Optimization (# BFGS inter) is scalable by quadratic approximation
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Optimal control for turbulent jet flow: setup

Control is horizontal velocity profile at inlet boundary I'y

Objective is to maximize jet width at I'g

Random input is an inadequacy field for turbulent viscosity, upto 10% dimensions.
Constraint on inlet momentum: fl“z (u-n)?ds = My

=)

R Eanadil s s ERRRRURRRR S, ]

I'w

Figure: Left: sketch of the physical domain of the turbulence jet flow, with inlet boundary 'y,
outlet boundary I'p, top and bottom wall I'yy, the center axis I'¢, and the cross-section I'g.
The computational domain D is the top part of the physical domain. Right: two random
samples drawn from the Gaussian measure N(0, C) with € = (=V - (OV) + al)~2.
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Optimal control for turbulent jet flow: model

-V <(1/+’th,0) (VquVuT)) +(u-V)u+ Vp=0,

V-u=0,
lu-e

V- (v+(O+e™")v,o)Vy)+u-Vy— = Ly=o,
2x1+b

on(u) 7=0, u-n+xwez)=0,
on(u) - n=0, u-7=0,
on(u)-7=0, uw-n=0,
Y= =0,
o,(7) - n=0,
on(u) = (v +yvi,0) (Vu + VuT) ‘n
on() =@+ (+e™o)Vy-n

vio = CVM(z1 4+ aW)'/? with M = / [|tans||?ds
I

30 —
Y0 = 0.5 — 0.5 tanh (5 (Txl) (z2 —1— 0.511)) .
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ol for turbulent jet flow: model — weak form

The weak form is defined for u = (u,p,7),v = (v,q,1) € V := (H'(D))? x L?(D) x H'(D)
r(u,v,m, z) = Model(u, v, m) + Stablization(u, v) + Nitsche(u, v, m, z),
where the first term represents the model in the weak form given by
Model(u, v, m)
/ (v +v)28(u) - S(v)dx + /D[(u -V)u] - vdr — /DpV - vdx
+ / qVudzx
D

dx.

1 .
+/ (V+(V+em)Vt,o)V7~Vndx+/[u~Vv]ndfv—/ S
D D pD2z1+b

The second term represents the stabilization by Galerkin Least-Squares (GLS) method

Stablization(u, v) = /-D T1L1(uw) - Dy Ly (u)(v)dz

+/D7'2(V~u)(v~v)dz+/DTg(u~V'y)(u~Vn)dw

where L1 (u) represents the strong form of the momentum equation of (32), 71, 72 and 73 are
properly chosen stabilization constants associated with the local Péclet number.
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Optimal control for turbulent jet flow: model — weak

The weak form is defined for u = (u,p,7),v = (v,q,n) € V := (H'(D))? x L?(D) x H'(D)
r(u,v, m, z) = Model(u, v, m) 4+ Stablization(u, v) + Nitsche(u, v, m, z),

The third term represents the weak imposition of the boundary condition and the control
function by Nitsche's method [Bazilevs et al., 2007], which reads

Nitsche(u, v, m, z) = Cd/ A v+ ) (u-7)(v-7)ds
ToUly

- / (on(u) -T)(v 7))+ (on(v) - 7)(u-T)ds
CoUly

+Ca | A= (v +v)(u-n+ xwé(2) (v - n)ds

~ [ ontu) m)w - n) + (o (0) - m) (o)),
Ty
where the first and the third terms enforce the boundary conditions while the second and the

fourth terms represent the compatibility conditions. Cy is a constant, set as Cy = 10°. h is a
local length of the boundary edge along the Dirichlet boundaries.
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Optimal control for turbulent jet flow: trace estimate
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Figure: The decay of the generalized eigenvalues, A for positive eigenvalues and A_ for
negative eigenvalues, and the errors, denoted error; forAthe randomized trace estimator 77 and
errory for the randomized SVD-based trace estimator T2, with respect to the number of

: e — mr pighie a — SMC
estimate terms N. Left: z = zq; right: z = Zquad-
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Optimal control for turbulent jet flow: optimal control
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Figure: The velocity field corresponding to the initial control (top) and the optimal control
with quadratic approximation and variance reduction (bottom).
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Optimal control for turbulent jet flow: scalability |

e total cost = # PDE solves/iteration x # optimization iterations
e # PDE solves/iteration depends on decay of generalized eigenvalues

102
dim = 1,891

102 — dim =7,381

-- dim = 29,161
104} --- dim = 115,921

— dim = 462,241

<10°} -+ dim = 1,038,961

10°
107
10Eo 20 40 60 80 100

J
Figure: Decay of the generalized eigenvalues (in absolute value) with different

parameter dimensions (dim) at optimal control. Results indicate dimension
independence of per-optimization-iteration cost.
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Optimal control for turbulent jet flow: scalability Il

e total cost = # PDE solves/iteration x # optimization iterations
@ # iterations depends how well the BFGS Hessian approximates true
Hessian

dim = 1,891
dim = 7,381
dim = 29,161
dim = 115,921
dim = 462,241
dim = 1,038,961

# iter

Figure: Gradient reduction with number of BFGS iterations. Simple control
variable continuation employed. Results indicate dimension independence of
BFGS iterations. (modulo initialization of 1M case)
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ol for turbulent jet flow: scalability IlI

How does variance reduction behave as parameter dimension increases?

Table: Mean-square-error (MSE) for E[Q] at optimal control.

parameter dimension | EMC[—Q] | MSE(Q) [ MSE(Q — Qiin) | MSE(Q — Qquad)
1,891 -1.71e+00 | 7.40e-06 2.68e-08 1.81e-09
7,381 -1.59¢+00 | 7.94e-06 1.57e-07 1.46e-08
29,161 -1.44e+00 | 3.82e-06 7.23e-08 1.66e-08

Table: MSE for Var[Q], where ¢ = (Q — Q0)2. ain = (Qiin — Q0)?. dquad = (Qquad — Q0)?.

parameter dimension | EMC[g] MSE(q) | MSE(q — qiin) | MSE(q — gquad)
1,891 8.05e-05 | 9.37e-10 1.76e-11 8.77e-13
7,381 8.13e-05 | 1.15e-09 8.87e-12 1.48e-12
29,161 5.60e-05 | 6.59e-10 3.39%-11 4.04e-12

100x—-1000x speedup with quadratic approximation as control variate

Omar Ghattas (UT Austin)
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Low-rank Hessian-based variance reduction for OUU

@ Construct 2nd order Taylor approximation (wrt random parameters) of control
objective, and use as a variance reduction tool for mean-variance OUU
@ Hessian of parameter-to-objective map is compact, with fast decaying eigenvalues.
Randomized SVD used to accurately and efficiently capture the low-rank
@ Leads to an optimization problem constrained by a Hessian eigenvalue problem,
with state and adjoint PDE constraints to define the gradient entering the
objective approximation, and incremental state and adjoint PDE constraints to
define the Hessian action
@ Solved for sequence of OUU problems with up to 1 million random parameters,
demonstrated scalability (i.e., # of PDE solves constant with increasing random
parameter and control dimensions)
o Trace estimation by randomized SVD is scalable
@ Quasi-Newton optimization iterations are scalable
o Variance reduction is scalable
o = Overall method is scalable
@ Taylor approximation is local; variance reduction can deteriorate for large 3rd
derivatives or large variances
@ Current work: higher order Taylor and other approximations, chance constraints,
alternatives to low-rank approximation, applications to deep learning of complex
PDE maps
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