

The Moment Problem for Rational Measures: Convexity in the Spirit of Krein

Anders Lindquist
Royal Institute of Technology (KTH)
Stockholm, Sweden

Reid Prize Lecture July 8, 2009

Special recognition

Christopher Byrnes

Tryphon Giorgiou

Sergei Gusev

C. I. Byrnes and A. Lindquist, The moment problem for rational measures: convexity in the spirit of Krein, in *Modern Analysis and Applications: To the Centenary of Mark Krein*, Vol I, Birkhäuser 2009.

Outline of talk

- The classical theory of moments in the style of Krein
- The moment problem for rational measures
- A Dirichlet principle for the rational moment problem

The generalized moment problem in the spirit of Krein

 \mathfrak{P} finite-dimensional subspace of C[a,b]

$$(u_0, u_1, \ldots, u_n)$$
 basis in \mathfrak{P}

$$p \in \mathfrak{P} \Rightarrow$$

$$p(t) = \sum_{k=0}^{n} p_k u_k(t)$$

Given $c := (c_0, c_1, \dots, c_n) \in \mathbb{C}^{n+1}$,

find positive measure $d\mu$ such that

$$\int_a^b u_k(t) \frac{d\mu}{d\mu} = c_k, \quad k = 0, 1, \dots, n$$

Dual cones

$$p \in \mathfrak{P} \Rightarrow$$

$$p(t) = \sum_{k=0}^{n} p_k u_k(t)$$

$$\mathfrak{P}_+ := \{ p \in \mathfrak{P} \mid P(t) := \operatorname{Re}(p) \ge 0 \quad \forall t \in [a, b] \}$$

closed convex cone

$$\langle c,p
angle := \operatorname{Re}\left\{\sum_{k=0}^n c_k p_k\right\} \quad ext{where } c := (c_0,c_1,\ldots,c_n) \in \mathbb{C}^{n+1}.$$

$$\mathfrak{C}_{+} := \left\{ c \in \mathbb{C}^{n+1} \mid \langle c, p \rangle \ge 0 \quad \forall p \in \mathfrak{P}_{+} \right\}$$

dual cone

closed convex

$$\mathfrak{C}_+=\mathfrak{P}_+^\mathsf{T}$$

 $c \in \mathfrak{C}_+$ positive sequence

Ex 1: Power moment problem

$$u_k(t) = t^k, \quad k = 0, 1, \dots, n$$

Every $p \in \mathfrak{P}$ is a polynomial.

$$c \in \mathfrak{C}_{+}$$

$$(n \text{ even})$$

$$\begin{cases} \begin{bmatrix} c_{j+k} \end{bmatrix}_{j,k=0}^{n/2} \ge 0 \\ \\ (a+b)c_{j+k+1} - abc_{j+k} - c_{j+k+2} \end{bmatrix}_{j,k=0}^{n/2-1} \ge 0 \end{cases}$$

Ex 2: Trigonometric moment problem

$$u_k(t) := e^{ikt}, \quad k = 0, 1, \dots, n \qquad [a, b] = [-\pi, \pi]$$

$$c \in \mathfrak{C}_{+} \qquad \longleftarrow \qquad T_{n} = \begin{bmatrix} c_{0} & c_{1} & \cdots & c_{n} \\ \bar{c}_{1} & c_{0} & \cdots & c_{n-1} \\ \vdots & \vdots & \ddots & \vdots \\ \bar{c}_{n} & \bar{c}_{n-1} & \cdots & c_{0} \end{bmatrix} \geq 0$$

Toeplitz matrix

Ex 3: Nevanlinna-Pick interpolation

$$u_k(t) = \frac{e^{it} + z_k}{e^{it} - z_k}, \quad k = 0, 1, \dots, n$$

For $d\mu = Fdt$, where F = Re(f) with f analytic in \mathbb{D} ,

$$c_k = \int_{-\pi}^{\pi} u_k(t) F(t) dt = f(z_k) \quad k = 0, 1, \dots, n$$

$$c \in \mathfrak{C}_+$$

$$\qquad \qquad P_n = \left[\frac{c_j + \bar{c}_k}{1 - z_j \bar{z}_k}\right]_{j,k=0}^n \ge 0$$

Pick matrix

The moment map

$$\mathfrak{M}: C[a,b]^* \to \mathbb{C}^{n+1}, \quad d\mu \mapsto c = \int_a^b u(t)d\mu$$

