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All are connected via Optimal Mass Transport.



Optimal Mass Transport
Monge Transportation Cost (1781)

JConsiders the engineer's problem of
transporting a pile of soil or rubble to an
excavation with the least amount of work.




Optimal Mass Transport (MKW)

Given two oriented Riemannian manifolds
Q, and ()
with correspondmg densﬁ'y functions

M, and [

and the same
amount of total mass:

J;:G 1, (x)dx = Jﬂl 1, (x)dx



Transportation Cost
Modern Formulation - Monge Kantorovich (MK)

Construct a smooth mapping:
12 ( Q. 1y ) — (€, 14,

With mass preserving (MP) constraint:
iy =det(Vu) 1 (1) (Jacobian equation)

so as to minimize the cost function:

M (u)= j iI}(x_ﬁH(x))yﬂ (x)dx

Y

®(x.u(x))is a positive twice differentiable convex function.



Kanterovich-Wasserstein Metric

Jacobian problem has many solutions. Want optimal one (Lp-
Kantorovich-Wasserstein metric)

dp(fro, 1) = inf, [lu(z) — x[Pug(a)da

Optimal map (when 1t exists) chooses a map with preferred
geometry (like the Riemann Mapping Theorem) in the plane.



Solution of L2 M-K and Polar Factorization

Specializing to quadratic cost:

®(z) = LL

leads to the following "non-local” gradient descent equation:
= —1/pVa(a — VAL div(@))
Motivation for the approach:
t=uos'=Vw+y, div(y) =0 Helmholtz decomp.

The key idea is to push the fixed initial map u (thought of
as a vector field) using the one-parameter family of MP
maps in order to remove the divergence-free part!

v = Vw o s Polar factorization



Optimal Mass Transport Applications

J Econometrics, fluid dynamics, automatic
control, statistical physics, shape optimization,
expert systems, meteorology, spectral analysis,
time-series analysis, and many more fields.




Glymphatic System
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Interpolation and Prediction: TBI
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Motivation: Cancer Network as Robust
System

&ygen depandent /

HCA Cycke |
‘ T I—b VEGF upregu R —— Angogenass
sl ;'r""""' —» Hypox@ ——» [ HIFL uprequl monl Re'shrrv».n 1o

cnemoxines, e.g:|
= SPFla, HGF |
(.X‘ [JA ] WET TCell mo tiity

UITN Dan
p i

— === Meta 13515

[MMP2 and uPAR (
\ Degradatan I

fupregulation
OIEC M

¥

Celcycle

Figure : Feedback loops for hypoxia responses of tumor cells 4

@ How to quantitatively measure the robustness?

4 . i D :
Kitano, Cancer as a robust system: implications for anticancer therapy,
Nature Reviews Cancer, 2004



Robustness & Fragility

Network Robustness & Fragility: |. GRAPH THEORY /

- If node/edge x is perturbed, how does the network & o @
react to such a change. A highly robust network Rk T i
continues to operate in a similar manner with S i
respect to its functionality. 1. SUPPLY CHAIN AND FINANCIAL NETWORKS - CRISIS

Quantitively:

- Consider a network perturbation (fluctuation) that will e s

result in a deviation of an observable from its

unperturbed value. How quickly will this return to o =
e . ,) ol e oy e
equmbrlum (e'g" decay rate) ’ DoD Supply Chain [2] 2008 Financial Crisis [3]
. . (risk propagates through primes and subs) (small/large banks - risk exposure)
Letp,(¢) denote the probability that the mean deviates
by more than €at time t (with p(¢) > 0as ¢ —o0), then IIl. BIOLOGICAL NETWORKS - CANCER
1 ASxAR>0 ARicx AR>0
R:=1lim| - =logp ()
. e
t—>0 t - B
measures the decay rate [1].
Robust (Cancer) State Nodal Robustness Interaction Robustness
(Multiple Signaling Pathways) (Dynamic Entropy, Scalar Curvature) (Ricel Curvature)

- Robustness is measured as the ability to withstand
perturbations (noise) or stochastic fluctuations to a ’ ' mm ’ DE
network yet still allow for ““information to be passed”
in a reliable manner.

