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problem



The generalized moment problem
In the spirit of Krein

B finite-dimensional subspace of C|a, b]

(ug, U, - - - u,) basis in P

Given ¢ := (¢g,¢1,...,¢,) € CTL,

find positive measure dyu such that

b
f up(t)dp = ¢, k=0,1,..., n




peP=
Dual cones p(t) = o prun(?)

P = {p e P| P(t) = Re(p) >0 Vi€ [a,b])

closed convex cone

mn

(c,p) := Re {Z Ckpk} where ¢ := (cg,c1,...,c,) € C*TL

k=0

¢ :={ceC"|(c,p) >0 VpeP,}| dualcone

closed convex

¢y =T

c € € positive sequence



Ex 1. Power moment problem

cee, (@ -

(n even) [ (@4 0)Cjtkt1 — aDCj 1k — Cjyh2 >0




Ex 2: Trigonometric
moment problem

vkt
o k=0,1,.. ., n la, b] = [—m, 7]
Cop Cq1 Cn
C1 Co Cr—1
I >0
Cn Cpn—1 -*° Co

Toeplitz matrix



Ex 3: Nevanlinna-Pick
Interpolation

eitJrzk
uk(t)zeit_zkﬂ k=0,1,..., n

For dy = F'dt, where F' = Re(f) with f analytic in D,

C,,rg:/Tr ug(t)F(t)dt = f(zx) kE=0,1,...,n

1— ijk

CEQ:_I_ ” Pﬂ:lcj—l_Ck] >0
J,k=0

Pick matrix



The moment map

b
M : Cla,b* — C*, d,ul—:»c—/ u(t)dp

M C Cla,bl* space of positive measures

ceMM,;) )

TL

P(t) = Re{p(t)}

b
(c,p) := RB{Z ckpk} =/ P(t)du >0 Vpe P,

k=0

‘ ce €y

MMy) C Ty




HYPOTHESIS 1. ‘ff+ # (), where ‘ﬁ_,_ is the interior of ...

THEOREM (Krein-Nudelman). Suppose that
Hypothesis 1 holds. Then

MM.,) = €.

In other words, the moment problem is solvable

if and only if ¢ is positive.

We have already shown that M(M_) C €,

[t remains to prove that (M) D €



Proof. Consider the curve U = {u(t); t € [a,b]} C C™*!
where u(t) = (uo(t),u1(t),...,un(t)) a <t <b.

For p € ‘L3,
(u(t),p) :== Re {D_j_o pruk(t)} = Re{p(t)} = P(?)

K(U) convex conic hull of U
KU)' ={pePB|(¢,p) =20, Vo€ K(U)} =P

m KU)=¢

M(M_) C €, is closed, by the Helly selection theorem.

i

Show that €4 C M(M): M) =u(t), a<t<b

m) Ucmm,) B K(U) C MMy)

¢+
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A motivating example

u y t
— w@ [  yt)= ) wegu(k)

k=—o0

k

System is finite-dimensional iff w(z) := >, wxz~" is rational

_ _ u y  stationary process
white nolse — w(z) [——  Wwithspectral density

B(e'”) = Jw(e”)]?

[ e == B+ mu0} 06 = 50

B consists of trigonometric polynomials

P(e’) = Re{p(e”)}, Q(e) =Re{q(e”)}, where p,q € Py




The moment problem for
rational measures

DEE. PE€EP, p=> . _pPrur polynomial in P
P = Re(p)

P/Q, where p,q € ' real rational function for

Ry = {dﬂ | dp = %dta P, q € ’i’+} C M4

rational positive measure

b
/deﬂ=ck, k=0,1,...,n ()

Find dp € M, satisfying () linear problem
Find dp € R4 satisfying (7) nonlinear problem



Ex: Modeling speech

u y
— 1 w@ [
excitation speech

signal

on each (30 ms) subinterval
w(z) constant, y stationary

— T

;I; — Sp&n{l, ez‘t’e%t’ o }eint}

0.04 ~
o.02 -
O.04

.

observation: yo,Y1,-.-, YN

N =~ 250

N—k
o _ 1
ikt
/ e ap = cp = ;:n Yt+kYt nomn

dp = |w(eit)[2 dt € Ry




Cellular telephone:

Pn
du = ——dt
PR

¢n(z) n:th Szegd polynomial

orthogonal on the unit circle

FET in blue

Another rational
positive measure —
of the same degree




¢, interior of €,

c € é+ @ (c,p)>0 Vpe P, {0} strictly positive
sequence

HYPOTHESIS 2. The vector space ‘B consists of Lipschitz

continuous functions.

THEOREM. Suppose that Hypotheses 1 and 2 hold. Then

o

ﬁJT(R+) — (j:_|_.

In other words, the moment problem for rational measures

is solvable if and only if ¢ is strictly positive.