 $\mathcal{M}_+ \subset C[a,b]^*$ space of positive measures

$$c \in \mathfrak{M}(\mathcal{M}_+)$$

$$P(t) = \operatorname{Re}\{p(t)\}\$$

$$\langle c, p \rangle := \operatorname{Re} \left\{ \sum_{k=0}^{n} c_k p_k \right\} = \int_a^b P(t) d\mu \ge 0 \quad \forall p \in \mathfrak{P}_+$$

$$c\in \mathfrak{C}_+$$

$$\mathfrak{M}(\mathcal{M}_+)\subset \mathfrak{C}_+$$

HYPOTHESIS 1. $\mathring{\mathfrak{P}}_{+} \neq \emptyset$, where $\mathring{\mathfrak{P}}_{+}$ is the interior of \mathfrak{P}_{+} .

THEOREM(Krein-Nudelman). Suppose that Hypothesis 1 holds. Then

$$\mathfrak{M}(\mathcal{M}_+)=\mathfrak{C}_+.$$

In other words, the moment problem is solvable if and only if c is positive.

We have already shown that $\mathfrak{M}(\mathcal{M}_+) \subset \mathfrak{C}_+$ It remains to prove that $\mathfrak{M}(\mathcal{M}_+) \supset \mathfrak{C}_+$ **Proof.** Consider the curve $U = \{u(t); t \in [a, b]\} \subset \mathbb{C}^{n+1}$, where $u(t) = (u_0(t), u_1(t), \dots, u_n(t))$ $a \leq t \leq b$.

For $p \in \mathfrak{P}$,

$$\langle u(t), p \rangle := \operatorname{Re} \left\{ \sum_{k=0}^{n} p_k u_k(t) \right\} = \operatorname{Re} \left\{ p(t) \right\} = P(t)$$

K(U) convex conic hull of U

$$K(U)^{\mathsf{T}} = \{ p \in \mathfrak{P} \mid \langle \phi, p \rangle \ge 0, \ \forall \phi \in K(U) \} = \mathfrak{P}_+$$

$$K(U) = \mathfrak{C}_+$$

 $\mathfrak{M}(\mathcal{M}_+) \subset \mathfrak{C}_+$ is closed, by the Helly selection theorem.

Show that
$$\mathfrak{C}_+ \subset \mathfrak{M}(\mathcal{M}_+)$$
: $\mathfrak{M}(\delta_t) = u(t), \quad a \leq t \leq b$

$$U \subset \mathfrak{M}(\mathcal{M}_{+}) \longrightarrow \underbrace{K(U)}_{\mathfrak{C}_{+}} \subset \mathfrak{M}(\mathcal{M}_{+})$$

Outline of talk

- The classical theory of moments in the style of Krein
- The moment problem for rational measures
- A Dirichlet principle for the rational moment problem

A motivating example

$$\mathbf{w}(\mathbf{z}) \qquad \mathbf{y} \qquad y(t) = \sum_{k=-\infty}^{t} w_{t-k} u(k)$$

System is finite-dimensional iff $w(z) := \sum_{k=0}^{\infty} w_k z^{-k}$ is rational

