Stability of Wavefronts in a Diffusive Model

for Porous Media Combustion

Anna Ghazaryan, Miami University Stephane Lafortune, College of Charleston Peter McLarnan, Miami University

Funded by the NSF Grants DMS-1311313 (A. G.) and DMS-0908074 (S. Lafortune)

Porous media combustion

$$T_t - (1 - \gamma^{-1})P_t = \epsilon T_{xx} + YF(T)$$
 [Sivashinsky 2002]
$$P_t - T_t = P_{xx}$$
$$Y_t = \epsilon Le^{-1}Y_{xx} - \gamma YF(T)$$

 $\epsilon \ll 1$ - thermal diffusivity / pressure diffusivity ($\sim 10^{-4} - 10^{-7}$)

 $\gamma > 1$ - specific heat ratio, Le $\,$ - Lewis number

Combustible gas or gas mixture: oxygen, methane-air, hydrogen-air, propane-air... Porous medium: coal, ceramic fiber felt, polyurethane foam... Applications: chemical technology, ecology, fire and explosion safety Close relatives: convective burning of granular explosives, combustion in thin rough tubes

Before Simplifications

Energy $c_p \rho(\Theta_{\tau} + u\Theta_{\xi}) - (\Pi_{\tau} + u\Pi_{\xi}) = qW + (c_p \rho D_{th}\Theta_{\xi})_{\xi}$							
Concentration $\rho(C_{\tau} + uC_{\xi}) = -W + (\Theta^{-1}D_{mol}(\rho\Theta C)_{\xi})_{\xi}$							
Chemical kinetics $W = Z_{ ho} Cexp(-E/R\Theta)$							
Continuity $ ho_ au + (ho u)_{m{\xi}} = 0$							
Momentum $ ho u = -K u^{-1} \Pi_{\xi}$							
State $ ho = P/(c_p-c_ u)\Theta$							
u - gas velocity, C - concentration of the deficient reactant, $ ho, \Pi, \Theta$ - density, pressure, temper-							

ature of the gas-solid system, W - chemical reaction rate, ν - kinematic viscosity, Z -frequency

factor, E - activation energy, R - universal gas constant, q - heat release, c_p / c_v / - specific heat

at constant pressure /volume/, D_{th} / D_{mol} / - thermal /molecular/ diffusivity

Derivation of Simplified Model

 Small heat release approximation: variation of pressure, temperature, density and gas velocity assumed small

nonlinear effects are ignored everywhere except in the reaction term

Scaling:

$$T = rac{\Theta - \Theta_0}{\Theta_\infty - \Theta_0}, \quad P = rac{\Pi - \Pi_0}{\Pi_\infty - \Pi_0}, \quad Y = rac{C}{C_0}$$

 Θ_0, Π_0, C_0 -temperature, pressure, concentration at $\tau = 0$, $\Theta_\infty, \Pi_\infty$ at $\tau \to \infty$ in case of homogeneous explosion • $t = \frac{\tau}{\overline{\tau}}, x = \frac{\xi}{\overline{\xi}}$, where $\overline{\tau}, \overline{\xi} = const$

 $T_t - (1-\gamma^{-1})P_t ~~=~ \epsilon T_{xx} + YF(T)\,$ partially lin. eqn for conservation of energy

 $P_t - T_t \hspace{0.4cm} = \hspace{0.4cm} P_{oldsymbol{x}oldsymbol{x}}$ lin. continuity eqn with the eqn of state and Darcy law

$$Y_t \hspace{.1in} = \hspace{.1in} \epsilon {
m Le}^{-1} Y_{xx} - \gamma Y F(T) \hspace{.1in}$$
 partially lin. eqn for conservation of reactant

The standard reduction of the system: $\varepsilon = 0$, Le = O(1)

$$\epsilon = 0$$
, Le = O(1) $T_t - (1 - \gamma^{-1})P_t = YF(T)$
 $P_t - T_t = P_{xx}$
 $Y_t = -\gamma Y\Omega(T)$

Time-conserved quantity: $T_t - (1 - \gamma^{-1})P_t + \gamma^{-1}Y_t = 0$ Initial conditions: $T(x, 0) = T_0(x), P(0, x) = 0, Y(0, x) = 1$

A unique front exists that connects the cold state (0, 0, 1) with the burnt state (1, 1, 0).

