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How to handle sparsity

Consider the polynomial optimization problem:

P : f ∗ = min{ f (x) : gj(x) ≥ 0, j = 1, . . . ,m }

for some polynomials f , gj ∈ R[x].

Why Polynomial Optimization?
After all ... P is just a particular case of Non Linear

Programming (NLP)!
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How to handle sparsity

True!
... if one is interested with a LOCAL optimum only!!

When searching for a local minimum ...

Optimality conditions and descent algorithms use basic tools
from REAL and CONVEX analysis and linear algebra

� The focus is on how to improve f by looking at a
NEIGHBORHOOD of a nominal point x ∈ K, i.e., LOCALLY

AROUND x ∈ K, and in general,
no GLOBAL property of x ∈ K can be inferred.

The fact that f and gj are POLYNOMIALS does not help much!
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How to handle sparsity

BUT for GLOBAL Optimization
... the picture is different!

Remember that for the GLOBAL minimum f ∗:

f ∗ = sup {λ : f (x)− λ ≥ 0 ∀x ∈ K}.

(Not true for a LOCAL minimum!)

and so to compute f ∗ ...
� one needs to handle EFFICIENTLY the difficult constraint

f (x)− λ ≥ 0 ∀x ∈ K,

i.e. one needs
TRACTABLE CERTIFICATES of POSITIVITY on K

for the polynomial x 7→ f (x)− λ!
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How to handle sparsity

REAL ALGEBRAIC GEOMETRY helps!!!!

Indeed, POWERFUL CERTIFICATES OF POSITIVITY EXIST!

Moreover .... and importantly,

Such certificates are amenable to PRACTICAL COMPUTATION!

(? Stronger Positivstellensatzë exist for analytic functions but
(so far) are useless from a computational viewpoint.)
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How to handle sparsity

SOS-based certificate

Let K := {x : gj(x) ≥ 0, j = 1, . . . ,m }

be compact (with g1(x) = M − ‖x‖2, so that K ⊂ B(0,M)).

Theorem (Putinar’s Positivstellensatz)

If f ∈ R[x] is strictly positive (f > 0) on K then:

† f (x) = σ0(x) +
m∑

j=1

σj(x)gj(x), ∀x ∈ Rn,

for some SOS polynomials (σj) ⊂ R[x].
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How to handle sparsity

However ... In Putinar’s theorem
... nothing is said on the DEGREE of the SOS polynomials (σj)!

BUT ... GOOD news ..!!

� Testing whether † holds
for some SOS (σj) ⊂ R[x] with a degree bound,

is SOLVING an SDP!

Jean B. Lasserre∗ semidefinite characterization



How to handle sparsity

However ... In Putinar’s theorem
... nothing is said on the DEGREE of the SOS polynomials (σj)!

BUT ... GOOD news ..!!

� Testing whether † holds
for some SOS (σj) ⊂ R[x] with a degree bound,

is SOLVING an SDP!

Jean B. Lasserre∗ semidefinite characterization



How to handle sparsity

Dual side: The K -moment problem

Given a real sequence y = (yα), α ∈ Nn, does there exist a
Borel measure µ on K such that

† yα =

∫
K

xα1
1 · · · xαn

n dµ, ∀α ∈ Nn ?

If yes then y is said to have
a representing measure supported on K.
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How to handle sparsity

Let K := {x : gj(x) ≥ 0, j = 1, . . . ,m }

be compact (with g1(x) = M − ‖x‖2, so that K ⊂ B(0,M)).

Theorem (Dual side of Putinar’s Theorem)

A sequence y = (yα), α ∈ Nn, has a representing measure
supported on K IF AND ONLY IF for every d = 0,1, . . .

(?) Md(y) � 0 and Md(gj y) � 0, j = 1, . . . ,m.

� The real symmetric matrix M2(y) is called the MOMENT
MATRIX associated with the sequence y

� The real symmetric matrix Md(gj y) is called the
LOCALIZING MATRIX associated with the sequence y and the
polynomial gj .
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How to handle sparsity

Remarkably,

the Necessary & Sufficient conditions (?) for existence of a
representing measure are stated only in terms of countably
many LMI CONDITIONS on the sequence y ! (No mention of
the unknown representing measure in the conditions.)