white noise
$$\underbrace{ \begin{array}{c} \mathbf{u} \\ \mathbf{w}(\mathbf{z}) \end{array} }$$
 $\underbrace{ \begin{array}{c} \mathbf{y} \\ \mathbf{w}(\mathbf{t}) \\ \mathbf{w}(\mathbf{t}) \end{array} }_{\mathbf{w}(\mathbf{t})} \underbrace{ \begin{array}{c} \mathbf{y} \\ \mathbf{w}(\mathbf{t}) \\ \mathbf{w}(\mathbf{t}) \end{array} }_{\mathbf{w}(\mathbf{t})} \underbrace{ \begin{array}{c} \mathbf{y} \\ \mathbf{w}(\mathbf{t}) \\ \mathbf{w}(\mathbf{t}) \end{array} }_{\mathbf{w}(\mathbf{t})} \underbrace{ \begin{array}{c} \mathbf{y} \\ \mathbf{w}(\mathbf{t}) \\ \mathbf{w}(\mathbf{t}) \end{array} }_{\mathbf{w}(\mathbf{t})} \underbrace{ \begin{array}{c} \mathbf{y} \\ \mathbf{w}(\mathbf{t}) \\ \mathbf{w}(\mathbf{t}) \end{array} }_{\mathbf{w}(\mathbf{t})} \underbrace{ \begin{array}{c} \mathbf{y} \\ \mathbf{w}(\mathbf{t}) \\ \mathbf{w}(\mathbf{t}) \end{array} }_{\mathbf{w}(\mathbf{t})} \underbrace{ \begin{array}{c} \mathbf{y} \\ \mathbf{w}(\mathbf{t}) \\ \mathbf{w}(\mathbf{t}) \end{array} }_{\mathbf{w}(\mathbf{t})} \underbrace{ \begin{array}{c} \mathbf{y} \\ \mathbf{w}(\mathbf{t}) \\ \mathbf{w}(\mathbf{t}) \end{array} }_{\mathbf{w}(\mathbf{t})} \underbrace{ \begin{array}{c} \mathbf{y} \\ \mathbf{w}(\mathbf{t}) \\ \mathbf{w}(\mathbf{t}) \end{array} }_{\mathbf{w}(\mathbf{t})} \underbrace{ \begin{array}{c} \mathbf{y} \\ \mathbf{w}(\mathbf{t}) \\ \mathbf{w}(\mathbf{t}) \end{array} }_{\mathbf{w}(\mathbf{t})} \underbrace{ \begin{array}{c} \mathbf{y} \\ \mathbf{w}(\mathbf{t}) \\ \mathbf{w}(\mathbf{t}) \end{array} }_{\mathbf{w}(\mathbf{t})} \underbrace{ \begin{array}{c} \mathbf{y} \\ \mathbf{w}(\mathbf{t}) \\ \mathbf{w}(\mathbf{t}) \end{array} }_{\mathbf{w}(\mathbf{t})} \underbrace{ \begin{array}{c} \mathbf{y} \\ \mathbf{w}(\mathbf{t}) \\ \mathbf{w}(\mathbf{t}) \end{array} }_{\mathbf{w}(\mathbf{t})} \underbrace{ \begin{array}{c} \mathbf{y} \\ \mathbf{w}(\mathbf{t}) \\ \mathbf{w}(\mathbf{t}) \end{array} }_{\mathbf{w}(\mathbf{t})} \underbrace{ \begin{array}{c} \mathbf{y} \\ \mathbf{w}(\mathbf{t}) \\ \mathbf{w}(\mathbf{t}) \end{array} }_{\mathbf{w}(\mathbf{t})} \underbrace{ \begin{array}{c} \mathbf{y} \\ \mathbf{w}(\mathbf{t}) \\ \mathbf{w}(\mathbf{t}) \end{array} }_{\mathbf{w}(\mathbf{t})} \underbrace{ \begin{array}{c} \mathbf{y} \\ \mathbf{w}(\mathbf{t}) \\ \mathbf{w}(\mathbf{t}) \end{array} }_{\mathbf{w}(\mathbf{t})} \underbrace{ \begin{array}{c} \mathbf{y} \\ \mathbf{w}(\mathbf{t}) \\ \mathbf{w}(\mathbf{t}) \\ \mathbf{w}(\mathbf{t}) \end{aligned} }_{\mathbf{w}(\mathbf{t})} \underbrace{ \begin{array}{c} \mathbf{y} \\ \mathbf{w}(\mathbf{t}) \\ \mathbf{w}(\mathbf{t}) \end{aligned} }_{\mathbf{w}(\mathbf{t})} \underbrace{ \begin{array}{c} \mathbf{y} \\ \mathbf{w}(\mathbf{t}) \\ \mathbf{w}(\mathbf{t}) \end{aligned} }_{\mathbf{w}(\mathbf{t})} \underbrace{ \begin{array}{c} \mathbf{y} \\ \mathbf{w}(\mathbf{t}) \\ \mathbf{w}(\mathbf{t}) \end{aligned} }_{\mathbf{w}(\mathbf{t})} \underbrace{ \begin{array}{c} \mathbf{y} \\ \mathbf{w}(\mathbf{t}) \\ \mathbf{w}(\mathbf{t}) \end{aligned} }_{\mathbf{w}(\mathbf{t})} \underbrace{ \begin{array}{c} \mathbf{y} \\ \mathbf{w}(\mathbf{t}) \\ \mathbf{w}(\mathbf{t}) \end{aligned} }_{\mathbf{w}(\mathbf{t})} \underbrace{ \begin{array}{c} \mathbf{y} \\ \mathbf{w}(\mathbf{t}) \\ \mathbf{w}(\mathbf{t}) \end{aligned} }_{\mathbf{w}(\mathbf{t})} \underbrace{ \begin{array}{c} \mathbf{y} \\ \mathbf{w}(\mathbf{t}) \\ \mathbf{w}(\mathbf{t}) \end{aligned} }_{\mathbf{w}(\mathbf{t})} \underbrace{ \begin{array}{c} \mathbf{y} \\ \mathbf{w}(\mathbf{t}) \end{aligned}$