This front persists in the full system with $0 < \epsilon \ll 1$

Equivalent system

For
$$T_t - (1 - \gamma^{-1})P_t = \epsilon T_{xx} + Y\Omega(T)$$

 $P_t - T_t = P_{xx}$
 $Y_t = \epsilon \operatorname{Le}^{-1}Y_{xx} - \gamma Y\Omega(T)$
transformation $T = hu + (1 - h)v$
 $P = (1 - \epsilon)^{-1}u - \epsilon(1 - \epsilon)^{-1}v, \quad Y = y$
 $\epsilon = \epsilon\gamma(1 - \mu)^2, \quad h = \mu/(1 - \epsilon) = \mu/(1 - \epsilon\gamma(1 - \mu)^2)$
 $\mu = \frac{\sqrt{\gamma^2(\epsilon + 1)^2 - 4\gamma\epsilon} + \gamma(\epsilon - 1)}{2\gamma\epsilon}$
 $\tau = \gamma t, \quad z = \sqrt{\gamma(1 - \mu)}x$
leads to $u_{\tau} = u_{zz} + yF(hu + (1 - h)v)$
 $v_{\tau} = \epsilon v_{zz} + yF(hu + (1 - h)v)$
 $y_{\tau} = \epsilon(\gamma(1 - \mu)\operatorname{Le})^{-1}y_{zz} - yF(hu + (1 - h)v)$

Reduction, special initial conditions, $Le = Le^*$

When
$$\operatorname{Le}^{-1} = \gamma(1-\mu)$$

 $u_{\tau} = u_{zz} + yF(hu + (1-h)v)$
 $v_{\tau} = \varepsilon v_{zz} + yF(hu + (1-h)v)$
 $y_{\tau} = \varepsilon(\gamma(1-\mu)\operatorname{Le})^{-1}y_{zz} - yF(hu + (1-h)v)$

reads

$$egin{aligned} u_t &= u_{zz} + yF(hu + (1-h)v) \ v_t &= arepsilon v_{zz} + yF(hu + (1-h)v) \ y_t &= arepsilon y_{zz} - yF(hu + (1-h)v) \end{aligned}$$

If initially y(0,x) = 1 - v(0,x), then y(t,x) = 1 - v(t,x) for $t > 0, x \in \mathbb{R}$. Therefore the system reduces [Gordon, 2007] to

$$egin{array}{rcl} u_t&=&u_{xx}+yF(hu+(1-h)(1-y))\ y_t&=&arepsilon y_{xx}-yF(hu+(1-h)(1-y)) \end{array}$$

Reduction, no restrictions on initial conditions, $\mathrm{Le} = \mathrm{Le}^*$

In

$$u_t = u_{zz} + yF(hu + (1 - h)v)$$
$$v_t = \varepsilon v_{zz} + yF(hu + (1 - h)(1 - y))$$
$$y_t = \varepsilon y_{zz} - yF(hu + (1 - h)(1 - y))$$

take g = v + y, to obtain

$$egin{aligned} u_t &= u_{zz} + yF(hu + (1-h)(1-y)) \ y_t &= arepsilon y_{zz} - yF(hu + (1-h)(1-y)) \ g_t &= arepsilon g_{zz} \end{aligned}$$

Plan:

1) Study stability of fronts in the system obtained y(0,x) = 1 - v(0,x)

2) Extend the stability result for fronts in that system to the general case.

Traveling fronts

In the moving with the front frame $\xi = x - ct$

$$egin{aligned} u_t &= u_{xx} + yF(hu + (1-h)(1-y)) \ y_t &= arepsilon y_{xx} - yF(hu + (1-h)(1-y)) \end{aligned}$$

where $h \in (0, 1)$,

$$u_t = u_{\xi\xi} + cu_{\xi} + yF(hu + (1-h)(1-y))$$

 $y_t = \varepsilon y_{\xi\xi} + cy_{\xi} + yF(hu + (1-h)(1-y))$

For small ε , there exists a unique c such that there is $(\hat{u}(\xi), \hat{y}(\xi))$ that solves ([Gordon, Kamin, Sivashinksi, 2002], [G., Gordon, Jones, 2008] for the full system)

$$u_{\xi\xi} + cu_{\xi} + yF(hu + (1-h)(1-y)) = 0$$

$$\varepsilon y_{\xi\xi} + cy_{\xi} - yF(hu + (1-h)(1-y)) = 0$$
⁽¹⁾

and (u,y)
ightarrow (1,0) as $\xi
ightarrow -\infty, \ (u,y)
ightarrow (0,1)$ as $\xi
ightarrow +\infty.$