For instance with n = 2, d = 1, the moment matrix M2(y) reads

M2(y) =



1︷︸︸︷
y00 |

X1︷︸︸︷
y10

X2︷︸︸︷
y01 |

X 2
1︷︸︸︷

y20

X1X2︷︸︸︷
y11

X 2
2︷︸︸︷

y02
− − − − − −

y10 | y20 y11 | y30 y21 y12
y01 | y11 y02 | y21 y12 y03
− − − − − −

y20 | y30 y21 | y40 y31 y22
y11 | y12 y21 | y31 y22 y13
y02 | y12 y03 | y22 y13 y04
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How to handle sparsity

There is also another ALGEBRAIC POSITIVITY CERTIFICATE
due to Krivine, Vasilescu, and Handelman.

But unfortunately less powerful ... and with some drawbacks!
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How to handle sparsity

• In addition, polynomials NONNEGATIVE ON A SET K ⊂ Rn

are ubiquitous. They also appear in many important
applications (outside optimization),

. . . modeled as
particular instances of the so called

Generalized Moment Problem, among which:
Probability, Optimal and Robust Control, Game theory, Signal

processing, multivariate integration, etc.
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How to handle sparsity

GMP: The primal view
The GMP is the infinite-dimensional LP:

GMP : inf
µi∈M(Ki )

{
s∑

i=1

∫
Ki

fi dµi :
s∑

i=1

∫
Ki

hij dµi
≥
= bj , j ∈ J}

with M(Ki) space of Borel measures on Ki ⊂ Rni , i = 1, . . . , s.
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How to handle sparsity

GMP: The dual view
The DUAL GMP∗ is the infinite-dimensional LP:

GMP∗ : sup
λj

{
s∑

j∈J

λj bj : fi−
∑
j∈J

λj hij ≥ 0 on Ki , i = 1, . . . , s }

And one can see that ...
the constraints of GMP∗ state that the functions

x 7→ fi(x)−
∑
j∈J

λj hij(x)

must be NONNEGATIVE on certain sets Ki , i = 1, . . . , s.
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How to handle sparsity

Several examples will follow .... and

Global OPTIM → f ∗ = inf
x
{ f (x) : x ∈ K }

is the SIMPLEST example of the GMP

because ...

f ∗ = inf
µ∈M(K)

{
∫

K
f dµ :

∫
K

1 dµ = 1}

• Indeed if f (x) ≥ f ∗ for all x ∈ K and µ is a probability measure
on K, then

∫
K f dµ ≥

∫
f ∗ dµ = f ∗.

• On the other hand, for every x ∈ K the probability measure
µ := δx is such that

∫
f dµ = f (x).
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How to handle sparsity

The moment-LP and moment-SOS approaches
consist of using a certain type of positivity certificate
(Krivine-Vasilescu-Handelman’s or Putinar’s certificate) in
potentially any application where such a characterization is
needed. (Global optimization is only one example.)

In many situations this amounts to
solving a HIERARCHY of :

LINEAR PROGRAMS, or
SEMIDEFINITE PROGRAMS

... of increasing size!.
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How to handle sparsity

LP- and SDP-hierarchies for optimization

Replace f ∗ = sup
λ

{λ : f (x)− λ ≥ 0 ∀x ∈ K} with:

The SDP-hierarchy indexed by d ∈ N:

f ∗d = sup
λ,σj

{λ : f − λ = σ0︸︷︷︸
SOS

+
m∑

j=1

σj︸︷︷︸
SOS

gj ; deg (σj gj) ≤ 2d }

or, the LP-hierarchy indexed by d ∈ N:

θd = sup
λ,cαβ

{λ : f −λ =
∑
α,β

cαβ︸︷︷︸
≥0

m∏
j=1

gj
αj (1−gj)

βj ; |α+β| ≤ 2d}
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How to handle sparsity

Theorem
Both sequence (f ∗d ), and (θd), d ∈ N, are MONOTONE NON
DECREASING and when K is compact (and satisfies a
technical Archimedean assumption) then:

f ∗ = lim
d→∞

f ∗d = lim
d→∞

θd .

