# Stability Analysis and Solvers for Phase Transitions in Hydrate Formation

Choah Shin, Malgorzata Peszynska

Oregon State University

#### SIAM GS19, March 13, 2019

This research was partially supported by NSF DMS-1522734 "Phase transitions in porous media across multiple scales," 2015 - 2019 PI: Malgorzata Peszynska.

### **Motivation**

Methane Hydrate:

- Ice-like crystal consists of methane gas trapped inside the water cage
- Exists under low temperature and high pressure
- Found in ocean sediments and polar regions
- Possible energy source in near future
- Environmental hazard



[D. Shin]



Siazik et al. [2017]



Deepwater Horizon [Jesslyn Shields]

## Model

#### Two dynamic multiphase multicomponent flow models:

| Liu-Fleming [2007]                                                                       | Gupta-Helmig-Wohlmuth [2015]    |
|------------------------------------------------------------------------------------------|---------------------------------|
| basin scale                                                                              | production time scale           |
| allows saturated and<br>unsaturated cases                                                | does not allow unsaturated case |
| local thermodynamic equilibrium phase change                                             | non-equilibrium phase change    |
| porosity depends on stress                                                               | poro-elastic                    |
| salinity (NaCl)                                                                          | free of any salinity            |
| basis for simplified model<br>allows well-posedness &<br>numerical analysis <sup>1</sup> | -                               |

<sup>&</sup>lt;sup>1</sup>Gibson et al. [2014], Peszynska, Showalter, and Webster [2015], Peszynska, Hong, Torres, and Kim [2016]

# Gas Hydrate Stability Zone (GHSZ)

- GHSZ; no gas is present
- Bottom of hydrate stability zone (BHSZ); x = 0
  - Depends on pressure, temperature, methane gas concentration, and activity of water<sup>2</sup>
  - Located at the three-phase equilibrium point
- Below of BHSZ; no hydrate formation



<sup>&</sup>lt;sup>2</sup>Sloan [1998]

## Maximum Solubility of Methane Gas

In the GHSZ, the maximum solubility of methane gas<sup>3</sup>

 $\chi^* \approx \chi^*(P, T, \text{salinity, rock type})$ 

Assume:

- Pressure  $\approx$  hydrostatic pressure,
- Temperature  $\approx$  given by geothermal gradient,
- Salinity = constant,
- Homogeneous rock type.

Then,

#### $\chi^*(P(x,t), T(x), \text{salinity, rock type}) \approx \chi^*(x)$

is a non-increasing function in x.

<sup>&</sup>lt;sup>3</sup>Peszynska, Showalter, and Webster [2015]

## Simplified Transport Model in Hydrate Zone<sup>1</sup>

$$\frac{\partial}{\partial t} \left( \phi(\mathbf{S}_{\boldsymbol{\ell}} \chi + \mathbf{S}_{\boldsymbol{h}} \mathbf{R}_{\boldsymbol{h}} \right) + \nabla \cdot \left( \boldsymbol{q} \chi - \nabla \cdot (D_{\ell}^{M} \nabla \chi) \right) = \frac{f_{M}}{\rho_{\ell}}$$

Phase Equilibrium Condition:

$$\begin{cases} S_h = 0, & \text{if } \chi(x) \le \chi^*(x) \\ 0 \le S_h \le 1, & \text{if } \chi(x) > \chi^*(x) \\ S_h(\chi^*(x) - \chi(x)) = 0, & \text{for } x \in (0, D^{\max}) \end{cases}$$

- $\chi$ : Methane solubility (mass fraction in liquid phase)
- $S_{\ell,h}$ : liquid/hydrate saturation;  $S_{\ell} + S_{h} = 1$

٠

•  $\chi^*$ : Maximum solubility of methane; non-increasing function

• 
$$R_h = \frac{\rho_h \chi_h^M}{\rho_\ell}$$
 ( $\approx 0.1203$  kg/kg for realistic model)

- $\phi, D_{\ell}^{\mathcal{M}}$ : porosity and diffusion coefficient
- q: Darcy velocity in liquid

<sup>&</sup>lt;sup>1</sup>Peszynska, Showalter, and Webster [2015]

## Hydrate Zone: $S_{\ell} + S_{h} = 1$

Consider advective flow:  $u_t + q\chi_x = 0$ 

where  $u = (1 - S_h)\chi + S_h R_h$ , the total methane content per mass of liquid phase.<sup>1</sup>

Challenge:

u(x; χ) is a multivalued graph parametrized by x (= -depth)
Approach:

• Consider the inverse of *u*:

$$\chi(x; u) = \begin{cases} u, & \text{if } u \leq \chi^*(x) \\ \chi^*(x), & \text{if } u > \chi^*(x) \end{cases}$$



 χ(·; u) is increasing, concave, non-injective, but differentiable only a.e.