Reaction rate

$$F(w) = F_{jump}(w) = \left\{egin{array}{ll} \exp\left(Z\left\{rac{w-h}{\sigma+(1-\sigma)w}
ight\}
ight), & w \geq w_{ign}, \ 0, & w < w_{ign}. \end{array}
ight.$$

However, for the stability analysis, we consider a smooth $ilde{F}$

$$ilde{F}(w) = \left\{egin{array}{ll} \exp\left(Z\left\{rac{w-h}{\sigma+(1-\sigma)w}
ight\}
ight), & w \geq w_{ign}+2\delta, \ F_{jump}(w)\,H_{\delta}(w-w_{ign}-\delta), & w_{ign} \leq w < w_{ign}+2\delta, \ 0, & w < w_{ign}, \end{array}
ight.$$

where H_{δ} is a smooth approximation of the Heaviside function H such that

$$H_{\delta}(x)=rac{1}{1+e^{rac{4x\delta}{x^2-\delta^2}}}, \ \ ext{for} \ \ |x|<\delta$$

A front (\hat{u},\hat{v}) exists (c=O(1)) that connects (1,1) at $-\infty$ to (0,0) at ∞

Traveling front: numerics

 $\varepsilon = 0.1, h = 0.3, \sigma = 0.25, \delta = 0.0005, T_{ign} = 0.01$, and Z = 6, which results in c = 1.8588. δ is chosen so that the speed c is close to the speed in the discontinuous system.

Linearization about $(\widehat{u}, \widehat{y})$

$$egin{aligned} \lambda p &= p_{\xi\xi} + cp_{\xi} + F_w(\widehat{w})\,\widehat{y}\,(hp - (1-h)q) + F(\widehat{w})q, \ \lambda q &= arepsilon q_{\xi\xi} + cq_{\xi} - F_w(\widehat{w})\,\widehat{y}\,(hp - (1-h)q) - F(\widehat{w})q, \end{aligned}$$

where w = hu + (1 - h)(1 - y) and $\widehat{w} = w(\widehat{u}, \widehat{y})$.

Essential Spectrum of the linearization *L* about the front:

- Essential spectrum in $L^2(\mathbb{R})$ is bounded by a parabola touching the imaginary axis at the origin from the right
- Consider $L^2_{\alpha}(\mathbb{R})$: $||f||^2_{\alpha} = \int_{-\infty}^{\infty} |\rho_{\alpha}(\xi)f(\xi)|^2 d\xi$, with weight $\rho_{\alpha} = e^{\alpha\xi}$. Essential spectrum in $L^2(\mathbb{R}) \cup L^2_{\alpha}(\mathbb{R})$ has the right most boundary to the left of the imaginary axis and it is a parabola

Energy-like estimates allow to obtain a bound on the unstable point spectrum.

Point spectrum: there are parameter regimes, where

- 0 is a simple eigenvalue
- the rest of the point spectrum $\subset \{\lambda \in \mathbb{C} : \operatorname{Re} \lambda < 0\}$

Evans function

$$egin{aligned} \lambda p &= p_{\xi\xi} + c p_{\xi} + ilde{\Omega}'(\hat{w}) \, \hat{y} \, (hp - (1-h)q) + ilde{\Omega}(\hat{w})q & \Longleftrightarrow X' = A(\xi,\lambda) \, X \ \lambda q &= c q_{\xi} - ilde{\Omega}'(\hat{w}) \, \hat{y} \, (hp - (1-h)q) - ilde{\Omega}(\hat{w})q \end{aligned}$$

where

$$A(\xi,\lambda)= egin{pmatrix} 0&1&0&0\ \lambda-h\,F_w(\widehat{w})\,\widehat{y}&-c&(1-h)\,F_w(\widehat{w})\,\widehat{y}-F(\widehat{w})&0\ 0&0&0&1\ h\,F_w(\widehat{w})\,\widehat{y}/arepsilon&0&1\ h\,F_w(\widehat{w})\,\widehat{y}/arepsilon&0&(\lambda+(1-h)\,F_w(\widehat{w})\widehat{y}+F(\widehat{w}))\,/arepsilon&-c/arepsilon \end{pmatrix}$$