[1] Albert, R. et al. Statistical mechanics of complex networks. Reviews of Modern Physics. 74, 47 (2002). Fragile (Normal) State “Knock Down” Genes “Knock-Down" Interactions
[2] http://about.bgov.com/bgov200/bgov-analysis/competition-cooperation-among-defense-contractors-bgov-insight/  (Fewer Signaling Pathways) (Nodes May Participate in Both (Target interactions at the local level -
Robustness and Fragility) there exists no “loss of information”)

[3] Battiston, S. et al. DebtRank: Too Central to Fail? Financial Networks, the FED and Systemic Risk. Scientific Reports 2 (2012).



Wasserstein Distance

Wasserstein 1-Metric:

Let y, and y, now be two discrete distributions with same total mass over n points, respectively, and let d(x,y)
represent the distance between such samples (for the case of graphs, this is simply taken to be the hop
distance). Then, W1(u1, M2) may be described as follows:

Wt 41) = min S d(x, ), )

i,j=1

where 1(X, Y)is a coupling (or flow) subject to the following constraints:

pla,y) > 0,
> pla,yy) = plx), Vo,

X prny) = pa(y). V.

The cost above finds the optimal coupling of moving a set of mass from distributions p; to y, with minimal “work” [4].

[4] Rubner,Y et. al. The earth mover’s distance as a metric for image retrieval. International Journal of Computer Vision. 42 (2000)



Generalities on Riccl Curvature

Curvature:

Curvature, in the broad sense, is a measure by which a geometrical object deviates from being flat, and
is defined in varying manners given context [5].

Sectional Curvature;

. For M an n-dimensional Riemannian manifold, x| A/, let T Mdenote the tangent space at x, and uy,uU; €
TM orthonormal vectors. Then for geodesics yi(t) := exp(tu;), i = 1,2, the sectional curvature K(uy,u,)
measures the deviation of geodesics relative to Euclidean geometry, i.e.,

d(g (). 9()=~2 t? K(le’%)tzw(t“)g

Ricci Curvature:

- The Ricci curvature is the average sectional curvature. Namely, given a (unit) vector u € TM, we
complete it to an orthonormal basis u,u,,...,u,. Then the Ricci curvature is defined by

Ric(u) = % én_ K(u,u,)

Where we note there might be several scaling factors and it may be extended to the quadratic form, yielding
the so-called Ricci curvature tensor. Ricci curvature is also strongly related to the Laplace-Beltrami operator
and in geodesic normal coordinates, we have

R, =-3/2Dg,

where g; denotes the metric tensor on M.

[5] DoCarmo, M. Riemannian Geometry (Birkhauser, 1992).



Generalities on Riccl Curvature

Ricci Curvature (con'’t):

- We can alternatively describe Ricci curvature as the spreading of geodesics. Let y denote a geodesic
and y.a smooth one parameter family of geodesics with y,= y. Then a Jacobi field may be defined as

J(=994,

ds
It may be regarded as an infinitesimal deformation of the given geodesic.

Then it is standard that J(t) (essentially the Jacobian of the exponential map)
satisfies the Jacobi equation:
2

%m) +RUJ(),7(0)y() =0,

Where%denotes covariant derivative, and R is the Riemann curvature tensor.

Curvature in Terms of Jacobian

Discrete Spaces:

- We want to extend these notions to discrete graphs and networks - ordinary differentiability does not
apply. A nice argument (due to Villani)[6] approaches this problem through convexity. More precisely, let f:
R"— R. Then if f is C2, convexity may be characterized as sz(x)zo‘or all x. One may also define
convexity in a synthetic manner:

J(@- Dx+)EQ- 1) f(x)+1 ()

Following this, one may define a synthetic notion of Ricci curvature in terms of so-called displacement
convexity inherited from the Wasserstein geometry on probability measures.

[6] Lott, J. & Villani, C. Ricci curvature for metric-measure spaces via optimal transport. Annals of Mathematics. 169, 903-991 (2009).



Explaining Curvature to Boltzmann

e Displacement convexity /concavity

S(pr) = tS(po) + (1 — t)S(p) +

) S==[plogp -
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Figure : The lazy gas experiment. ©

EI"m"ill.;mi. Optimal Transport. Old and Mew. 2008.