Moreover, and importantly,
• GENERICALLY, ... the Moment-SOS hierarchy has finite

convergence, that is, f ∗ = f ∗d for some d .

• A sufficient RANK-CONDITION on the moment matrix (which
also holds GENERICALLY) permits to test whether f ∗ = f ∗d
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How to handle sparsity

• What makes this approach exciting is that it is at the
crossroads of several disciplines/applications:

Commutative, Non-commutative, and Non-linear
ALGEBRA
Real algebraic geometry, and Functional Analysis
Optimization, Convex Analysis
Computational Complexity in Computer Science,

which BENEFIT from interactions!

• As mentioned ... potential applications are ENDLESS!
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How to handle sparsity

• Has already been proved useful and successful in
applications with modest problem size, notably in optimization,
control, robust control, optimal control, estimation, computer
vision, etc. (If sparsity then problems of larger size can be
addressed)

• HAS initiated and stimulated new research issues:
in Convex Algebraic Geometry (e.g. semidefinite
representation of convex sets, algebraic degree of
semidefinite programming and polynomial optimization)
in Computational algebra (e.g., for solving polynomial
equations via SDP and Border bases)
Computational Complexity where LP- and
SDP-HIERARCHIES have become an important tool to
analyze Hardness of Approximation for 0/1 combinatorial
problems (→ links with quantum computing)
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How to handle sparsity

The moment-SOS approach can be applied to problems
defined with semi-algebraic functions via the introduction of
additional variables (LIFTING)

Examples

x ∈ K; |f (x)| ⇔ x ∈ K; f (x)2 − z2 = 0; z ≥ 0.
f (x) ≥ 0 on K;

√
f (x) ⇔ x ∈ K; f (x)− z2 = 0; z ≥ 0.

Similarly to model the function x 7→ g(x) := max[f1(x), f2(x)],

(f1(x)− f2(x))2 − z2 = 0; z ≥ 0︸ ︷︷ ︸
z=|f1(x)−f2(x)|

⇔ g(x) =
z
2
+

f1(x) + f2(x)
2

etc.
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How to handle sparsity

Recall that both LP- and SDP- hierarchies are
GENERAL PURPOSE METHODS ....

NOT TAILORED to solving specific hard problems!!
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How to handle sparsity

A remarkable property of the SOS hierarchy: I

When solving the optimization problem

P : f ∗ = min {f (x) : gj(x) ≥ 0, j = 1, . . . ,m}

one does NOT distinguish between CONVEX, CONTINUOUS
NON CONVEX, and 0/1 (and DISCRETE) problems! A boolean
variable xi is modelled via the equality constraint “x2

i − xi = 0".

In Non Linear Programming (NLP),

modeling a 0/1 variable with the polynomial equality constraint
“x2

i − xi = 0"
and applying a standard descent algorithm would be

considered “stupid"!

Each class of problems has its own ad hoc tailored algorithms.
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How to handle sparsity

Even though the moment-SOS approach DOES NOT
SPECIALIZE to each class of problems:

It recognizes the class of (easy) SOS-convex problems as
FINITE CONVERGENCE occurs at the FIRST relaxation in
the hierarchy.
FINITE CONVERGENCE also occurs for general convex
problems and GENERICALLY for non convex problems
→ (NOT true for the LP-hierarchy.)
The SOS-hierarchy dominates other lift-and-project
hierarchies (i.e. provides the best lower bounds) for hard
0/1 combinatorial optimization problems! The Computer
Science community talks about a META-Algorithm.
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How to handle sparsity

A remarkable property: II

FINITE CONVERGENCE of the SOS-hierarchy is GENERIC!

... and provides a GLOBAL OPTIMALITY CERTIFICATE,

the analogue for the NON CONVEX CASE of the

KKT-OPTIMALITY conditions in the CONVEX CASE!
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How to handle sparsity

The no-free lunch rule ...

The size of SDP-relaxations grows rapidly with the original
problem size ... In particular:

• O(n2d) variables for the d th SDP-relaxation in the hierarchy

• O(nd) matrix size for the LMIs

→ In view of the present status of SDP-solvers ... only small to
medium size problems can be solved by "standard"
SDP-relaxations ...