Asymptotic matrix, $+\infty$

$$\mathcal{A}^\infty(\lambda) = \lim_{\xi o\infty} A(\xi,\lambda) = egin{pmatrix} 0 & 1 & 0 & 0\ \lambda & -c & 0 & 0\ 0 & 0 & 0 & 1\ 0 & 0 & \lambda/arepsilon & -c/arepsilon \end{pmatrix}$$

For $\operatorname{Re} \lambda > 0$, \mathcal{A}^{∞} has two eigenvalues with negative real part:

$$\mu_{1+}=-rac{1}{2arepsilon}(c+\sqrt{c^2+4arepsilon\lambda}), \ \ \mu_{2+}=-rac{1}{2}(c+\sqrt{c^2+4\lambda}),$$

and their corresponding eigenvectors are

$$v_{1+} = \left(0, 0, 1, \mu_{1+}
ight)^T, \quad v_{2+} = \left(1, \mu_{2+}, 0, 0
ight)^T.$$

Asymptotic matrix, $-\infty$

$$\mathcal{A}^{-\infty}(\lambda) = \lim_{\xi o -\infty} A(\xi, \lambda) = egin{pmatrix} 0 & 1 & 0 & 0 \ \lambda & -c & e^{(1-h)Z} & 0 \ 0 & 0 & 0 & 1 \ 0 & 0 & (\lambda + e^{(1-h)Z})/arepsilon & -c/arepsilon \end{pmatrix}$$

For $\operatorname{Re} \lambda > 0$, $\mathcal{A}^{-\infty}$ has two eigenvalues with positive real part:

$$\mu_{1-}=-rac{1}{2arepsilon}\left(c-\sqrt{c^2+4arepsilon\lambda+4arepsilon e^{Z(1-h)}}
ight), \ \ \mu_{2-}=-rac{1}{2}\left(c-\sqrt{c^2+4\lambda}
ight)$$

and the corresponding eigenvectors are

$$\begin{split} v_{1-} &= \\ \left(1, \mu_{1-}, \frac{(1-\varepsilon)(\lambda-c\,\mu_{1-})}{\varepsilon\,e^{Z(1-h)}} + \frac{1}{\varepsilon}, \frac{\left(\left(c^2+\lambda\,\varepsilon\right)(1-\varepsilon)+\varepsilon\,e^{Z(1-h)}\right)\mu_{1-}-c\left(\lambda+e^{Z(1-h)}\right)(1-\varepsilon)}{\varepsilon^2 e^{Z(1-h)}}\right)^T \\ v_{2-} &= \left(1, \,\mu_{2-}, 0, 0\right)^T \end{split}$$

Definition of Evans Function

So $X' = A(\xi, \lambda) X$ has two linearly independent solutions X_{1+} and X_{2+} converging to zero as $\xi \to \infty$ and two solutions X_{1-} and X_{2-} converging to zero as $\xi \to -\infty$, satisfying

$$\lim_{\xi \to \pm \infty} X_{i\pm} e^{-\mu_{i\pm}\xi} = v_{i\pm}, \ i = 1, 2.$$

 λ is an eigenvalue if and only if the space of solutions spanned by $\{X_{1+}, X_{2+}\}$, and the space of solutions spanned by $\{X_{1-}, X_{2-}\}$, have a non-empty intersection.

Those values of λ can be located with the help of the Evans function. The Evans function is a function of the spectral parameter λ ; it is analytic, real for λ real, and it vanishes on the point spectrum.

We define the Evans function using exterior algebra.