## Numerical Scheme

Solve numerically by the 1st order Godunov's scheme to get u. Use local phase behavior solver to get  $\chi$  and  $\frac{S}{S}$  from u.

• 1st order Godunov's scheme (Upwind):

(1) 
$$U_j^{n+1} = U_j^n - q\nu \left[ F(\chi_j^n, \chi_{j+1}^n) - F(\chi_{j-1}^n, \chi_j^n) \right]$$

where  $F(\chi_j^n, \chi_{j+1}^n) = \chi_j^n$  and  $\nu = \frac{\tau}{h}$ 

- CFL condition:  $|\nu\chi_u| \leq 1$
- Local phase behavior solver:

(2) 
$$\chi_j^n = \min\{U_j^n, \chi^*(x_j)\}$$
  $(S_h)_j^n = \frac{U_j^n - \chi_j^n}{R_h - \chi_j^n}$ 

while t<sup>n</sup> ≤ T
Given U(x, t<sup>n</sup>), χ(x, t<sup>n</sup>). t<sup>n+1</sup> = t<sup>n</sup> + τ
Compute U(x, t<sup>n+1</sup>) using (1)
Solve for χ(x, t<sup>n+1</sup>) and S<sub>h</sub>(x, t<sup>n+1</sup>) using (2)

## Example 1

Consider the following problem:

$$\begin{cases} u_t + q\chi_x = 0, & x \in (0, D^{\max}), \ t > 0, \\ u(x, 0) = u_L H(-x), & x \in (0, D^{\max}), \\ u(0, t) = u_L, \end{cases}$$

where

$$\chi(x; u) = \begin{cases} u, & \text{if } u \leq \chi^*(x), \\ \chi^*(x), & \text{if } u > \chi^*(x). \end{cases}$$

Choah Shin (OSU)

<sup>&</sup>lt;sup>1</sup>Peszynska, Hong, Torres, and Kim [2016]

## Example 1

Consider the following problem:

$$\begin{cases} u_t + q\chi_x = 0, & x \in (0, D^{\max}), \ t > 0, \\ u(x, 0) = u_L H(-x), & x \in (0, D^{\max}), \\ u(0, t) = u_L, \end{cases}$$

where

$$\chi(x; u) = \begin{cases} u, & \text{if } u \leq \chi^*(x), \\ \chi^*(x), & \text{if } u > \chi^*(x). \end{cases}$$

#### Ulleung Basin Site (UBGH2-11)<sup>1</sup> data:

| $D_{\rm ref}$ | $P_{ref}$ | $T_{\rm ref}$ | Salinity | GT       | $D^{\max}$ |
|---------------|-----------|---------------|----------|----------|------------|
| 2080 m        | 21.02 MPa | 274.35 K      | 3.5%     | 0.12 K/m | 154 m      |

<sup>1</sup>Peszynska, Hong, Torres, and Kim [2016]

Choah Shin (OSU)

Comparison between the analytical solution<sup>1</sup> and the numerical solution



<sup>1</sup>Peszynska, Showalter, and Webster [2015]

Choah Shin (OSU)

# Numerical Analysis of the Scheme

Rate of convergence:

- Well known for monotone finite different schemes for u<sub>t</sub> + (χ(u)) = 0:
  - $O(\sqrt{h})$  in  $L^1$  for linear advection<sup>4</sup>
  - In  $L^1$ , convergence rate is no better than  $O(\sqrt{h})$  even for a nonlinear flux<sup>5</sup>
  - In W<sup>-1,1</sup>, convergence rate of O(h) obtained<sup>6</sup>
  - O(h) in  $W^{-1,1}$  can be translated to  $O(\sqrt{h})$  in  $L^1$



