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Our Theme



The Connection

All are connected via Optimal Mass Transport.
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Specializing to quadratic cost:

leads to the following “non-local” gradient descent equation:

Motivation for the approach:

The key idea is to push the fixed initial map u (thought of 
as a vector field) using the one-parameter family of MP 
maps in order to remove the divergence-free part!





Glymphatic System



Interpolation and Prediction: TBI
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Motivation: Cancer Network as Robust 

System



Robustness & Fragility

• If node/edge x is perturbed, how does the network

react to such a change. A highly robust network

continues to operate in a similar manner with

respect to its functionality.

Quantitively:

III. BIOLOGICAL NETWORKS - CANCER

I. GRAPH THEORY

II. SUPPLY CHAIN AND FINANCIAL NETWORKS - CRISIS

• Consider a network perturbation (fluctuation) that will

result in a deviation of an observable from its

unperturbed value. How quickly will this return to

equilibrium (e.g., decay rate)?

Network Robustness & Fragility: 

Let denote the probability that the mean deviates

by more than at time t (with as ), then

•

measures the decay rate [1].

• Robustness is measured as the ability to withstand

perturbations (noise) or stochastic fluctuations to a

network yet still allow for ``information to be passed’’

in a reliable manner.

DoD Supply Chain [2]

(risk propagates through primes and subs)

2008 Financial Crisis [3]

(small/large banks - risk exposure)
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[1] Albert, R. et al. Statistical mechanics of complex networks. Reviews of Modern Physics. 74, 47 (2002).

http://about.bgov.com/bgov200/bgov-analysis/competition-cooperation-among-defense-contractors-bgov-insight/[2]

[3] Battiston, S. et al. DebtRank:  Too Central to Fail? Financial Networks, the FED and Systemic Risk.  Scientific Reports 2 (2012).



Wasserstein Distance
Wasserstein 1-Metric:

Let μ1 and μ2 now be two discrete distributions with same total mass over n points, respectively, and let d(x,y)

represent the distance between such samples (for the case of graphs, this is simply taken to be the hop

distance). Then, W1(μ1, μ2) may be described as follows:

where is a coupling (or flow) subject to the following constraints: 

The cost above finds the optimal coupling of moving a set of mass from distributions μ1 to μ2 with minimal “work” [4]. 

[4] Rubner, Y et. al.  The earth mover’s distance as a metric for image retrieval.  International Journal of Computer Vision. 42 (2000)
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Generalities on Ricci Curvature
Curvature:

Sectional Curvature:

Ricci Curvature:

• Curvature, in the broad sense, is a measure by which a geometrical object deviates from being flat, and

is defined in varying manners given context [5].

• For M an n-dimensional Riemannian manifold, , let denote the tangent space at x, and u1,u2∈
TxM orthonormal vectors. Then for geodesics γi(t) := exp(tui), i = 1,2, the sectional curvature K(u1,u2)

measures the deviation of geodesics relative to Euclidean geometry, i.e.,

• The Ricci curvature is the average sectional curvature. Namely, given a (unit) vector u ∈ TxM, we

complete it to an orthonormal basis u,u2,...,un. Then the Ricci curvature is defined by

Where we note there might be several scaling factors and it may be extended to the quadratic form, yielding

the so-called Ricci curvature tensor. Ricci curvature is also strongly related to the Laplace-Beltrami operator

and in geodesic normal coordinates, we have

where gij denotes the metric tensor on M.

xÎM TxM

d g1(t),g2(t)( ) = 2t 1-
K(u1,u2 )
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Ric(u) :=
1

n-1
K(u,ui )

i=2

n

å

Rij = -3/ 2Dgij

DoCarmo, M. Riemannian Geometry (Birkhauser, 1992).[5]



Generalities on Ricci Curvature
Ricci Curvature (con’t):

• We can alternatively describe Ricci curvature as the spreading of geodesics. Let γ denote a geodesic

and γs a smooth one parameter family of geodesics with γ0 = γ. Then a Jacobi field may be defined as

Curvature in Terms of Jacobian

It may be regarded as an infinitesimal deformation of the given geodesic.

Then it is standard that J(t) (essentially the Jacobian of the exponential map)

satisfies the Jacobi equation:

where denotes covariant derivative, and R is the Riemann curvature tensor.

• We want to extend these notions to discrete graphs and networks - ordinary differentiability does not

apply. A nice argument (due to Villani)[6] approaches this problem through convexity. More precisely, let f:

Rn → R. Then if f is C2, convexity may be characterized as for all x. One may also define

convexity in a synthetic manner:

Discrete Spaces:

Following this, one may define a synthetic notion of Ricci curvature in terms of so-called displacement

convexity inherited from the Wasserstein geometry on probability measures.

J(t) =
dg s (t)

ds
|s=0

D

dt

Ñ2 f (x)³ 0

f ((1- t)x+ ty) £ (1- t) f (x)+ tf (y)

[6] Lott, J. & Villani, C. Ricci curvature for metric-measure spaces via optimal transport. Annals of Mathematics. 169, 903-991 (2009).