$$\int_{-\pi}^{\pi} e^{ik\theta} \Phi(e^{i\theta}) \frac{d\theta}{2\pi} = c_k := E\{y(t+k)y(t)\} \qquad \qquad \Phi(z) = \frac{P(z)}{Q(z)}$$

\$\mathfrak{P}\$ consists of trigonometric polynomials

$$P(e^{i\theta}) = \text{Re}\{p(e^{i\theta})\}, \quad Q(e^{i\theta}) = \text{Re}\{q(e^{i\theta})\}, \text{ where } p, q \in \mathfrak{P}_+$$

The moment problem for rational measures

DEF.
$$p \in \mathfrak{P}, \quad p = \sum_{k=0}^{n} p_k u_k$$
 polynomial in \mathfrak{P}
$$P = \operatorname{Re}(p)$$

P/Q, where $p, q \in \mathfrak{P}$ real rational function for \mathfrak{P}

$$\mathcal{R}_{+} = \left\{ d\mu \mid d\mu = rac{P(t)}{Q(t)} dt, \; p,q \in \overset{\circ}{\mathfrak{P}}_{+}
ight\} \subset \mathcal{M}_{+}$$

rational positive measure

$$\int_{a}^{b} u_k d\mu = c_k, \quad k = 0, 1, \dots, n \quad (\dagger)$$

Find $d\mu \in \mathcal{M}_+$ satisfying (†) linear problem

Find $d\mu \in \mathcal{R}_+$ satisfying (†) nonlinear problem

Ex: Modeling speech

on each (30 ms) subinterval w(z) constant, y stationary

observation: y_0, y_1, \ldots, y_N

 $N \approx 250$

$$\int_{-\pi}^{\pi} e^{ikt} d\mu = c_k := \frac{1}{N+1} \sum_{t=0}^{N-k} y_{t+k} y_t, \quad k = 0, 1, \dots, n \quad \frac{n}{n} = \frac{10}{N+1}$$

$$\mathfrak{P} = \operatorname{span}\{1, e^{it}, e^{2it}, \dots, e^{int}\}\$$

$$d\mu = \left| w(e^{it}) \right|^2 dt \in \mathcal{R}_+$$

Cellular telephone:

$$d\mu = \frac{\rho_n}{\left|\varphi_n(e^{it})\right|^2} dt$$

 $\varphi_n(z)$ n:th Szegö polynomial orthogonal on the unit circle

FFT in blue

Another rational positive measure of the same degree

$$\overset{\circ}{\mathfrak{C}_{+}}$$
 interior of \mathfrak{C}_{+}

$$c \in \overset{\circ}{\mathfrak{C}_+}$$
 \longleftrightarrow $\langle c, p \rangle > 0$ $\forall p \in \mathfrak{P}_+ \setminus \{0\}$ strictly positive sequence

HYPOTHESIS 2. The vector space \mathfrak{P} consists of Lipschitz continuous functions.

THEOREM. Suppose that Hypotheses 1 and 2 hold. Then

$$\mathfrak{M}(\mathcal{R}_+) = \overset{\circ}{\mathfrak{C}}_+.$$

In other words, the moment problem for rational measures is solvable if and only if c is strictly positive.

THEOREM. Suppose that Hypotheses 1 and 2 hold. Then

$$\mathfrak{M}(\mathcal{R}_+) = \overset{\circ}{\mathfrak{C}}_+.$$

In other words, the moment problem for rational measures is solvable if and only if c is strictly positive.

THEOREM(Krein-Nudelman). Suppose that Hypothesis 1 holds. Then

$$\mathfrak{M}(\mathcal{M}_+)=\mathfrak{C}_+.$$

In other words, the moment problem is solvable if and only if c is positive.