- Some result known for  $u_t + (\chi(x; u))_x = 0$  with monotone difference scheme:
  - In  $L^p_{loc}$ , convergence rate is O(h) for Lax-Friedrichs scheme with smooth  $\chi(\cdot, u)^7$
  - For  $\chi(x; u) = k(x)f(u)$  with smooth f, convergence rate is O(h) in  $L^1$  for Godunov and EO fluxes<sup>8</sup>

<sup>4</sup>Lucier [1985], Tang and Teng [1995]

- <sup>7</sup>Karlsen [2003], Karlsen and Towers [2004]
- <sup>8</sup>Towers [2000]

Choah Shin (OSU)

<sup>&</sup>lt;sup>5</sup>Kruzhkov [1960], Kuznetsov [1976], Cockburn and Gremaud [1997], Sabac [1997]

<sup>&</sup>lt;sup>6</sup>Tadmor [1991], Nessyahu and Tadmor [1992], Nessyahu, Tadmor, and Tassa [1994]

# Stability analysis

#### Theorem [Peszynska, Shin, 2019]<sup>9</sup>

Assume  $\chi \in C^2((0, D^{\max}) \times \mathbb{R}_+ \cup \{0\})$ . Numerical scheme is weakly total-variation stable. In particular,

(A) 
$$TV(U^n) \leq C_1(T)TV(U^0) + C_2(T).$$

Further,

(B) 
$$TV_T(U^n) \leq C(T)$$

where C(T) is some constant depends on T and  $TV(U^0)$ .

<sup>&</sup>lt;sup>9</sup>Peszynska, Shin [2019], manuscript in preparation

# Stability analysis

#### Theorem [Peszynska, Shin, 2019]<sup>9</sup>

Assume  $\chi \in C^2((0, D^{\max}) \times \mathbb{R}_+ \cup \{0\})$ . Numerical scheme is weakly total-variation stable. In particular,

(A) 
$$TV(U^n) \leq C_1(T)TV(U^0) + C_2(T).$$

Further,

(B) 
$$TV_T(U^n) \leq C(T)$$

where C(T) is some constant depends on T and  $TV(U^0)$ .

#### Challenges in proof

- Numerical scheme is not TVD
- $\chi(x; u)$  is not separable
- Work with source term  $u_t + \chi_u(x; u)u_x = -\chi_x(x; u)$  for smooth  $\chi$

<sup>&</sup>lt;sup>9</sup>Peszynska, Shin [2019], manuscript in preparation

## Proof outline of (A)

$$U_j^{n+1} = U_j^n - \nu \left[ \chi_j^n - \chi_{j-1}^n \right]$$

Assume  $\chi \in C^2((0, D^{\max}) \times \mathbb{R}_+ \cup \{0\})$ . Let  $\Delta U_j^n = U_j^n - U_{j-1}^n$ . Subtract the scheme at j-1 from j to get

$$\Delta U_j^{n+1} = \Delta U_j^n - \nu \left[ \chi_j^n - \chi_{j-1}^n \right] + \nu \left[ \chi_{j-1}^n - \chi_{j-2}^n \right]$$

Substitute  $\chi_i^n - \chi_{i-1}^n$  for i = j, j-1 with

$$\chi_i^n - \chi_{i-1}^n \approx \chi_u(x_i, \overline{U}_i^n)(U_i^n - U_{i-1}^n) + \chi_x(\overline{x}_i, U_{i-1}^n)h$$

using the mean value theorem. Then rearrange to get

$$\Delta U_j^{n+1} = \Delta U_j^n \left( 1 - \nu \chi_u(x_j, \overline{U}_j^n) \right) - \nu \chi_u(x_{j-1}, \overline{U}_{j-1}^n) \Delta U_{j-1}^n - \tau \left[ \underbrace{\chi_x(\overline{x}_j, U_{j-1}^n) - \chi_x(\overline{x}_{j-1}, U_{j-2}^n)}_{A_1} \right]^{-1}$$

Use the mean value theorem to rewrite  $A_1$ .