Explaining Curvature to Boltzmann



Ricci Curvature and Entropy
Lott & Villani [6]:

Let (X,d,m) denote a geodesic space, and set:

We define

Which is the negative of the Boltzmann entropy Se(μ) := -H(μ); note concavity of Se is equivalent to the

convexity of H. Then we say that X has Ricci curvature bounded from below by k if for every

This indicates the positive correlation of entropy and curvature that we will express as

We now need to connect Ricci curvature and entropy to the notion of robustness (next slide) as well as

define appropriate notions of curvature/entropy for discrete spaces (graphs).

m0,m1 Î P(X)
there exists a constant speed geodesic μt with respect to the Wasserstein 2-metric connecting μ0 and μ1

such that

Se(mt ) ³ tSe(m0 )+ (1- t)Se(m1)+
kt(1- t)

2
W (m0,m1)

2, 0 £ t £1

DSe ´DRic ³ 0

[6] Lott, J. & Villani, C. Ricci curvature for metric-measure spaces via optimal transport. Annals of Mathematics. 169, 903-991 (2009).



Curvature and Robustness
Recall Definition of Robustness:

If we let denote the probability that the mean deviates by more than at time t (with as ),

then

•

measures the decay rate.

Fluctuation Theorem:  

The Fluctuation Theorem is a realization of this fact for networks and can be expressed as:

In thermodynamics, it is well-known that entropy and rate functions from large deviations are closely related.•

This can now be further extended to be

• The Fluctuation Theorem has consequences for just about any type of network: biological, communication,

social, or neural. In rough terms, it means that the ability of a network to maintain its functionality in the face of

perturbations (internal or external), can be quantified by the correlation of activities of various elements that

comprise the network.

Network Entropy & Curvature:

Given a Markov chain ,

Network Entropy can be defined as

•

We now need an appropriate definition of Ricci curvature for a network.•
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Pictorial Motivation for Ollivier Ricci Curvature

Ollivier-Ricci Curvature
Motivation:

Definition:

• We employ the notion of Ollivier-Ricci curvature motivated by adopting coarse geometric properties [7]

• Two very close points x and y with tangent vectors w and

w′, in which w′ is obtained by a parallel transport of w, the

two geodesics will get closer if the curvature is positive.

• Distance between two small (geodesic balls) is less than

the distance of their centers. Ricci curvature along

direction x-y reflects this, averaged on all directions w at

x.

Formally, we define for (X,d) a metric space equipped with a family of probability measures {μx : x ∈ X}, the 

Ollivier-Ricci curvature along the geodesic connecting x and y via 

and the sum is taken over all neighbors of x where wxy denotes the weight of an edge connecting x and y (it

is taken as zero if there is no connecting edge between x and y). The measure μx may be regarded as the

distribution of a one-step random walk starting from x.

where W1 denotes the Wasserstein 1-metric defined previously and d(x,y) is the geodesic (hop) distance on 

a graph.  For the case of weighted graphs, we set

W1(mx,my ) = (1-k(x, y))d(x, y)

dx = wxy
y

å

mx (y) :=
wxy

dx

k(x, y)

[7] Ollivier, Y. Ricci curvature of metric spaces. C. R. Math. Acad. Sci. Paris. 345, 643-646 (2007)



Ornstein-Uhlenbeck (OU) Process
Very informative to consider the relationship of (Ollivier-)Ricci curvature and robustness via a simple

example. Consider the following OU process:

where W is Brownian motion (Wiener process), and we take x0 to be deterministic. We treat the 1-

dimensional case for simplicity. Everything goes through in higher dimensions as well. The corresponding

Fokker-Planck equation is

where p = p(x,t|x0,0) is the transition probability of the underlying Markov process. One may show that

p(x,t|x0,0) is a Gaussian process with mean and variance given by We see

that we get transition probabilities of mean x0e−αt and variance independent of x0. Since all the transitions

p(x,t|x0,0) have the same variance (and are Gaussian) the 1-Wasserstein distance

Finally, 

This implies 

Simulation of Two OU Process 

Larger corresponds to larger curvature and this corresponds

to how quickly the systems returns to equilibrium, that is to the

mean going to 0.

dXt = -aXtdt +sdWt, X(0) = x0

¶p

¶t
=a

¶xp

¶x
+

s 2

2

¶2p

¶x2
,

X(t) = x0e
-at,varX(t) =

s 2

2a
1- e-2at( ).

W1(p(x, t | x0, 0), p(x,dt | x1, 0)) = x0e
-at - x1e

-at .

k(x0, x1) =1-
W1(p(x, t | x0, 0), p(x, t | x1, 0))

x0 - x1

=1-e-at.

a k

DRic´Da ³ 0

[7] Ollivier, Y. Ricci curvature of metric spaces. C. R. Math. Acad. Sci. Paris. 345, 643-646 (2007)



Invariant Distribution and Triangle Density

Convergence to Invariant Distribution:

“Triangle Density”:

Larger Ollivier-Ricci curvature indicates greater robustness via rate of convergence to the invariant

(equilibrium) distribution. Specifically, suppose . Then there exists a unique invariant probability

measure . Moreover, for any x,

Note that represents the jump of the random walk at x. On a connected graph X with diameter D

(defined as the longest graph geodesic), this yields the following estimate for the mixing time [7]:

Here,

The relationship of robustness to the Ollivier-Ricci curvature is again seen for the case of Markov chains.