THEOREM. Suppose that Hypotheses 1 and 2 hold. Then

$$\mathfrak{M}(\mathcal{R}_+) = \overset{\circ}{\mathfrak{C}}_+.$$

In other words, the moment problem for rational measures is solvable if and only if c is strictly positive.

Proof. As in the classical case:

$$\langle c, p \rangle = \int_a^b P d\mu > 0 \quad \forall p \in \mathfrak{P}_+ \setminus \{0\} \quad \Longrightarrow \quad \mathfrak{M}(\mathcal{R}_+) \subset \mathring{\mathfrak{C}}_+$$

To show that $\mathfrak{M}(\mathcal{R}_+) = \mathring{\mathfrak{C}}_+$ it suffices to show:

PROPOSITION. Suppose that Hypotheses 1 and 2 hold. Then there is a nonempty subset $\mathcal{P}_+ \subset \mathcal{R}_+$ such that $\mathfrak{M}(\mathcal{P}_+)$ is both open and closed in the convex set $\overset{\circ}{\mathfrak{C}}_+$.

$$\mathfrak{M}(\mathcal{P}_+) = \overset{\circ}{\mathfrak{C}}_+ \qquad \mathfrak{M}(\mathcal{R}_+) = \overset{\circ}{\mathfrak{C}}_+$$

PROPOSITION. Suppose that Hypotheses 1 and 2 hold. Then there is a nonempty subset $\mathcal{P}_+ \subset \mathcal{R}_+$ such that $\mathfrak{M}(\mathcal{P}_+)$ is both open and closed in the convex set $\overset{\circ}{\mathfrak{C}}_+$.

For a fixed $p \in \mathring{\mathfrak{P}}_+$, consider the set

$$\mathcal{P}_{+} = \left\{ d\mu \in \mathcal{R}_{+} \mid d\mu = \frac{P}{Q}dt, \ q \in \mathring{\mathfrak{P}}_{+} \right\}$$

and the map $\mathfrak{M}_{|\mathcal{P}_+}:\mathcal{P}_+ \to \mathring{\mathfrak{C}}_+$.

- Jac $\mathfrak{M}_{|\mathcal{P}_+}$ full rank \longrightarrow $\mathfrak{M}(\mathcal{P}_+) \subset \mathring{\mathfrak{C}}_+$ open
- Q Lipschitz $\longrightarrow \mathfrak{M}_{|\mathcal{P}_+}$ proper $\longrightarrow \mathfrak{M}(\mathcal{P}_+) \subset \mathring{\mathfrak{C}}_+$ closed

COROLLARY. Suppose that Hypotheses 1 and 2 hold. Then the moment map $\mathfrak{M}_{|\mathcal{P}_+}: \mathcal{P}_+ \to \mathring{\mathfrak{C}}_+$ is surjective. In other words, for each $c \in \mathring{\mathfrak{C}}_+$, the moment problem

$$\mathfrak{M}(d\mu) = c \quad \text{for } d\mu \in \mathcal{P}_+$$

has a solution.

We want to show that $\mathfrak{M}_{|\mathcal{P}_+}: \mathcal{P}_+ \to \mathring{\mathfrak{C}}_+$ is also injective. In other words, for each $c \in \mathring{\mathfrak{C}}_+$, the moment problem

$$\mathfrak{M}(d\mu) = c \quad \text{for } d\mu \in \mathcal{P}_+$$

has a unique solution.

Outline of talk

- The classical theory of moments in the style of Krein
- The moment problem for rational measures
- A Dirichlet principle for the rational moment problem

A Dirichlet principle

Solving the moment problem

$$\mathfrak{M}(d\mu) = c \quad \text{for } d\mu \in \mathcal{P}_+ \qquad \qquad c \in \overset{\circ}{\mathfrak{C}}_+$$

is equivalent to solving the equations

$$f_k^p(q) := c_k - \int_a^b u_k \frac{P}{Q} dt = 0, \quad k = 0, 1, \dots, n,$$

where $p \in \mathring{\mathfrak{P}}_+$ is fixed.

In this case, the Dirichlet Principle would say that $f_k^p(q) = 0$ should be the critical point equations for some smooth function $\mathbb{J}_p: \mathring{\mathfrak{P}}_+ \to \mathbb{R}$. In fact, a Dirichlet Principle would assert that \mathbb{J}_p should have a unique minimum and no other critical points.