→ .... How to handle larger size problems ?
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How to handle sparsity

• develop more efficient general purpose SDP-solvers ...
(limited impact) ... or perhaps dedicated solvers ....?

• exploit symmetries when present ... Recent promising works
by De Klerk, Gaterman, Gvozdenovic, Laurent, Pasechnick,
Parrilo, Schrijver .. in particular for combinatorial optimization
problems. Algebraic techniques permit to define an equivalent
SDP of much smaller size.

� See e.g. works in CODING and PACKING problems
(Bachoc, de Laat, Oliveira de Filho, Vallentin)
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How to handle sparsity

• exploit sparsity in the data. In general, each constraint
involves a small number of variables κ, and the cost criterion is
a sum of polynomials involving also a small number of
variables. Recent works by Kim, Kojima, Lasserre, Maramatsu
and Waki

� Yields a SPARSE VARIANT of the SOS-hierarchy where
Convergence to the global optimum is preserved.
Finite Convergence for the class of SOS-convex problems.

� Can solve Sparse non-convex quadratic problems with
more than 2000 variables.
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How to handle sparsity

There has been also recent attempts to use other types of
algebraic certificates of positivity that try to avoid the size

explosion due to the semidefinite matrices associated with the
SOS weights in Putinar’s positivity certificate

Recent work by :
Ahmadi et al. � Hierarchy of LP or SOCP programs.
Lasserre, Toh and Zhang� Hierarchy of SDP with
semidefinite constraint of fixed size
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How to handle sparsity

EXAMPLES
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How to handle sparsity

I. Optimal Control

Consider the OPTIMAL CONTROL (OCP) problem:

ρ = inf
u

∫ T

0
h(x(t),u(t))dt

s.t. ẋ(t) = f (x(t),u(t)), t ∈ [0,T ]
x(0) = x0
x(t) ∈ X ⊂ Rn; u(t) ∈ U ⊂ Rm,

that is, the goal is now to compute a function u : [0,T ] → Rm (in
a suitable space).

In general OCP problems are hard to solve, and particularly
when STATE CONSTRAINTS x(t) ∈ X are present !
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How to handle sparsity

By introducing the concept of OCCUPATION MEASURE, there
exists a so-called WEAK FORMULATION of the OCP which is
an infinite-dimensional LINEAR PROGRAM (LP) on a suitable
space of measures, and in fact an instance of the Generalized
Problem of Moments.

� Under some conditions the optimal values of OCP and LP
are the same.

� When the vector field f is a polynomial and the sets X and
U are compact basic semi-algebraic then the MOMENT-SOS
approach can be applied to approximate ρ as closely as
desired.

Jean B. Lasserre∗ semidefinite characterization



How to handle sparsity

By introducing the concept of OCCUPATION MEASURE, there
exists a so-called WEAK FORMULATION of the OCP which is
an infinite-dimensional LINEAR PROGRAM (LP) on a suitable
space of measures, and in fact an instance of the Generalized
Problem of Moments.

� Under some conditions the optimal values of OCP and LP
are the same.

� When the vector field f is a polynomial and the sets X and
U are compact basic semi-algebraic then the MOMENT-SOS
approach can be applied to approximate ρ as closely as
desired.

Jean B. Lasserre∗ semidefinite characterization



How to handle sparsity

By introducing the concept of OCCUPATION MEASURE, there
exists a so-called WEAK FORMULATION of the OCP which is
an infinite-dimensional LINEAR PROGRAM (LP) on a suitable
space of measures, and in fact an instance of the Generalized
Problem of Moments.

� Under some conditions the optimal values of OCP and LP
are the same.

� When the vector field f is a polynomial and the sets X and
U are compact basic semi-algebraic then the MOMENT-SOS
approach can be applied to approximate ρ as closely as
desired.

Jean B. Lasserre∗ semidefinite characterization



How to handle sparsity

� It yields a HIERARCHY OF SEMIDEFINITE PROGRAMS
of increasing size whose associated monotone sequence of
optimal values CONVERGES to the optimal value ρ of the OCP.