Ricci Curvature and Entropy

Lott & Villani [6]:

Let (X,d,m) denote a geodesic space, and set:

P(X.d,m) = {uz(}:/udmzl},
X
P*(X.d,m) = {uePX,d,m):lim plogpdm < oo}
eNO0Ju>e

We define

_11m/ nlogudm, for u € P*(X,d,m),
e\0

Which is the negative of the Boltzmann entropy Se(p) := -H(u); note concavity of Seis equivalent to the
convexity of H. Then we say that X has Ricci curvature bounded from below by k if for every /73, /7]?| P(X)
there exists a constant speed geodesic p:with respect to the Wasserstein 2-metric connecting po and

such that
S.(m)? 1S,(m)+ (- S, (mg)+ L)

This indicates the positive correlation of entropy and curvature that we will express as

DS, x DRic >0

w(m,m), O0£t£1

We now need to connect Ricci curvature and entropy to the notion of robustness (next slide) as well as
define appropriate notions of curvature/entropy for discrete spaces (graphs).

[6] Lott, J. & Villani, C. Ricci curvature for metric-measure spaces via optimal transport. Annals of Mathematics. 169, 903-991 (2009).



Curvature and Robustness

Recall Definition of Robustness:

If we Ietpe(t)denote the probability that the mean deviates by more than €at time t (with p,(t) >0as  —> 00),
then

R:=lim| - L1og p.(¢)
—a0 t‘

measures the decay rate.

Fluctuation Theorem:

In thermodynamics, it is well-known that entropy and rate functions from large deviations are closely related.

The Fluctuation Theorem is a realization of this fact for networks and can be expressed as:

DS, xDR>0

This can now be further extended to be

DRic x DR > 0.

- The Fluctuation Theorem has consequences for just about any type of network: biological, communication,
social, or neural. In rough terms, it means that the ability of a network to maintain its functionality in the face of

perturbations (internal or external), can be quantified by the correlation of activities of various elements that
comprise the network.

Network Entropy & Curvature:
Given a Markov chain , u=(u,), Zyx(y)z 1,
y

Network Entropy can be defined as

S, =a p.S.(x) S.00=-3" 11, (y)10g 12,(y)

. oo . y
We now need an appropriate definition of Ricci curvature for a network.



Olhvier-Ricci Curvature

Motivation:

We employ the notion of Ollivier-Ricci curvature motivated by adopting coarse geometric properties [7]

Two very close points x and y with tangent vectors w and o e
W', in which w'is obtained by a parallel transport of w, the GRgiNe-SRREN oo
two geodesics will get closer if the curvature is positive.

Distance between two small (geodesic balls) is less than
the distance of their centers. Ricci curvature along

direction x-y reflects this, averaged on all directions w at
X Pictorial Motivation for Ollivier Ricci Curvature

Definition:

Formally, we define for (X,d) a metric space equipped with a family of probability measures {u, : x € X}, the
Ollivier-Ricci curvature k(x, y)along the geodesic connecting x and y via

Wi (m,m)=Q1- k(x,y))d(x,y)

where W, denotes the Wasserstein 1-metric defined previously and d(x,y) is the geodesic (hop) distance on
a graph. For the case of weighted graphs, we set

o

dx = a- ny
5‘)
— Xy
m(y) =

dx
and the sum is taken over all neighbors of x where w,, denotes the weight of an edge connecting x and y (it
is taken as zero if there is no connecting edge between x and y). The measure y, may be regarded as the
distribution of a one-step random walk starting from x.

