Parkinsonian oscillations: a computational view

> Jonathan Rubin Department of Mathematics University of Pittsburgh

SIAM Life Sciences

July 14, 2016

Parkinson's disease: historical origin in medicine

James Parkinson

ESSAY ON THE SHAKING PALSY.

CHAPTER I. DEFINITION-HISTORY-ILLUSTRATIVE CASES.

SHAKING PALSY. (Paralysis Agitans.)

Involuntary tremulous motion, with lessened muscular power, in parts not in action and even when supported; with a propensity to bend the trunk forward, and to pass from a walking to a running pace; the senses and intellects being uninjured.

Parkinson, 1817

William Gowers, 1886

Parkinson's disease: immediate cause

Substantia nigra

Diminished substantia nigra as seen in Parkinson's disease

*ADAM

death of dopaminergic neurons in substantia nigra pars compacta:

Hassler et al., pre-1940; Carlsson & Hornykiewicsz, 1950-1970

CNS Pathology

OP: Why do these cells die? Why don't other cells die?

NIH Medline

Cut section of the midbrain where a portion of the substantia nigra is visible

Parkinson's disease: summary

what: akinesia (difficulty initiating movement), bradykinesia (slowed movement), posture issues, rigidity, tremor

how: dopamine loss: death of dopamine-secreting cells in the substantia nigra pars compacta (SNc) of the *basal ganglia*

who: "8-18 cases per 100,000 person-years"; 1% of those over 60 and 4% of those over 80; 5-10% of cases are early onset (age 20-50)

why: occasionally but not usually genetic; risks linked to pesticides (e.g., rotenone!), toxins (MPTP -- *The Case of the Frozen Addicts*), heavy metals; possibly protection from caffeine, smoking, anti-inflammatories, estrogens, exercise, (clean) apple skin...

Wikipedia; de Lau et al., Lancet Neurol., 2006; O. Bandmann

www.shutterstock.com · 71057572

altered basal ganglia neuronal activity patterns in parkinsonism

some past comput. models w/parkinsonian activity

Terman et al., 2002: STN-GPe (E-I loop); cf. Park & Rubchinsky

Leblois et al., 2006: symmetry-breaking in full BG activity-based model

Nevado-Holgado et al., 2010: STN-GPe firing rate model; β oscillations require cortical excitation to STN and synaptic delays

McCarthy et al., 2011: inhibitory interactions in striatal medium spiny neurons (MSNs) sufficient for β

Kumar et al., 2011: large scale (LIF) STN-GPe model

new suspect: pallidostriatal circuit

Gittis lab, CMU; unpublished

defining the pallidostriatal circuit

Corbit*, Whalen* et al., J. Neurosci., 2016

pallidostriatal circuit model

key point: *synchronous events* exhibit β **[** rhythmicity, enhanced in dopamine-depleted

thrown for a loop

synchronous spikes in GPe pause FSI...

...allowing MSN to fire, esp. in DD...

...enhancing *GPe synchrony* in DD

why are β oscillations significant?

 β strength correlates with PD severity; re-emergence/ introduction of β can cause PD-like signs

Jenkinson & Brown, TINS, 2011 (cf. Kuhn et al., *EJN*, 2006; *Exp. Neurol.*, 2009)

Kuhn et al., J. Neurosci., 2008

Conclusions I

- Parkinson's disease involves pathological activity in the basal ganglia that includes *enhanced* β *oscillations*
- these oscillations may originate in *or be amplified by* the pallidostriatal circuit
- all circuit elements contribute:

how can motor symptoms be mitigated? *deep brain stimulation* (STN-DBS shown here)

The Mayo Clinic

OP: looks great – but how does this work??

idea 1: BG outputs go to thalamic relay station classical view of PD normal Cortex Cortex Striatum Striatum SNc GPe GPe Thalamus Thalamus GPi/SNr STN **GPi/SNr** STN I = inhibition = excitation

paradox: how can more inhibition make things better??

Rubin & Terman, J. Comp. Neurosci., 2004

perhaps relay is compromised in PD!

answer: pattern of inhibition trumps amount

TC (relay) cell should give voltage spike to each input:

answer: pattern of inhibition trumps amount

PD – oscillation of inhibition throws relay out of whack:

test with data-driven computational model

Conclusions II

• parkinsonian oscillations in basal ganglia will be transmitted to thalamic relay cells

- inhibitory oscillations compromise relay
- although DBS drives basal ganglia outputs and may yield larger inhibition, *inhibition that becomes less variable may restore relay*

more experiments on STN-DBS:

(1) suppresses β oscillations in GPi despite ongoing β in STN (which drives GPi) and

(2) destroys STN-GPi coherence

Moran et al., Front. Syst. Neurosci.; Neurobio. Dis., 2011

idea 2: more STN spikes \neq proportionally more downstream inhibition: *synaptic depression*

neuronal synapse:

clue:

GPi entrainment gradually reduced

Rosenbaum et al., Neurobio. Dis., 2014

stochastic vesicle dynamics

Rosenbaum et al., *PLoS Comp. Biol.*, 2012; *J. Neurophysiol.*, 2013

(see also: Abbott et al., 1997; Goldman et al., 1999; Fuhrmann et al., 2002; **Goldman, 2004**; de la Rocha & Parga, 2005; Grande & Spain, 2005, Lindner et al., 2009, Merkel & Lindner, 2010)

computational model (1) of short term depression in STN-GPi pathway

Rosenbaum et al., Neurobio. Disease, 2014

DBS-induced synaptic depression suppresses the transfer of low frequency oscillations

DBS-induced synaptic depression suppresses the transfer of low frequency oscillations

key expression

Poisson re-release firing uptake rate probability rate $f_0 = (1/\tau_u + U\nu)/(2\pi)$

effective synaptic cutoff frequency

• STN β transmission to GPi suppressed in STN-DBS & GPi output becomes less oscillatory, less tied to STN

DBS-induced synaptic depression suppresses downstream coherence

for high rate inputs, uptake contributes relatively more to transmission: decorrelate inputs and outputs, *lower coherence within GPe & with STN*

computational model (2) of short term depression in STN-GPi pathway

results from computational model:

-- gradual decrease in entrainment, as in data

results from computational model: -- reduced beta oscillations and coherence, ~ as in data

cf. Moran et al., *Neurobiol. Disease*, 2012

FINAL SUMMARY on DBS

• mechanism 1: bursting in GPi can compromise thalamic relay in parkinsonism

• **STN-DBS** that entrains and regularizes GPi can restore TC relay

• mechanism 2: excessively synchronized β oscillations in GPi can compromise thalamic relay

• **STN-DBS** weakens GPi β & synchrony and makes GPi output less coherent/more steady – explained based on short term (synaptic and axonal) depression, also restores relay

Collaborators

Pallidostriatal circuit

- Aryn Gittis, Carnegie Mellon University
- Victoria Corbit, CNUP
- Tim Whalen, PNC
- Kevin Zitelli, CNUP
- Stephanie Crilly, CMU

Short term depression and DBS

- Robert Rosenbaum, Notre Dame
- Robert Turner, Pitt
- Brent Doiron, Pitt
- Andrew Zimnik, Columbia
- Christian Alzheimer, Nürnberg
- Fang Zheng, Nürnberg

Basal ganglia and DBS modeling
David Terman, Ohio State
Yixin Guo, Drexel University
Cameron McIntyre, CWRU
Charles Wilson, UTSA
Alice Yew, AMS
Jorry Vitol: JJ, Minnesoto

• Jerry Vitek, U. Minnesota

Albus and DeLong: classical (1980's) arithmetical model of the basal ganglia (light blue) and PD

fundamental question of parkinsonism (1990's): how can changes in *rates* account for the parkinsonian symptoms?

what: akinesia (difficulty initiating movement), bradykinesia (slowed movement), posture issues, rigidity, tremor

A: they can't!

revised Q: (a) what changes in BG activity result from loss of dopamine, (b) how are these changes produced, (c) how do these changes translate into symptoms, and (d) how can these symptoms be mitigated?

altered BG activity patterns in parkinsonism

• increased synchrony/correlations, loss of specificity

Bergman et al., TINS, 1998; globus pallidus recordings

(a) changes in BG activity in parkinsonism

(a) changes in BG activity in parkinsonism

altered basal ganglia activity patterns in parkinsonism

loss of specificity/increased correlations

Heimer et al., J. Neurosci., 2006

Bergman et al., *TINS*, 1998; globus pallidus recordings

some past computational models w/oscillations

Terman et al., 2002: STN-GPe (E-I loop); cf. Park & Rubchinsky

Leblois et al., 2006: symmetry-breaking in full BG activity-based model

Nevado-Holgado et al., 2010: STN-GPe firing rate model; β oscillations require cortical excitation to STN and synaptic delays

McCarthy et al., 2011: inhibitory interactions in striatal medium spiny neurons (MSNs) sufficient for β

Kumar et al., 2011: large scale (LIF) STN-GPe model

pallidostriatal circuit model

pallidostriatal circuit model

MSN 25mV

GPe

FSI

25ms

model generates β oscillations only in **DD**

pallidostriatal circuit could amplify β

thrown for a loop

Control

zooming in

Miocinović et al., J. Neurophysiol., 2006

(OP): looks great – but how does this work??

more experiments: STN-DBS (1) suppresses beta oscillations in GPi despite ongoing beta in STN (which drives GPi) and (2) destroys GPi-STN coherence despite (3) GPi entrainment to STN in DBS

(2)

DBS also induces axonal failure, another form of depression

implications of depression: deterministic & stochastic

(a) band-pass synaptic filter yields peaked cross-spectrum of input/conductance

$$R_{Ig}(\tau) = \operatorname{cov}(I(t), g(t+\tau))$$
$$S_{Ig}(f) = \int_{-\infty}^{\infty} R_{Ig}(\tau) e^{-2\pi I f \tau} d\tau$$
$$= \widetilde{\alpha}(f) \widetilde{K}(f) \nu$$

(b) at population level, power spectrum of total conductance is peaked

Rosenbaum et al., *PLoS Comp. Biol.*, 2012

implications: stochastic

(c) transmit high frequency signal more reliably than low frequency

(d) for high rate inputs, uptake contributes relatively more to transmission \longrightarrow decorrelate inputs and outputs, lower coherence