� Lass. J.B., Henrion D., Prieur C., Trelat E. (2008),
Nonlinear optimal control via occupation measures and
LMI-relaxations, SIAM J. Contr. Optim. 47, pp. 1649–1666.
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How to handle sparsity

Extensions & Related works

� Compute polynomial Lyapunov Functions

� Approximate Regions Of Attraction (ROA) by sets of the
form {x : g(x) ≥ 0} for some polynomial g.

� Convex Optimization of Non-Linear Feedback Controllers

By several authors ... Ahmadi, Henrion, Korda, Lass.,
Majumdar, Parrilo, Tedrake, Tobenkin, etc.
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How to handle sparsity

... and SDP-relaxations are also used:

� for Estimation problems (seen as Min-max optimization)

� for Robust Stability analysis and probabilistic D-Stability
Analysis

� for Detection of Anomalies and/or Causal Interactions in
video sequences (Big data ...)

by several authors ... Benavoli, Lagoa, Lass., Piga, Regruto,
Sznaier, ...
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How to handle sparsity

II. Inverse Optimal Control

Given:

� a dynamical system ẋ(t) = f (x(t),u(t)), t ∈ [0,T ]

� State and/or Control constraints x(t) ∈ X , u(t) ∈ U,

� a database of recorded feasible trajectories
{x(t ; xτ ),u(t ; xτ )} for several initial states xτ ∈ X ,
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How to handle sparsity
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How to handle sparsity

compute a Lagrangian

h : X × U → R for which those trajectories are optimal.

� Key idea: I: Hamilton-Jacobi-Bellman (HJB) is the perfect
tool to certify GLOBAL OPTIMALITY of the given trajectories in

the database.
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How to handle sparsity

Indeed suppose that two functions φ : [0,T ]× X → R and
h : X × U → R satisfy:

(∗) ∂φ

∂t
+

∂φ

∂x
f (x ,u) + h(x ,u) ≥ 0, ∀(x ,u, t) ∈ X × U × [0,T ]

(∗∗) φ(T , x) ≤ 0 ∀x ∈ XT .

and †

(
∂φ

∂t
+

∂φ

∂x
f + h

)
(x(t ; xτ ),u(t ; xτ ), τ) ≤ 0; φ(T , x(T ; xτ )) ≥ 0,

for all (x(t ; xτ ),u(t ; xτ ), τ) in the database

Jean B. Lasserre∗ semidefinite characterization



How to handle sparsity

Then

φ(t , z) = inf
u

∫ T

t
h(x(s),u(s))ds

s.t. ẋ(s) = f (x(s),u(s)), s ∈ [t ,T ]
x(s) ∈ X ⊂ Rn; u(s) ∈ U ⊂ Rm

x(t) = z

� and all the trajectories {x(t ; xτ ),u(t ; xτ )} of the database
are optimal solutions.

� That is: The Lagrangian h solves the INVERSE OCP and φ
is the associated Optimal Value Function
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How to handle sparsity
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How to handle sparsity

� Key idea II: Look for POLYNOMIALS

φ ∈ R[x , t ] and h ∈ R[x ,u]
that satisfy the relaxed HJB conditions (*) and (**)
and also satisfy

(†)
(
∂φ

∂t
+

∂φ

∂x
f + h

)
(x(t ; xτ ),u(t ; xτ ), τ) ≤ ε

(††) φ(T , x(T ; xτ )) ≥ −ε,

for all (x(t ; xτ ),u(t ; xτ ), τ) in the database
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How to handle sparsity

� ... and SOLVE:

ρd = min
φ,h

{ ε+ ‖h‖1 : s.t. (*), (**), (†), (††); deg(φ), deg(h) ≤ 2d }

where one replaces the nonnegativity conditions (*), (**), (†)
and (††) by appropriate positivity certificates.

� a HIERARCHY of SEMIDEFINITE PROGRAMS (whose
size increases with the degree d).

Pauwels E., Henrion D., Lasserre J.B. (2016) Linear Conic
Optimization for Inverse Optimal Control, SIAM J. Control &
Optim. 54, pp. 1798–1825.
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How to handle sparsity

III. Approximation of sets with quantifiers

Let f ∈ R[x , y ] and let K ⊂ Rn × Rp be the semi-algebraic set:

K := {(x , y) : x ∈ B; gj(x , y) ≥ 0, j = 1, . . . ,m},

where B ⊂ Rn is a box [−a,a]n.