Choah Shin (OSU)

# Proof outline of (A)

Take the absolute value and apply the triangle inequality. Then take the sum over  $j \in \mathbb{Z}$ . With CFL condition  $|\nu\chi_u| \leq 1$ ,

$$\begin{split} \mathsf{TV}(U^{n+1}) &\leq \mathsf{TV}(U^n) - \sum_{j \in \mathbb{Z}} \nu \chi_u(\mathsf{x}_j, \overline{U}_j^n) \left| \Delta U_j^n \right| + \sum_{j \in \mathbb{Z}} \nu \chi_u(\mathsf{x}_{j-1}, \overline{U}_{j-1}^n) \left| \Delta U_{j-1}^n \right| \\ &+ \tau \|\chi_{\mathsf{x}u}\|_{\infty} \sum_{j \in \mathbb{Z}} \left| \Delta U_{j-1}^n \right| + 2\tau \|\chi_{\mathsf{x}\mathsf{x}}\|_{\infty} \sum_{j \in \mathbb{Z}} h \end{split}$$

Re-indexing results

$$\mathsf{TV}(U^{n+1}) \leq \mathsf{TV}(U^n)(1+lpha au) + eta au \qquad ext{where } lpha, eta > 0$$

We can obtain the TV bound:

$$TV(U^n) \leq TV(U^0)(1+lpha au)^n + eta au \sum_{k=0}^{n-1}(1+lpha au)^k$$

Evaluate the finite series:  $\sum_{k=0}^{n-1} (1 + \alpha \tau)^k = \frac{(1 + \alpha \tau)^n - 1}{\alpha \tau}$ Bernoulli's inequality:  $(1 + \alpha \tau)^n \le e^{n\alpha \tau} = e^{\alpha T}$  where  $n\tau = T$ 

Choah Shin (OSU)

# Proof outline of (B)

$$TV_{T}(U^{n}) = \sum_{n=0}^{T/\tau} \left[ \tau TV(U^{n}) + \|U^{n+1} - U^{n}\|_{1} \right]$$

To obtain a bound for  $\|U^{n+1} - U^n\|_1$ , we rewrite the scheme as

$$U_j^{n+1} - U_j^n = -\nu \left[ \chi_j^n - \chi_{j-1}^n \right]$$

Following a similar pattern as in the proof of (A), we get

$$\sum_{j\in\mathbb{Z}} \left| U_j^{n+1} - U_j^n \right| h \le \tau(\|\chi_u\|_{\infty} TV(U^n) + D^{\max}\|\chi_x\|_{\infty})$$

Then using (A), we can prove (B).

# Understanding the "blow-up" behavior

Behavior of  $\chi(x; u)$  in our problem. (Note: Theorem requires  $\chi \in C^2$ )

• Main challenge:  $\chi(\cdot; u)$  is only piecewise smooth



Note:  $\|\chi - \chi^{\epsilon,\delta,5}\|_{\infty} = O(\epsilon)$  and  $\|\chi - \chi^{\epsilon,\delta,5}\|_{L_1} = O(\epsilon^2)$  with  $\delta, h = O(\epsilon)$  from computational experiments

• Quasilinear form:

$$u_t^{\epsilon,\delta,n} + \chi_u^{\epsilon,\delta,n}(x;u^{\epsilon,\delta,n})u_x^{\epsilon,\delta,n} = -\chi_x^{\epsilon,\delta,n}(x;u^{\epsilon,\delta})$$

•  $-\chi_x^{\epsilon,\delta,n}(x;\cdot) > 0$  leads to the blow-up in spite of  $\chi^{\epsilon,\delta,n}(\cdot, u^{\epsilon,\delta,n})$  concave

## One other way to understand convergence

#### Convergence using the regularized flux

$$\|\boldsymbol{u}-\boldsymbol{U}\|_{L_1} \leq \|\boldsymbol{u}-\boldsymbol{u}^{\epsilon,\delta,\boldsymbol{n}}\|_{L_1} + \|\boldsymbol{u}^{\epsilon,\delta,\boldsymbol{n}}-\boldsymbol{U}^{\epsilon,\delta,\boldsymbol{n}}\|_{L_1} + \|\boldsymbol{U}^{\epsilon,\delta,\boldsymbol{n}}-\boldsymbol{U}\|_{L_1}.$$

If we have

$$\|\chi_x - \chi_x^{\epsilon,\delta,n}\|_{\infty} + \|\chi_u - \chi_u^{\epsilon,\delta,n}\|_{\infty} + \|u_x^{\epsilon,\delta,n}\|_{\infty} o 0$$
 as  $\epsilon, \delta o 0^+$ 

then

$$\|u - u^{\epsilon,\delta,n}\|_{L_1} \to 0$$
 as  $\epsilon, \delta \to 0^+$ .

