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Motivation

Methane Hydrate:

Ice-like crystal consists of methane gas trapped inside the water cage

Exists under low temperature and high pressure

Found in ocean sediments and polar regions

Possible energy source in near future

Environmental hazard

[D. Shin] Siazik et al. [2017] Deepwater Horizon [Jesslyn Shields]
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Model

Two dynamic multiphase multicomponent flow models:

Liu-Fleming [2007] Gupta-Helmig-Wohlmuth [2015]

basin scale production time scale

allows saturated and
unsaturated cases does not allow unsaturated case

local thermodynamic
equilibrium phase change non-equilibrium phase change

porosity depends on stress poro-elastic

salinity (NaCl) free of any salinity
basis for simplified model
allows well-posedness &

numerical analysis1
-

1Gibson et al. [2014], Peszynska, Showalter, and Webster [2015], Peszynska, Hong, Torres, and Kim [2016]
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Gas Hydrate Stability Zone (GHSZ)

GHSZ; no gas is present
Bottom of hydrate stability zone
(BHSZ); x = 0

Depends on pressure, temperature,
methane gas concentration, and
activity of water2

Located at the three-phase equilibrium
point

Below of BHSZ; no hydrate formation

2Sloan [1998]
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Maximum Solubility of Methane Gas

In the GHSZ, the maximum solubility of methane gas3

χ∗ ≈ χ∗(P,T , salinity, rock type)

Assume:

Pressure ≈ hydrostatic pressure,

Temperature ≈ given by geothermal gradient,

Salinity = constant,

Homogeneous rock type.

Then,

χ∗(P(x , t),T (x), salinity, rock type) ≈ χ∗(x)

is a non-increasing function in x.

3Peszynska, Showalter, and Webster [2015]
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Simplified Transport Model in Hydrate Zone1

∂

∂t
(
φ(S`χ+ ShRh

)
+∇ ·

(
qχ−∇ · (DM

` ∇χ)
)

= fM

ρ`

Phase Equilibrium Condition:
Sh = 0, if χ(x) ≤ χ∗(x)
0 ≤ Sh ≤ 1, if χ(x) > χ∗(x)
Sh(χ∗(x)− χ(x)) = 0, for x ∈ (0,Dmax)

χ: Methane solubility (mass fraction in liquid phase)
S`,h: liquid/hydrate saturation; S` + Sh = 1
χ∗: Maximum solubility of methane; non-increasing function

Rh = ρhχ
M
h

ρ`
(≈ 0.1203 kg/kg for realistic model)

φ,DM
` : porosity and diffusion coefficient

q: Darcy velocity in liquid

1Peszynska, Showalter, and Webster [2015]
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Hydrate Zone: S` + Sh = 1

Consider advective flow: ut + qχx = 0
where u = (1− Sh)χ+ ShRh, the total methane content per mass of liquid phase.1

Challenge:
u(x ;χ) is a multivalued graph parametrized by x (= −depth)

Approach:
Consider the inverse of u:

χ(x ; u) =

{
u, if u ≤ χ∗(x)
χ∗(x), if u > χ∗(x)

χ(x ; ·) is non-increasing in homogeneous sediment
χ(·; u) is increasing, concave, non-injective, but
differentiable only a.e.

1Peszynska, Showalter, and Webster [2015], Gibson, Medina, Peszynska, and Showalter [2014]
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Numerical Scheme

Solve numerically by the 1st order Godunov’s scheme to get u.
Use local phase behavior solver to get χ and S from u.

1st order Godunov’s scheme (Upwind):

(1) Un+1
j = Un

j − qν
[
F (χn

j , χ
n
j+1)− F (χn

j−1, χ
n
j )
]

where F (χn
j , χ

n
j+1) = χn

j and ν = τ

h
CFL condition: |νχu| ≤ 1
Local phase behavior solver:

(2) χn
j = min{Un

j , χ
∗(xj )} (Sh)n

j =
Un

j − χn
j

Rh − χn
j

while tn ≤ T
1 Given U(x , tn), χ(x , tn). tn+1 = tn + τ
2 Compute U(x , tn+1) using (1)
3 Solve for χ(x , tn+1) and Sh(x , tn+1) using (2)
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Example 1
Consider the following problem:

ut + qχx = 0, x ∈ (0,Dmax), t > 0,
u(x , 0) = uLH(−x), x ∈ (0,Dmax),
u(0, t) = uL,

where

χ(x ; u) =
{

u, if u ≤ χ∗(x),
χ∗(x), if u > χ∗(x).