Approximate the set:

Rf := {x ∈ B : f (x , y) ≤ 0 for all y such that (x , y) ∈ K}

as closely as desired by a sequence of sets of the form:

Θk := {x ∈ B : Jk (x) ≤ 0 }

for some polynomials Jk .
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How to handle sparsity

� Use Putinar Positivity Certificate to build up a hierarchy of
semidefinite programs (Qk )k∈N of increasing size:

An optimal solution of Qk provides the coefficients of the
polynomial Jk of degree 2k .
For every k :

Θk := {x ∈ B : Jk (x) ≤ 0} ⊂ Rf (inner approximations)
vol(Rf \Θk ) → 0 as k → ∞.

Lass. J.B. (2015) Tractable approximations of sets defined with
quantifiers, Math. Program. 151, pp. 507–527.
Henrion D., Lass. J.B. (2006), Convergent relaxations of
polynomial matrix inequalities and static output feedback, IEEE
Trans. Auto. Control 51, pp. 192–202
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How to handle sparsity

IV. Convex Underestimators of Polynomials

� e.g., in the context of large scale MINLP the most efficient
& popular strategy is to use BRANCH & BOUND combined with
efficient LOWER BOUNDING techniques used at each node of
the search tree.

• Typically, f is a sum
∑

k fk where each fk “sees" only very few
variables (say 3,4). The same observation is true for each gj in
the constraints:

Hence a very appealing idea is to pre-compute CONVEX
UNDER-ESTIMATORS f̂k ≤ fk and ĝj ≤ gj for each non convex
fk and each non convex gj , independently and separately!

→ hence potentially many BUT LOW-DIMENSIONAL problems.
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UNDER-ESTIMATORS f̂k ≤ fk and ĝj ≤ gj for each non convex
fk and each non convex gj , independently and separately!

→ hence potentially many BUT LOW-DIMENSIONAL problems.

Jean B. Lasserre∗ semidefinite characterization



How to handle sparsity

IV. Convex Underestimators of Polynomials

� e.g., in the context of large scale MINLP the most efficient
& popular strategy is to use BRANCH & BOUND combined with
efficient LOWER BOUNDING techniques used at each node of
the search tree.

• Typically, f is a sum
∑

k fk where each fk “sees" only very few
variables (say 3,4). The same observation is true for each gj in
the constraints:

Hence a very appealing idea is to pre-compute CONVEX
UNDER-ESTIMATORS f̂k ≤ fk and ĝj ≤ gj for each non convex
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How to handle sparsity

Hence one has to solve the generic problem

Compute a "tight" convex polynomial underestimator p ≤ f of a
non convex polynomial f on a box B ⊂ Rn.

Message:

“Good" CONVEX POLYNOMIAL UNDER-ESTIMATORS can be
computed efficiently!
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How to handle sparsity

I: Characterizing convex polynomial under-estimators
1 p(x) ≤ f (x) for every x ∈ B.
2 p convex on B → ∇2p(x) � 0 for all x ∈ B,

⇐⇒ uT∇2p(x)u ≥ 0, ∀(x,u) ∈ B × U,

where U := {u : ‖u‖2 ≤ 1}.

Hence we have the two "Positivity constraints"

f (x)− p(x) ≥ 0, ∀x ∈ B
uT∇2p(x)u ≥ 0, ∀(x,u) ∈ B × U.
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How to handle sparsity

II: Characterizing "tightness"

One possibility is to evaluate the L1-norm
∫

B
|f (x)− p(x)|dx

→
∫

B
(f (x)− p(x)dx =

∫
B

f (x)dx︸ ︷︷ ︸
constant

−
∫

B
p(x)dx︸ ︷︷ ︸

linear in p!

Indeed, writing p(x) =
∑
α∈Nn

pα xα,

∫
B

p(x)dx =
∑
α∈Nn

pα

∫
B

xα dx︸ ︷︷ ︸
γα

,

where γα is known (and easy to compute)!
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How to handle sparsity

Hence computing the best degree-d convex polynomial
under-estimator of f reduces to solve the CONVEX optimization

problem:

P : ρ = inf
p∈R[x]d

∑
α∈Nn

d

pα γα

s.t. f (x)− p(x) ≥ 0, ∀x ∈ B

uT∇2p(x)u ≥ 0, ∀(x,u) ∈ B × U.