Numerical experiments show:

- $\|u^{\epsilon,\delta,n} U^{\epsilon,\delta,n}\|_{L_1} = O(h)$
- $\|U^{\epsilon,\delta,n} U\|_{L^1} = O(\epsilon^{1.79})$

## Example 2: Advection with regularized flux $u_t^{\epsilon,\delta,5} + q\chi_x^{\epsilon,\delta,5} = 0$

Comparison between numerical solutions with exact and regularized fluxes:



\* Note that the regularized flux converges to the exact flux at the rate of  $\epsilon^2$  in  $L_1$ -norm.

Choah Shin (OSU)

## Example 3: Advection-diffusion $u_t + q\chi_x - D_\ell^M \chi_{xx} = 0$



Convergence (as expected, 1st order scheme, smooth solution)

| $\ U_{fine} - U_{AD}\ _{L_1}$ | $\ \chi_{fine} - \chi_{AD}\ _{L_1}$ | $\ S_{fine} - S_{AD}\ _{L_1}$ |
|-------------------------------|-------------------------------------|-------------------------------|
| $O(h^{1.1})$                  | $O(h^{1.04})$                       | $O(h^{1.07})$                 |

## Example 4: Heterogeneous Rock Types

Advection flow (model problem motivated by Daigle and Dugan [2011])



# Example 4: Heterogeneous Rock Types

| Layer profile |          |           |           |
|---------------|----------|-----------|-----------|
| x [m]         | [0, 30]  | (30, 40)  | [40, 154] |
| Layer Type    | UBGH2-11 | UBGH2-2_1 | UBGH2-11  |



#### Numerical solution to advection flow:

Choah Shin (OSU)

# Example 4: Heterogeneous Rock Type

| Layer profile |          |           |           |
|---------------|----------|-----------|-----------|
| x [m]         | [0, 60]  | (60, 80)  | [80, 154] |
| Layer Type    | UBGH2-11 | UBGH2-2_1 | UBGH2-11  |



Choah Shin (OSU)

#### Future work

- Work with more realistic model that account for viscous and capillary effects, pressure compresibility, relative permeability and capillary pressure
- Extend phase package from Peszynska et al. [2016] to gas zone
- Contribute to the github package for MH
- Implement in higher dimensions

## References I

- Bernardo Cockburn and Pierre-Alain Gremaud. A priori error estimates for numerical methods for scalar conservation laws. part ii: flux-splitting monotone schemes on irregular cartesian grids. *Mathematics of Computation*, 66(218):547–573, 1997. doi: 10.1090/s0025-5718-97-00838-7.
- Nathan L. Gibson, F. Patricia Medina, Malgorzata Peszynska, and Ralph E. Showalter. Evolution of phase transitions in methane hydrate. *Journal of Mathematical Analysis and Applications*, 409(2):816âĂŞ833, 2014. doi: 10.1016/j.jmaa.2013.07.023.
- K. H. Karlsen and J. D. Towers. Convergence of the lax-friedrichs scheme and stability for conservation laws with a discontinuous space-time dependent flux. *Chinese Annals of Mathematics*, 25(03):287–318, 2004. doi: 10.1142/s0252959904000299.
- Kenneth Karlsen. L1 stability for entropy solutions of nonlinear degenerate parabolic convection-diffusion equations with discontinuous coefficients. Skr. K. Nor. Vidensk. Selsk., pages 1–49, 01 2003.
- S. N. Kruzhkov. The cauchy problem in the large for certain nonlinear first-order differential equations. 1960.
- N. N. Kuznetsov. Accuracy of some approximate methods for computing the weak solutions of a first-order quasi-linear equation. USSR Computational Mathematics and Mathematical Physics, 16(6):105–119, 1976. doi: 10.1016/0041-5553(76)90046-x.