THEOREM. Suppose that Hypotheses 1 and 2 hold. Then

o

M(R+) — (j:_|_.

In other words, the moment problem for rational measures

is solvable if and only if ¢ is strictly positive.

THEOREM (Krein-Nudelman). Suppose that
Hypothesis 1 holds. Then

MM, ) = €.

In other words, the moment problem is solvable

if and only if ¢ is positive.




THEOREM. Suppose that Hypotheses 1 and 2 hold. Then

o

M(R+) — Q:_|_.

In other words, the moment problem for rational measures

is solvable if and only if ¢ is strictly positive.

Proof. As in the classical case:

b o
p)= [ Pdu>0 VpePn{o} W) MER,)CE,

To show that M(R ) = é’; it suffices to show:

PROPOSITION. Suppose that Hypotheses 1 and 2 hold.
Then there is a nonempty subset P, C R, such that

(P ) is both open and closed in the convex set €.

=) mp)-=¢, M) MR =C,




PROPOSITION. Suppose that Hypotheses 1 and 2 hold.
Then there is a nonempty subset P, C R, such that

9M(P) is both open and closed in the convex set €.

For a fixed p € ., consider the set

P )
'P+:{d#€73+|d#=§dta qqu—l—}

and the map Mp, : Py — é+.

e Jac M p, full rank ‘ M(PL) C &_l_ open

e () Lipschitz ‘ M p, proper ‘ M(P4) C E’G:Jr closed



COROLLARY. Suppose that Hypotheses 1 and 2 hold.
Then the moment map M p, : P, — €, is surjective.

In other words, for each ¢ € €, the moment problem

M(dp) =c fordu € Py

has a solution.

We want to show that M p, : PL — €, is also injective.

In other words, for each ¢ € €., the moment problem
M(dp) =c fordu € Py

has a unique solution.
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A Dirichlet principle

Solving the moment problem

M(dp) =c for du € Py ce QO:+

is equivalent to solving the equations
fk:(q —Ck—/ﬂk—t—o k=0,1,...,n,
where p € ‘B+ is fixed.

In this case, the Dirichlet Principle would say that f; (¢) =0
should be the critical point equations for some smooth function
Jp ‘i3+ — R. In fact, a Dirichlet Principle would assert that J,
should have a unique minimum and no other critical points.



Define a 1-form on ‘f3+: w = Re {Z ff(Q)ko}

k=0

n b n
P
W = Re{chqu—/ Zukquth}
¢ k=0

dQ =Re ) urdgs B _[°P
— = Rez cedqx / dQdt

7

dw = / —5dQ N dQdt =0 ‘ w closed

‘IB+ convex ‘ w exact (The Poincaré Lemma)



n b P
W= Rechqu — / édet

k=0

By the Poincaré Lemma, we can integrate along any curve:

Jp(q1) : /q:l (RBZde% —/ ngdt) —

(modulo a constant

b
Jp(q) = (¢, @) —/ PlogQdt

of integration)

 This is a strictly convex functional



b
Jp(q) = (¢, @) —/ PlogQdt

strictly convex function J, : ’fﬁ — R satisfying

0%, _, _['.P

ur—=dt, k=0,1,...,n
agk‘ a kQ (T)

. We have already shown that 9J1;5, is surjective so that the

moment equations (1) have a solution ¢ € L. .
. Therefore, since [, is strictly convex, J, has a unique minimum.

. Hence 915, is also injective. In fact, 91,5, is a diffeomorphism.

o

. Fix c€ €. The map ¢g°: ‘P, — *B. that sends p to ¢ is a
diffeomorphism onto its image. In other words, the solutions to
the moment problem with rational positive measures are

completely parameterized by p € 3. ; i.e., the spectral zeros.



EXAMPLE. P = span{l,e%,...,e"}

The solutions dy € Ry form a manifold of dimension 2n.

A foliation with one leave for each
choice of p € P, (Kalman filtering)

7/ / AN

E— = =,

A f-:-)hatlon w11:h one leave for each N 77 7
choice of c € € /

THEOREM. The two foliations

min J(q)
intersect transversely so that each geP . ‘
leaf in one meets each leaf in the

unique solution dy = =dt

p
other in exactly one point. Q




Basic paradigm

 Find complete parameterization
smooth

_bijection | Sets of tuning
parameters

Complete class of
solutions satisfying
complexity constraint

* For any choice of tuning parameters, determine the
corresponding solution by convex optimization

 Choose a solution that best satisfies additional design
specifications (without increasing the complexity)



Conclusions

* The classical moment problem has a solution for
each positive sequence.

 Natural constraints in applications, e.g., in systems
and control, motivate the moment problems for
rational measures.

e The moment problem for rational measures
- has a solution for each strictly positive sequence
- Is completely parameterized by spectral zeros
- can be solved by convex optimization