On an unweighted graph, the lower bound for the Ricci curvature k(x, y) for x adjacent to y becomes:

u

W1(mx
*t,u) £

W1(dx,mx )

k
(1- k)t.

mx
*t (y) := mx

*(t-1)mz (y),
zÎX

å mx
*1 := mx.

W1(dx,mx )

1

2
mx

*t (y)-u(y) £ D(1- k)t.
yÎX

å

where is the number of triangles containing x,y, c(x)=0 or 1 is the number of loops at x [8].#(x, y) := 1
x1ÎNxy

å

This indicates multiple signaling pathways correlates to Ricci curvature (robustness)

[7] Ollivier, Y. Ricci curvature of metric spaces. C. R. Math. Acad. Sci. Paris. 345, 643-646 (2007)

[8] Bauer, F., Jost, J. & Liu, S. Ollivier-Ricci curvature and the spectrum of the normalized graph Laplace operator. http://arxiv.org/abs/1105.3803 (2011)
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Erdos-Renyi network  vs Scale-free network

Poisson                  vs power law

https://www.spandidos-publications.com



The average curvature of scale-free network is larger



Curvature: Cancer Hallmark?

Is Curvature a Cancer Hallmark?: Analysis



Comparison of Curvatures

• All three notions of Ricci curvature have a higher average value in 
all seven cancer networks compared to the complementary normal 
networks.



Drug Targets: Ewing Sarcoma

Highlights of a novel approach based on Network Curvature

Biological Systems as

Weighted Graph

Cancer Hallmark? TestBed - Ewing Sarcoma

• Represent biological systems as complex dynamically evolving networks

• Quantify the ability to withstand perturbations by a mathematical notion of “robustness”

• Utilize the recently discovered relation between Ricci Curvature (“Ric”) and robustness (“R”):

Drug Resistance

• Goal: Systematically uncover “targets of opportunity” in an adaptive manner

Ricci Curvature, Cancer Hallmark?

Preliminary Results:  Cancer vs Normal Tissue 

• Our studies performed showing cancer tissues has larger curvature (increase robustness or ability to adapt) than normal tissue

• Studies focused on variety of cancer types: Breast, Lung, Liver, Head/Neck, Kidney, Thyroid

• Refer the reader to a recently published manuscript - “Graph Curvature for Differentiatng Cancer Networks”

• Employing network curvature to dynamically understand sensitivity/resistance in cancer (i.e., pre-treatment, post-treatment)

Significance to RFI

• Safety and Efficacy Procedures are stringently in place with collaborators at MSKCC and MD Anderson (e.g.,xenograft mice, cell lines)

After static treatments, what gives rise to modes of resistance and ability for system (disease) to adapt?

• Approach can be utilized for vaccine treatment, drug persistence– the key is ability to quantify fragility and robustness of system

http://www.apple.com


Drug Resistance
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Sketch of Pipeline for Sarcoma Data Clustering



Heat Map

Pediatric

TCGA



(Collaborator: MSKCC - Baselega Group)

Breast Cancer

ER Positive Breast Cancer

• PI3K inhibition induces Estrogen Receptor (ER) activity

• Time-Varying Treatment with BYL710 (PI3K Inhibitor)

• Measured expression at 4H, 8H, 12H, 24H, 48H

• ER-related genes are mechanisms of resistance

• Goal:  Uncover Targets

Ricci Curvature: During initial treatment, activity of genes exhibits fragility prior to building resistance

and then subsides. This is in line with gene expression data where maximal expression of ER-related genes

is seen at the 24 hour mark and then subsides. Effect seems to be greatest on PI3KR1, which makes

biological sense since we are considering the effect of a PI3K inhibitor. In this case, we see a very large increase

in fragility at 4 hours (exhibited by large negative curvature). Results are presented minus scaling factor of 1e3 for

figures (a)-(h) and 1e5 for figure (i).



Autism: Connectome
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Application:

Diffusion MRI tractography
• Diffusion MRI measures the diffusion of water 

molecules in the brain

• Neural fibers influence water diffusion

• Tractography: “recovering probable neural fibers from 

diffusion information”

neuron’s

membrane

water

molecules



fMRI and DTI for IGS



Benamou-Brenier Framework
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Vector-Valued Densities
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Example: Color Images

49

The marginal distributions shown in Figure are color images (256 by 256) of two

geothermal basins in Yellowstone Park, where bacterial growth give them distinctly

different colors and hues.



Interpolation of Images

50



Transcription-Harmonic Oscillator



Jarzynski Fluctuation



Summary

Key Points:

• Riemannian geometry, entropy, and network robustness via OMT

• Quantum mechanics for matrix-valued OMT

• Data interpolation and prediction

• Examined biological and financial networks

• Results and methods are generalizable to other systems