[7] Ollivier, Y. Ricci curvature of metric spaces. C. R. Math. Acad. Sci. Paris. 345, 643-646 (2007)



Ornstein-Uhlenbeck (OU) Process

Very informative to consider the relationship of (Ollivier-)Ricci curvature and robustness via a simple
example. Consider the following OU process:

dX, =-aXdt+sdw, X(0)=x,

where W is Brownian motion (Wiener process), and we take X, to be deterministic. We treat the 1-
dimensional case for simplicity. Everything goes through in higher dimensions as well. The corresponding
Fokker-Planck equation is

p_ T, s'Tp

1t T 2 I
where p = p(X,t|Xo,0) is the transition probability of the underlying Markov process One may show that
pP(X,t|X0,0) is a Gaussian process with mean and variance given by <X(t)> Xpe varX(t)——(l e*). We see
that we get transition probabilities of mean xge~?and variance independent of X,. Since€all the transitions
p(X,t|Xq,0) have the same variance (and are Gaussian) the 1-Wasserstein distance

W, (p(x,t] x5, 0), p(x, ot | x;, 0)) =|roe * - x,6 ™

Finally,
k(-Xlel) :1 W(p(x tlxo,o) p(x tlxll 0)) _1 €
‘xo - xl‘
This implies
DRicxDa >0

Larger & corresponds to larger curvature K and this corresponds
to how quickly the systems returns to equilibrium, that is to the
mean going to 0.

Simulation of Two OU Process

[7] Ollivier, Y. Ricci curvature of metric spaces. C. R. Math. Acad. Sci. Paris. 345, 643-646 (2007)



Invariant Distribution and Triangle Density

Convergence to Invariant Distribution:

Larger Ollivier-Ricci curvature indicates greater robustness via rate of convergence to the invariant
(equilibrium) distribution. Specifically, suppose «(x,y) >k >0. Then there exists a unique invariant probability
measure U. Moreover, for any X,
* /4

iy, )£ 0 gy,
Here,

* i o *( _1) *

m»)=am’my), nt=m.
X

Note thatW,(d,, /M) represents the jump of the random walk at x. On a connected graph X with diameter D
(defined as the longest graph geodesic), this yields the following estimate for the mixing time [7]:

£D(1- k).

yI X
The relationship of robustness to the Ollivier-Ricci curvature is again seen for the case of Markov chains.

“Triangle Density”:
On an unweighted graph, the lower bound for the Ricci curvature k(x, y) for x adjacent to y becomes:

e (-l L d@w\ _(_1_1_ i@
-J,:":'IJ—— _dT_d. dﬁl_‘--"ﬁl\-dl.l __ _dT_d|_dTVdL. N

I::::!‘,y;l n (Ir.,?:: Elzy]
d:vd, d dy

-

where #(x,y)= & 1is the number of triangles containing x,y, ¢(x)=0 or 1 is the number of loops at x [8].

x| Ny,
This indicates multiple signaling pathways correlates to Ricci curvature (robustness)

[7] Ollivier, Y. Ricci curvature of metric spaces. C. R. Math. Acad. Sci. Paris. 345, 643-646 (2007)
[8] Bauer, F., Jost, J. & Liu, S. Ollivier-Ricci curvature and the spectrum of the normalized graph Laplace operator. http://arxiv.org/abs/1105.3803 (2011)



Erdos-Renyi network vs Scale-free network
Poisson VS power law

(A) Random network (B) Scale-free network
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Curvature: Cancer Hallmark?

6 Hallmarks

Is Curvature a Cancer Hallmark?: Analysis



Comparison of Curvatures

Cancer Type A Average OR | A Average BER A Average Forman
Curvature Curvature Curvature

Breast Carcinoma 0.012 0.182 13.022

Head/Neck Carcinoma 0.004 0.116 9.100

Kidney Carcinoma 0.010 0.217 7.711

Liver Carcinoma 0.008 0.227 3.136

Lung Adenocarcinoma 0.013 0.320 7.898

Prostate Adenocarcinoma 0.009 0.179 7.368

Thyroid Carcinoma 0.133

0.006

2.969

« All three notions of Ricci curvature have a higher average value in
all seven cancer networks compared to the complementary normal

networks.