� which has an optimal solution p∗ ∈ R[x]d
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How to handle sparsity

Replacing the positivity constraints with Putinar’s positivity
certificate
� yields a HIERARCHY of SEMIDEFINITE PROGRAMS,
each with an optimal solution p∗

` ∈ R[x]d , and:

Theorem (Lass & T. Phan Thanh (JOGO 2013))

p∗
` → p∗ ∈ R[x]d , as ` → ∞

→ Provides the best results in the comparison:

Guzman, Y. A; Hasan, M. M. F.; Floudas, C. A: Computational
Comparison of Convex Underestimators for Use in a
Branch-and-Bound Global Optimization Framework,
Optimization in Science and Engineering; Springer, 2014; pp
229-246.
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How to handle sparsity

V. Super-Resolution

Suppose that an unknown SIGNED measure φ∗ (signal) is
supported on finitely many (few) atoms (x(k))p

k=1 ⊂ K, i.e.,

φ∗ =

p∑
k=1

γk δx(k), for some real numbers (γk ).

The goal is to find

the SUPPORT (x(k))p
k=1 ⊂ K and WEIGHTS (γk )

p
k=1 from only

FINITELY MANY MEASUREMENTS (moments)

qα =

∫
K

xα dφ∗(x), α ∈ Γ.
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How to handle sparsity

Solve the infinite-dimensional LP

P : inf
φ
{ ‖φ‖TV :

∫
K

xα dφ(x) = qα, α ∈ Γ.

Univariate case on a bounded interval I ⊂ R (or equivalently on
the torus T ⊂ C):

If the distance between any two atoms is sufficiently large and
sufficiently many (few) moments are available then :
• φ∗ is the unique solution of P, and
• exact recovery is obtained by solving a single SDP.

� Candès & Fernandez-Granda: Comm. Pure & Appl. Math.
(2013)
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How to handle sparsity

Writing the signed measure φ on I as φ+ − φ−,

P reads

inf
φ+,φ−

∫
I
d(φ++φ−) :

∫
I
xk dφ+(x)−

∫
I
xk dφ+(x) = qα, α ∈ Γ }

... again an instance of the GMP!

The dual P∗ reads: sup
p∈R[x]

{ 〈p,q〉 : sup
x∈I

|p(x)| ≤ 1 }.

Extension to compact semi-algebraic domains K ⊂ Rn via the
moment-SOS approach: FINITE RECOVERY is also possible.

� De Castro, Gamboa, Henrion & Lasserre: IEEE Trans. Info.
Theory (2016).
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How to handle sparsity

VI. LP on spaces of measures: a rich framework

Consider the infinite dimensional LP:

min
φ

{∫
K

f dφ : φ ≤ µ;

∫
K

g dφ = b, ∀g ∈ G
}

where :
K ⊂ Rn is a basic semi-algebraic set,
The unknown φ is a Borel measure supported on K
The functions f , and g ∈ G are polynomials
All moments of the measure µ are available.
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How to handle sparsity

For instance this framework can be used :
To compute Sharp Upper Bounds on µ(K) GIVEN some
moments of µ.
To approximate as closely as desired, from below and
above, the Lebesgue volume of K, or the Gaussian
measure of K (for possibly non-compact K)
CHANCE-CONSTRAINTS: Given ε > 0 and a prob.
distribution µ, approximate AS CLOSELY AS DESIRED

Ωε := {x : Probω(f (x, ω) ≤ 0) ≥ 1 − ε }

by sets of form : Ωd
ε := {x : hd(x) ≤ 0 } for some

polynomial hd of degree d .

and more ! � Henrion et al. (SIREV 2009), Lass. (Adv. Appl.
Math. (2017)), Lass. (Adv. Comput. Math. (2016)), Lass.
(2017) (IEEE Control Systems Letters), ...
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How to handle sparsity

In fact .... the list of potential applications of the GMP is almost
ENDLESS!

�
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THANK YOU!
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