Define a 1-form on
$$\mathring{\mathfrak{P}}_+$$
: $\omega = \operatorname{Re} \left\{ \sum_{k=0}^n f_k^p(q) dq_k \right\}$

$$\omega = \operatorname{Re} \left\{ \sum_{k=0}^{n} c_k dq_k - \int_a^b \sum_{k=0}^{n} u_k dq_k \frac{P}{Q} dt \right\}$$

$$dQ = \operatorname{Re} \sum_{k=0}^{n} u_k dq_k = \operatorname{Re} \sum_{k=0}^{n} c_k dq_k - \int_a^b \frac{P}{Q} dQ dt$$

$$d\omega = \int_{a}^{b} \frac{P}{Q^2} dQ \wedge dQ dt = 0$$
 ω closed

$$\mathring{\mathfrak{P}}_+$$
 convex

 \mathfrak{P}_+ convex $\qquad \qquad \omega$ exact (The Poincaré Lemma)

$$\omega = \operatorname{Re} \sum_{k=0}^{n} c_k dq_k - \int_{a}^{b} \frac{P}{Q} dQ dt$$

By the Poincaré Lemma, we can integrate along any curve:

$$\mathbb{J}_p(q_1) := \int_{q_0}^{q_1} \left(\operatorname{Re} \sum_{k=0}^n c_k dq_k - \int_a^b \frac{P}{Q} dQ dt \right) \qquad \blacksquare$$

$$\mathbb{J}_p(q) = \langle c, q \rangle - \int_a^b P \log Q \, dt \qquad \begin{array}{c} \text{(modulo a constant)} \\ \text{of integration)} \end{array}$$

This is a strictly convex functional

$$\mathbb{J}_p(q) = \langle c, q \rangle - \int_a^b P \log Q \, dt$$

strictly convex function $\mathbb{J}_p: \check{\mathfrak{P}}_+ \to \mathbb{R}$ satisfying

$$\frac{\partial \mathbb{J}_p}{\partial q_k} = c_k - \int_a^b u_k \frac{P}{Q} dt, \quad k = 0, 1, \dots, n \quad (\dagger)$$

- 1. We have already shown that $\mathfrak{M}_{|\mathcal{P}_{+}}$ is surjective so that the moment equations (†) have a solution $\hat{q} \in \mathring{\mathfrak{P}}_{+}$.
- 2. Therefore, since \mathbb{J}_p is strictly convex, \mathbb{J}_p has a unique minimum.
- 3. Hence $\mathfrak{M}_{|\mathcal{P}_+}$ is also injective. In fact, $\mathfrak{M}_{|\mathcal{P}_+}$ is a diffeomorphism.
- 4. Fix $c \in \mathring{\mathfrak{C}}_+$. The map $g^c : \mathring{\mathfrak{P}}_+ \to \mathring{\mathfrak{P}}_+$ that sends p to \hat{q} is a diffeomorphism onto its image. In other words, the solutions to the moment problem with rational positive measures are completely parameterized by $p \in \mathring{\mathfrak{P}}_+$; i.e., the spectral zeros.

EXAMPLE.
$$\mathfrak{P} = \text{span}\{1, e^{it}, \dots, e^{int}\}$$

The solutions $d\mu \in \mathcal{R}_+$ form a manifold of dimension 2n.

A foliation with one leave for each choice of $p \in \mathring{\mathfrak{P}}_+$ (Kalman filtering)

A foliation with one leave for each choice of $c \in \mathring{\mathfrak{C}}_+$

THEOREM. The two foliations intersect transversely so that each leaf in one meets each leaf in the other in exactly one point.

$$\min_{q \in \mathring{\mathfrak{P}}_+} \mathbb{J}(q)$$

unique solution $d\mu = \frac{P}{Q}dt$

Basic paradigm

• Find complete parameterization

- For any choice of tuning parameters, determine the corresponding solution by convex optimization
- Choose a solution that best satisfies additional design specifications (without increasing the complexity)

Conclusions

- The classical moment problem has a solution for each positive sequence.
- Natural constraints in applications, e.g., in systems and control, motivate the moment problems for rational measures.
- The moment problem for rational measures
 - has a solution for each strictly positive sequence
 - is completely parameterized by spectral zeros
 - can be solved by convex optimization