Ulleung Basin Site (UBGH2-11)1 data:

Dref Pref Tref Salinity GT Dmax

2080 m 21.02 MPa 274.35 K 3.5% 0.12 K/m 154 m

1Peszynska, Hong, Torres, and Kim [2016]
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Numerical Solution of Example 1

Comparison between the analytical solution1 and the numerical solution

1Peszynska, Showalter, and Webster [2015]
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Numerical Analysis of the Scheme
Rate of convergence:

Well known for monotone finite different
schemes for ut +

(
χ(u)

)
x

= 0:

O(
√

h) in L1 for linear advection4

In L1, convergence rate is no better than
O(
√

h) even for a nonlinear flux5

In W−1,1, convergence rate of O(h)
obtained6

O(h) in W−1,1 can be translated to O(
√

h)
in L1

Log-log plot

Some result known for ut +
(
χ(x ; u)

)
x = 0 with monotone difference

scheme:
In Lp

loc, convergence rate is O(h) for Lax-Friedrichs scheme with smooth χ(·, u) 7

For χ(x ; u) = k(x)f (u) with smooth f , convergence rate is O(h) in L1 for Godunov
and EO fluxes8

4Lucier [1985], Tang and Teng [1995]
5Kruzhkov [1960], Kuznetsov [1976], Cockburn and Gremaud [1997], Sabac [1997]
6Tadmor [1991], Nessyahu and Tadmor [1992], Nessyahu, Tadmor, and Tassa [1994]
7Karlsen [2003], Karlsen and Towers [2004]
8Towers [2000]
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Stability analysis

Theorem [Peszynska, Shin, 2019]9

Assume χ ∈ C2((0,Dmax)× R+ ∪ {0}). Numerical scheme is weakly total-variation
stable. In particular,

(A) TV (Un) ≤ C1(T )TV (U0) + C2(T ).

Further,

(B) TVT (Un) ≤ C(T )

where C(T ) is some constant depends on T and TV (U0).

Challenges in proof
Numerical scheme is not TVD
χ(x ; u) is not separable
Work with source term ut + χu(x ; u)ux = −χx (x ; u) for smooth χ

9Peszynska, Shin [2019], manuscript in preparation
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Proof outline of (A)

Un+1
j = Un

j − ν
[
χn

j − χn
j−1

]
Assume χ ∈ C2((0,Dmax)× R+ ∪ {0}). Let ∆Un

j = Un
j − Un

j−1. Subtract the
scheme at j − 1 from j to get

∆Un+1
j = ∆Un

j − ν
[
χn

j − χn
j−1

]
+ ν

[
χn

j−1 − χn
j−2

]
.

Substitute χn
i − χn

i−1 for i = j , j − 1 with

χn
i − χn

i−1 ≈ χu(xi ,U
n
i )(Un

i − Un
i−1) + χx (x i ,Un

i−1)h

using the mean value theorem. Then rearrange to get

∆Un+1
j = ∆Un

j

(
1− νχu(xj ,U

n
j )
)
−νχu(xj−1,U

n
j−1)∆Un

j−1

−τ
[
χx (x j ,Un

j−1)− χx (x j−1,Un
j−2)︸ ︷︷ ︸

A1

]
.

Use the mean value theorem to rewrite A1.
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Proof outline of (A)
Take the absolute value and apply the triangle inequality. Then take the sum over j ∈ Z.
With CFL condition |νχu| ≤ 1,

TV (Un+1) ≤ TV (Un)−
∑
j∈Z

νχu(xj ,U
n
j )
∣∣∆Un

j
∣∣+
∑
j∈Z

νχu(xj−1,U
n
j−1)
∣∣∆Un

j−1
∣∣

+ τ‖χxu‖∞
∑
j∈Z

∣∣∆Un
j−1
∣∣+ 2τ‖χxx‖∞

∑
j∈Z

h

Re-indexing results

TV (Un+1) ≤ TV (Un)(1 + ατ) + βτ where α, β > 0

We can obtain the TV bound:

TV (Un) ≤ TV (U0)(1 + ατ)n + βτ

n−1∑
k=0

(1 + ατ)k

Evaluate the finite series:
n−1∑
k=0

(1 + ατ)k = (1 + ατ)n − 1
ατ

Bernoulli’s inequality: (1 + ατ)n ≤ enατ = eαT where nτ = T
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Proof outline of (B)

TVT (Un) =
T/τ∑
n=0

[
τTV (Un) + ‖Un+1 − Un‖1

]