## **References II**

- Xiaoli Liu and Peter B. Flemings. Dynamic multiphase flow model of hydrate formation in marine sediments. *Journal of Geophysical Research*, 112(B3), 2007. doi: 10.1029/2005jb004227.
- Bradley J. Lucier. Error bounds for the methods of glimm, godunov and leveque. SIAM Journal on Numerical Analysis, 22(6):1074–1081, 1985. doi: 10.1137/0722064.
- H. Nessyahu and E. Tadmor. The convergence rate of approximate solutions for nonlinear scalar conservation laws. *SIAM Journal on Numerical Analysis*, 29(6):1505–1519, 1992. doi: 10.1137/0729087.
- H. Nessyahu, E. Tadmor, and T. Tassa. The convergence rate of godunov type schemes. *SIAM Journal on Numerical Analysis*, 31(1):1–16, 1994. doi: 10.1137/0731001.
- M. Peszynska, R. E. Showalter, and J. T. Webster. Advection of methane in the hydrate zone: model, analysis and examples. *Mathematical Methods in the Applied Sciences*, 38(18): 4613–4629, 2015. doi: 10.1002/mma.3401.
- M. Peszynska, W. Hong, M. E. Torres, and J. Kim. Methane hydrate formation in ulleung basin under conditions of variable salinity: Reduced model and experiments. *Transport in Porous Media*, 114(1):1–27, 2016. doi: 10.1007/s11242-016-0706-y.
- F. Sabac. The optimal convergence rate of monotone finite difference methods for hyperbolic conservation laws. *SIAM Journal on Numerical Analysis*, 34(6):2306–2318, 1997. doi: 10.1137/s003614299529347x.
- E. Dendy Sloan. Clathrate hydrates of natural gases. Marcel Dekker, 1998.

## **References III**

- E. Tadmor. Local error estimates for discontinuous solutions of nonlinear hyperbolic equations. *SIAM Journal on Numerical Analysis*, 28(4):891–906, 1991. doi: 10.1137/0728048.
- Tao Tang and Zhen Huan Teng. The sharpness of kuznetsovâĂŹs o(√∆x) l<sup>1</sup>-error estimate for monotone difference schemes. *Mathematics of Computation*, 64(210):581–581, 1995. doi: 10.1090/s0025-5718-1995-1270625-9.
- John D. Towers. Convergence of a difference scheme for conservation laws with a discontinuous flux. *SIAM Journal on Numerical Analysis*, 38(2):681–698, 2000. doi: 10.1137/s0036142999363668.
- Jan Siazik, Milan Malcho, Richard Lenhard Proposal of experimental device for the continuous accumulation of primary energy in natural gas hydrates EPJ Web of Conferences, Vol 143 p. 02106, 2017

Jesslyn Shields,

"Deepwater Horizon Oil Found in Land-based Birds for First Time"

https://science.howstuffworks.com/environmental/conservation/issues/deepwater-horizon-oil-

found-terrestrial-birds.htm 28 November 2016.

## Gas and Hydrate Zone $S_{\ell} + S_h + S_g = 1$

Inspired by Liu and Flemings [2007]:

 $u_t + \nabla \cdot (q\chi + q_g R_g) = 0$  with  $u = S_\ell \chi + S_h R_h + S_g R_g$ 

- Assumptions:
  - Free gas can move if  $S_g > S_{g,res}$
  - $q >> q_g > 0$
  - Neglect relative permeability, capillary pressure, and pressure compressibility for this example
- Challenges:
  - No analytical solution exists
  - Account viscous and capillary effects and pressure compressibility
  - Unknown physical behavior of methane gas and hydrate in gas and hydrate zone
- Use Godunov's scheme and local phase behavior solver which accounts both  $\mathcal{S}_h$  and  $\mathcal{S}_g$
- Compare the result with fine grid solution

## Numerical Solution



| ( | 201  | 10 | ro | on | 000 |
|---|------|----|----|----|-----|
|   | יווכ | ve | ١Ľ | en | ice |
|   |      |    | 0  |    |     |

| $\ U_{fine} - U\ _{L^1}$ | $\ \chi_{\mathrm{fine}}-\chi\ _{L^1}$ | $\ S_{h,fine} - S_h\ _{L^1}$ | $\ S_{g,fine} - S_{g}\ _{L^1}$ |  |
|--------------------------|---------------------------------------|------------------------------|--------------------------------|--|
| $O(h^{0.59})$            | $O(h^{0.56})$                         | $O(h^{1.21})$                | $O(h^{0.62})$                  |  |
|                          |                                       |                              |                                |  |