Drug Targets: Ewing Sarcoma

Highlights of a novel approach based on Network Curvature

- Represent biological systems as complex dynamically evolving networks
- Quantify the ability to withstand perturbations by a mathematical notion of “robustness”
- Utilize the recently discovered relation between Ricci Curvature (“Ric”) and robustness (“R”):

ARicx R>0

- Goal: Systematically uncover “targets of opportunity” in an adaptive manner

Biological Systems as ’ Cancer Hallmark? * Drug Resistance * TestBed - Ewing Sarcoma

Weighted Graph e [
g p \ 4 | \L I
*& sustaining l! ! @
el Proliferative 7 Py =) . (598 s
ARZC e AR Z 0 s\\ el f Drug-Sensitive Parental Drug-Resistant 8 = o2
Evading \ / Evading \ PI3K l
Apoptosis Growth \
Suppressors
‘?( I, ) " - - o ”
Di T ts? '8loge R < R < R ‘, —
‘ rug Targe DS Untreated DR i) |\ G o
l ./ — *:‘/ BAD \| Proliferation l
Interaction Robustness “Knock-Down” Interactions am T

| mTORL | Apoptosis

(Ricci Curvature) (Target interactions at the local level)

S6K1 4EB-P1

Ricci Curvature, Cancer Hallmark? l

Protein Synthesis Proliferation

After static treatments, what gives rise to modes of resistance and ability for system (disease) to adapt?

Preliminary Results: Cancer vs Normal Tissue

- Our studies performed showing cancer tissues has larger curvature (increase robustness or ability to adapt) than normal tissue
- Studies focused on variety of cancer types: Breast, Lung, Liver, Head/Neck, Kidney, Thyroid
- Refer the reader to a recently published manuscript - “ ?

Significance to RFI

Employing network curvature to dynamically understand sensitivity/resistance in cancer (i.e., pre-treatment, post-treatment)
Approach can be utilized for vaccine treatment, drug persistence— the key is ability to quantify fragility and robustness of system
Safety and Efficacy Procedures are stringently in place with collaborators at MSKCC and MD Anderson (e.g.,xenograft mice, cell lines)


http://www.apple.com

Drug Resistance

Drug-Sensitive Parental Drug-Resistant

- » -

RDS < RUntreated S RDR



Initial Preliminary Results

Global Network Fragility via Riccl Curvature:

T2-Hour Unireated Resistant

Average Curvature

5 % Left Tail {Avg.)
1% Left Tail (Avg.)
Min Curvature

Notes:

«  We quantify that resistant tumors are more robust 72-hourfuntreated via curvature.
- The most fragile case is the 72-Hour
» This coincides with our initial hypothesis and with our previous cancer studies

Local Protein Interaction Fragility via Scalar Curvature:

Untreated Resistant

Motes:

. We noticed all (directfindirect) pathways to mTor become “fragile” during resistant and 72-hour case
. MEK pathways becomes more robust in resistant case
. We caution these local results are too preliminary to draw convulsive evidence

30
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Breast Cancer
(Collaborator: MSKCC - Baselega Group)
ER Positive Breast Cancer

« PI3K inhibition induces Estrogen Receptor (ER) activity
+ ER-related genes are mechanisms of resistance

+ Time-Varying Treatment with BYL710 (PI3K Inhibitor)
* Measured expression at 4H, 8H, 12H, 24H, 48H

* Goal: Uncover Targets

(a) ESR1 (b) ERBB3 (c) PGR

(d) ERBB3 (e) PBX 1 (f) CREBI
(g) XBPI (h) MYC (1) PI3KR

Ricci Curvature: During initial treatment, activity of genes exhibits fragility prior to building resistance

and then subsides. This is in line with gene expression data where maximal expression of ER-related genes

IS seen at the 24 hour mark and then subsides. Effect seems to be greatest on PI3KR1, which makes

biological sense since we are considering the effect of a PI3K inhibitor. In this case, we see a very large increase

in fragility at 4 hours (exhibited by large negative curvature). Results are presented minus scaling factor of 1e3 for

figures (a)-(h) and 1e5 for figure (i).



Autism: Connectome
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Application:

Diffusion MRI tractography

Diffusion MRI measures the diffusion of water
molecules In the brain

Neural fibers influence water diffusion

“recovering probable neural fibers from
diffusion information”

neuron’s
membrane

35



fMRI and DTI for IGS

Figure 8.4.6-1. Retrospective Example of fMRI for Neurosurgical Application
62-year-old female patient with left frontal hypenntense non-enhancing mass lesion
Skin, Brain, Ventricles (blue) and Tumor (green) models from conventional MRI; fMRI
activations (yellow) from pre-operative finger-taping experiment. Fiber tract indications
(red) from Diffusion Tensor MRI.

