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Outline

°Introduction to dinoflagellates

*Modeling predator-prey dynamics
 Calculating encounter rates (based on chemical kinetics)
* Accounting for inefficient predation

*Simulations (varying levels of complexity)

eComparison to experimental studies (Sheng 2007, 2010)




What are dinoflagellates?

*Second largest group of phytoplankton in
marine environments

*Can be autotrophic, heterotrophic, or
mixotrophic

*Exhibit complex swimming dynamics (helical
motion patterns)

*Predatory dinoflagellates have been observed
to utilize toxins to enhance predation

*These toxins contribute to harmful algal
blooms (HAB)




Dinoflagellate Locomotion

*Swimming is driven by two flagella, which
results in a unique helical swimming motion

*The toxins released by predatory
dinoflagellates have been observed to
effectively immobilize or slow down their prey

Transverse Flagellum

*Predatory dinoflagellates have been observed
to significantly alter their swimming behavior
in the presence of prey

Longitudinal Flagellum




Helical Swimming Dynamics

*Helical motion can be parametrically described

H(t)=R [COS (wt)i + sin (wt)}} + (pz&;) 2

*The velocity can then be described as a
function of the helical motion parameters R
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Modeling predator-prey interactions

*Basic predator-prey relationship

dpB
% = —kpapB , Q_—
A
* pA: predator density \
* PB: prey density ®/

Lk :encounter rate

*Interactions can be modeled using analogies
from chemical kinetics




Modeling predator-prey interactions

Viel = VA — VB
a = |val/lvs|
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Modeling predator-prey interactions

*Assume perfectly efficient predation (for now)

N(|[vrel|) = 1 Q——
rA \

k=mn(ra+rs)*(|viel)

k=m(ra+rp)*VIval? +|vs|? )y @ /

*We now have a simple model for predator-
prey interactions that is a function of
experimentally measurable parameters (r, v)




Accounting for inefficient predation

*Not all predator-prey encounters result in
successful predation

*The prey is often able to escape encounters by
fighting off the predator and swimming away

*|t is hypothesized that toxins are released by
some predatory dinoflagellates to slow down
or completely immobilize their prey to
increase predation efficiencies




Modeling inefficiencies with a sharp
cutoft based on relative velocity

*Define predation efficiency as a function of relative velocity (simple model: sharp cutoff)

1, |viel| < Sh,
n(‘vrel‘) = { °

0, otherwise

*Conceptually, what does this model attempt to account for?

* If both the predator and prey are moving at high velocities when they bump into each other, they will
likely bounce off of each other

* |f the predator is moving at a high velocity, their hydrodynamic profile might alert prey of their
approach

* If the prey has a low velocity and impaired motility due to toxins released by the predator, they will be
easier to catch



Modeling inefficiencies with a sharp
cutoft based on relative velocity

*Define {|Vpred|) as {|Vrel|) when predation occurs
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*We can determine the maximum angle at which predation occurs
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Modeling inefficiencies with a sharp
cutoft based on relative velocity

*The domain for partially efficient predation:

Predation rate

Perfectly efficient predation
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Modeling inefficiencies with a “filter” based
on predator-prey velocities individually

*The prior model for predation inefficiency is simple and illustrates important concepts
analytically

*However, a more phenomenologically accurate model would account for the predator-prey
velocities individually and would vary continuously instead of having a sharp cutoff

*A 2-D “filter” model is proposed

n(va,vp) =




Simulations

*Basic predator-prey interactions (assume perfectly efficient predation)

*Simple predation efficiency model (sharp cutoff based on relative velocity)

Comparisons to experimental studies (using 2-D “filter” model)




Simulation Mechanics

Contained in a cubic volume

*Periodic boundary conditions were
implemented to eliminate boundary effects

*Predator-prey densities and time durations
had to be sufficiently large so as to remove
simulation artifacts

*Intelligent collision detection algorithms were
implemented to avoid using brute force
calculations

*Size and movement parameters were based
on experimental studies (Sheng 2007, 2010)



Basic predator-prey interactions

*Assume perfectly efficient predation

*Dinoflagellate parameters were base on experimental data (Sheng 2007, 2010)
*Purpose: Verify simulation mechanics for predicting predator-prey interactions

*Results: Low error (<10%) for all cases

K. veneficum  va (um/sec) Theoretical Simulated % Error
Strain k (m®/sec) k (m®/sec)

MD5 81.3 2.39 x 107 225 x 1071 5.9
1974 102.3 2.60x 107 254 x107H 5.6
BM1 111.2 2.83x 107"  262x 107 7.4
2064 80.9 238 x 107 218 x 107 ™ 8.4




Simple predation efficiency model

*Assume a sharp cutoff based on relative . i
velocity o5 MD5 I st 1974

*Compare normalized predation rate to
normalized cutoff velocity

(1 —w)(a+at + 8= 2)vallvsl]"

2y/[val?> +|vs/?

k=

otr 2064 -
gzsh/(VA—i—VB) -

*Results: Good agreement between simulations
and theoretical curves




Comparisons to experimental studies
(Sheng 2007, 2010)

*Sheng quantified the movement patterns of dinoflagellates and observed that predatory
dinoflagellates alter their swimming behavior in the presence of prey (2007)

A follow-up study by Sheng investigated how some predatory dinoflagellates exploit toxins to
immobilize their prey to improve predation (2010)

*We attempted to fit our model to these experimental results to demonstrate how a
mathematical model can reveal the positive impact that toxins have on dinoflagellate predation

*Simulations were conducted using dinoflagellate parameters provided by Sheng (2007, 2010)
and the predation efficiency model which considered predator and prey velocities individually
(2-D “filter” concept)

*The predation efficiency parameters were fit using a genetic algorithm



Comparisons to experimental studies
(Sheng 2007, 2010)

*We were able to match the predation rates observed by Sheng (2010)

*Using the predation efficiency parameters calculated during the model fitting process, we then
simulated a hypothetical scenario to see how predation rates for these dinoflagellates would be
effected in the absence of toxins (control)

*Encounter rates (k) increased in the hypothetical scenario without toxins, but reduced
predation efficiencies resulted in lower overall simulated predation rates (7 is the time-
averaged predation rate)

K. veneficum Strain Experimental v (1/hr) Simulated v (1/hr) Simulated k (m?/sec)

1974 (toxic) 0.39 +0.13 0.39 2.87 x 10~
1974 (control) 0.31 2.98 x 1074
BM1 (toxic) 0.36 & 0.06 0.36 2.16 x 10~ 1'%
BM1 (control) 0.21 3.35 x 1074
2064 (toxic) 0.30 +0.11 0.30 1.65 x 10~
2064 (control) 0.27 2.73 x 10714




Conclusions

*Mathematical models and simulations demonstrate that toxins can improve dinoflagellate
predation by reducing encounter speeds, which increases predation efficiency

*The decline in predator-prey encounters is offset by the increased predation efficiency, resulting
in improved overall predation rates

*|f you are curious about our work or would like to see all of the details related to the model
derivations and simulations, please see our article: Simulation and analysis of a model
dinoflagellate predator-prey system, The European Physical Journal Special Topics, Vol. 224,
No. 17, pp. 3257-3270, DOI: 10.1140/epjst/e2015-50101-x.
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