To obtain a bound for ‖Un+1 − Un‖1, we rewrite the scheme as

Un+1
j − Un

j = −ν
[
χn

j − χn
j−1

]
Following a similar pattern as in the proof of (A), we get∑

j∈Z

∣∣∣Un+1
j − Un

j

∣∣∣ h ≤ τ(‖χu‖∞TV (Un) + Dmax‖χx‖∞)

Then using (A), we can prove (B).
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Understanding the ”blow-up” behavior
Behavior of χ(x ; u) in our problem. (Note: Theorem requires χ ∈ C2)

Main challenge: χ(·; u) is only piecewise smooth

Regularize χ ≈ χε,δ,n

Note: ‖χ− χε,δ,5‖∞ = O(ε) and ‖χ− χε,δ,5‖L1 = O(ε2) with δ, h = O(ε) from
computational experiments

Quasilinear form:

uε,δ,nt + χε,δ,nu (x ; uε,δ,n)uε,δ,nx = −χε,δ,nx (x ; uε,δ)

−χε,δ,nx (x ; ·)> 0 leads to the blow-up in spite of χε,δ,n(·, uε,δ,n) concave
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One other way to understand convergence

Convergence using the regularized flux

‖u − U‖L1 ≤ ‖u − uε,δ,n‖L1 + ‖uε,δ,n − Uε,δ,n‖L1 + ‖Uε,δ,n − U‖L1 .

If we have

‖χx − χε,δ,nx ‖∞ + ‖χu − χε,δ,nu ‖∞ + ‖uε,δ,nx ‖∞ → 0 as ε, δ → 0+

then
‖u − uε,δ,n‖L1 → 0 as ε, δ → 0+.

Numerical experiments show:

‖uε,δ,n − Uε,δ,n‖L1 = O(h)

‖Uε,δ,n − U‖L1 = O(ε1.79)
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Example 2: Advection with regularized flux uε,δ,5t + qχε,δ,5x = 0

Comparison between numerical solutions with exact and regularized fluxes:

‖uε,δ,5fine − Uε,δ,5‖L1 ‖χε,δ,5fine − χ
ε,δ,5‖L1 ‖Sε,δ,5fine − Sε,δ,5‖L1

O(h) O(h) O(h)

? Note that the regularized flux converges to the exact flux at the rate of ε2 in L1-norm.
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Example 3: Advection-diffusion ut + qχx − DM
` χxx = 0

Convergence (as expected, 1st order scheme, smooth solution)
‖Ufine − UAD‖L1 ‖χfine − χAD‖L1 ‖Sfine − SAD‖L1

O(h1.1) O(h1.04) O(h1.07)
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Example 4: Heterogeneous Rock Types
Advection flow (model problem motivated by Daigle and Dugan [2011])
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Example 4: Heterogeneous Rock Types

Layer profile

x [m] [0, 30] (30, 40) [40, 154]
Layer Type UBGH2-11 UBGH2-2 1 UBGH2-11

Numerical solution to advection flow:

‖Ufine − U‖L1 ‖χfine − χ‖L1 ‖Sfine − S‖L1

O(h0.55) O(h0.57) O(h0.52)
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Example 4: Heterogeneous Rock Type

Layer profile

x [m] [0, 60] (60, 80) [80, 154]
Layer Type UBGH2-11 UBGH2-2 1 UBGH2-11

Numerical solution to advection-diffusion flow

‖Ufine − UAD‖L1 ‖χfine − χAD‖L1 ‖Sfine − SAD‖L1

O(h1.07) O(h1.12) O(h1.23)
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Future work

Work with more realistic model that account for viscous and capillary
effects, pressure compresibility, relative permeability and capillary
pressure
Extend phase package from Peszynska et al. [2016] to gas zone
Contribute to the github package for MH
Implement in higher dimensions
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Gas and Hydrate Zone S` + Sh + Sg = 1

Inspired by Liu and Flemings [2007]:

ut +∇ · (qχ+ qg Rg ) = 0 with u = S`χ+ ShRh + Sg Rg

Assumptions:
Free gas can move if Sg > Sg,res
q >> qg > 0
Neglect relative permeability, capillary pressure, and pressure compressibility
for this example

Challenges:
No analytical solution exists
Account viscous and capillary effects and pressure compressibility
Unknown physical behavior of methane gas and hydrate in gas and hydrate
zone

Use Godunov’s scheme and local phase behavior solver which accounts both Sh
and Sg

Compare the result with fine grid solution
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Numerical Solution

Convergence
‖Ufine − U‖L1 ‖χfine − χ‖L1 ‖Sh,fine − Sh‖L1 ‖Sg,fine − Sg‖L1

O(h0.59) O(h0.56) O(h1.21) O(h0.62)
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