Imaging suggests that the tumor is in front of motor strip with involvement of
supplementary motor area, with fibers from SMA piercing tumor in its posterior aspect.




Benamou-Brenier Framework

e cxtend the Benamou-Brenier framework to transport of
— Hermitian matrices (Quantum density matrices)

— matrix-valued distributions

[.e., formulate for matrices...

1
inf// p(t,m)”v(t,a?)“zdtdx
J J0O

dp _
— 4+ V- = 0,
5; T (pv)

p(0,-) = po, p(1,-) = p1

37



Quantum continuity equation

Starting point: Lindblad equation (in “diagonal form” Lj; = L}*;)

p = _[iﬂa P]
N 1 1
+ > (LgpLy — SPLiLi — SLikLip),
k=1

Notation:
H and § the set of n X n Hermitian and skew-Hermitian matrices

H and H nonnegative and positive-definite matrices
Dy :={p€ Hyit|tr(p) =1} “density matrices”

SN, HN block-column vectors with matrix-entries



Some calculus

Note for functions:

fx)  g(x) — f(x)g(x)

Or : g(x) — Org(x)

Das f(x)] 2 g(@®) = Oz f()g(x) — f(2)029(x) = (021 (x))g(2)

For matrices:
EJL_!._X = [L;. X|=[L;X — XL;]
define the gradient operator for L € HN

L'X — X14

VL:H_:*SN, X|—}' :
LNyX — XLy

39



Some calculus

V1, is a derivation

Vi (XY +YX)=(VrX)Y + X(VY)
+(VY) X +Y(VX), VXY € H.

dual is an analogue of the (negative) divergence operator:

Y, N
— LkYk — YkLk'

k

vi:8N 5, Y =

YN

(Vi X,Y) = (X, V1Y)



Continuity equation

p=ViM,(v),

with M ,(v) a “multiplication” between p and v

momentum field “pv" = M ,(v) € SN

choices of non-commutative multiplication:

) %(pfv + vp) (“anti-commutator”)
i) [y pPopl=3ds  (Kubo-Mori)

i) pI/QUpl/Q



Case i) "anti-commutator”

Problem i):

1
Waalpo,p)?i= _ min [ tx(po o)ty
' pED+,vESN 0

A -
p=3VrLlpv+uvp),
,O'(O) = PO p(]-) = P1,

Note: v*v = Z{il viv and v € SN,



Duality

A(+) € H Lagrangian multiplier

1
£(p.0.) = [ {5 0(pv™) = (33 = oo+ vo)) f e

Point-wise minimization =

Vopt(t) = =V LA(1).



Duality

If A(+) € H.:

N
. 1 1
A= (VLA (Vi) =5 > (VINE(VLA)k
=1
and

. 1,
p= _EVL(PVL)\ + ViAp)

matches the marginals p(0) = pg, p(1) = p1,
then (p,v) with v = —V X solves Problem i)



Riemannian structure

d; € TangentSpace, = {0 e H|tr(d) =0}, forj=1,2

“Poisson” equation: d's & A's

1
0; = _EVE(PVL)\j + ViAjp)

and

1
(01.02)p = 5 tr(pVAT VA2 + pVASVAY)

Note: given d, then —V A is the unique minimizer of tr(pv*v) over

veSN satisfying

1
d = EVE(pr + vp).

45



Matrix transport with added spatial component

D = {p(-) | p(xz) € H4 such that /]Rm tr(p(x))dxr = 1}.

Continuity equation: w € H along space dimension

p 1 1

Metric:

1
Waa(pos p1)? 1= lnin[ ] {tr(pw*w) + v tr(pv*v)} dxdt,
(1] m

pED,weH", veSY
dp

1 1
5¢ T3 Ve (pw+wp) = SVi(pv +vp) =0,
,0(0,‘) = Po: 9(17') =P~

46



Gradient flow of Entropy

a5(p(t)) _
dt
1 1
= —tr((Vp log p)*/ pivp T %ds),
0
=> greatest ascent direction v = —V log p.

non-commutative analog of: 9.p = p 9:x(log p)):

1
VL,(J:/ p* (Vi logp)pt~3ds
0

Gradient flow:

1
p==Vi | P(Vilogp)p'~*ds = —ViVip=ALp

Linear heat equation (now Lindblad) just as in the scalar case!
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Vector-Valued Densities

A vector-valued density p = [p1, p2,--- , pe]’ on RY is a function from R" to RY such that

Z/ z)dr = 1.

The set of all vector-valued densities and its interior are denoted by D and D, respectively.

Different p; may represent densities of different types (or particles) but there is a possibility for the
mass to transfer from one type to another, that is, we allow mass transfer between different densities.
Therefore, the change of density is determined by two factors: the mass flow within the same type of
density and the mass transfer between different types of densities. This dynamics may be described by
the following continuity equation:

dp; ) |
(if —+ v-r . '[?P'E'L'li:] - ;‘iju"ji — p‘iﬁ;i_f) = ﬂ "ﬁ-; e 1_. .. ~f. {]}

Here »; 1s the velocity field of particles ¢ and w;; = 0 is the transfer rate from i to j. In (1), all types
of densities are treated equally. More generally, the mass transfer between the ¢ types of particles can
be modeled by a graph G, = (V, &, W,). Equation (1) corresponds to the case where G, is a complete
graph with all weights equal to 1. For simplicity, we will stay with the special case (1).

With this continuity equation, given i, v € D, we can formulate the optimal mass transport problem

Vs . 2 = i 2
Wop(p,v) pEE}EfLu/ /N {;PT (t, ) |lv;(t, 2)||* + 4 ZZP‘”U‘H T }drdt (2a)

i=1 j=

i | _

d’i‘* + V.- (pivs) — ;(pﬂ;ﬁ piwi;) =0, Yi=1,....¢ (2b)
wij(t,x) =0, Vi jtx (2c)
p(0,7) = (). p(1,7) = v() (2d)

The coefficient v = 0 is a tradeoff parameter between the transport cost for the same type of particles
and mass transfer cost between different types of particles. When ~ is large, the solution tends to reduce
the mass transfer.
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Example: Color Images

(a) po (b) p1

The marginal distributions shown in Figure are color images (256 by 256) of two
geothermal basins in Yellowstone Park, where bacterial growth give them distinctly
different colors and hues.
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Interpolation of Images

(a) t =0.1 (b) t =0.2 (c) t=10.3

(d) t =0.4 (e)t=05

(g) t=0.7 (h) t =0.8
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Transcription-Harmonic Oscillator

a) b}
E]
&

gene transcribed
at rate f mRMNA decays

{ atrate n restaring force =nx

—-
- external force
gene RMA polymerase

Fig. 1: Transcription and mRNA decay. a) Transcription of a gene is controlled by the binding of transcription
factors (left, shown in green) to the regulatory region of a gene. Transcription of a gene leads to the production of
mRNA molecules at some rate f. mRNA molecules decay at a rate 1 per molecule. b) The resulting dynamics of

mRNA concentration x can be mapped onto an harmonic oscillator subject to a restoring force —nx and an external
force f driving the system out of equilibrium.



Jarzynski Fluctuation

Equation (2) is the Langevin equation of the Ornstein-Uhlenbeck rocess describing the motion of an over-
damped particle with position z in a quadratic potential V' (z) = ("?“’Q;nf Free energy of equilibrium distribution
(Einstein relation) is given by

_ _ RV a=T
. ,BF_/e BV(2) g, '

Now let us look at the work. The external force f is a function of ¢. Changes in external force lead to changes
in the potential, and thus changes in the total work performed between the initial and final time points of the
system. Accordingly, ( )

A —(nx— f
AW = (—)Af = ———=Af.
(5p)el = — =4

Notice the AF = 0. Clausius tells that that (W) > AF = 0. Jarzynski, tells us that
(eTPW) = ¢ PAF = 1,

This uses all the information.



Summary

Key Points:

Riemannian geometry, entropy, and network robustness via OMT
Quantum mechanics for matrix-valued OMT

Data interpolation and prediction

Examined biological and financial networks

Results and methods are generalizable to other systems