Evans function using exterior algebra

The dimension of the eigen-value system is n = 4 and the dimensions of the stable and unstable manifolds are $n_s = n_u = 2$. We consider the wedge-space $\bigwedge^2(\mathbb{C}^4)$, the space of all two forms on \mathbb{C}^4 . The induced dynamics of $X' = A(\xi, \lambda) X$ on $\bigwedge^2(\mathbb{C}^4)$ can be written as

 $U' = \mathbf{A}^{(2)}(\xi, \lambda) U.$

Here the matrix $A^{(2)}$ is matrix generated by $A = \{a_{ij}\}$ on $\bigwedge^2(\mathbb{C}^4)$. Using the standard basis of $\bigwedge^2(\mathbb{C}^4)$: $\omega_1 = e_1 \land e_2, \omega_2 = e_1 \land e_3, \omega_3 = e_1 \land e_4, \omega_4 = e_2 \land e_3, \omega_5 = e_2 \land e_4, \omega_6 = e_3 \land e_4, (\{e_1, e_2, e_3, e_4\})$ is the standard basis of \mathbb{C}^4) the matrix $A^{(2)}$ is given by

$$A^{(2)} = \begin{pmatrix} a_{11} + a_{22} & a_{23} & a_{24} & -a_{13} & -a_{14} & 0 \\ a_{32} & a_{11} + a_{33} & a_{34} & a_{12} & 0 & -a_{14} \\ a_{42} & a_{43} & a_{11} + a_{44} & 0 & a_{12} & a_{13} \\ -a_{31} & a_{21} & 0 & a_{22} + a_{33} & a_{34} & -a_{24} \\ -a_{41} & 0 & a_{21} & a_{43} & a_{22} + a_{44} & a_{23} \\ 0 & -a_{41} & a_{31} & -a_{42} & a_{32} & a_{33} + a_{44} \end{pmatrix}$$

Evans function

In our case, the asymptotic matrices are given by

$$\lim_{\xi \to \pm \infty} A^{(2)}(\xi, \lambda) = \left(\mathcal{A}^{\pm \infty} \right)^{(2)}$$

The eigenvalue of $(\mathcal{A}^{\infty})^{(2)}$ with the smallest real part is $\mu_{1+} + \mu_{2+}$ with eigenvector $v_{1+} \wedge v_{2+}$. The solution of $U' = A^{(2)}(\xi, \lambda)U$ given by $U_+ = X_{1+} \wedge X_{2+}$ then behaves as

$$\lim_{\xi \to \infty} U_+ e^{-(\mu_{1+} + \mu_{1+})\xi} = w_+ \equiv v_{1+} \wedge v_{2+}.$$

Similarly, the solution $U_{-} = X_{1-} \wedge X_{2-}$ behaves as

$$\lim_{\xi \to -\infty} U_{-} e^{-(\mu_{1-} + \mu_{-})\xi} = w_{-} \equiv v_{1-} \wedge v_{2-}.$$

We define the Evans function as

$$E(\lambda) \equiv U_- \wedge U_+,$$

where U_{\pm} are evaluated at, say, $\xi = 0$.

Evans function

The Evans function is

$$E(\lambda) = U_{-}^T \Sigma U_{+},$$

where Σ is the matrix

$\Sigma =$	0	0	0	0	0	1	
	0	0	0	0	-1	0	
	0	0	0	1	0	0	
	0	0	1	0	0	0	
	0	-1	0	0	0	0	
	1	0	0	0	0	0	

The function $E(\lambda)$ will be analytic in the any region of the complex plane where the eigenvalues $\mu_{1+} + \mu_{2+}$ and $\mu_{1-} + \mu_{2-}$ are, respectively, the eigenvalues with smallest and largest real part of $(\mathcal{A}^{\infty})^{(2)}$ and $(\mathcal{A}^{-\infty})^{(2)}$. To define such a region, it suffices to implement the condition $\operatorname{Re} \lambda > -\frac{1}{4} \min(1, \frac{1}{\epsilon})$.

Numerical calculation of Evans function

To find zeroes of $E(\lambda)$, compute the integral of the logarithmic derivative of $E(\lambda)$ on a closed curve and obtain the winding number of $E(\lambda)$ along that curve.

In our case, the contour of integration is chosen so that it lies in the region defined by energy-like estimates.

Numerical winding number computation then that the Evans function has no zeroes other than the one at the origin.

There is a regime in which the front is spectrally stable, with the exception of essential spectrum touching the imaginary axis.

Nonlinear Stability

[G, Latushkin, Schecter, 2011] \implies convective nature of the instability due to the marginal essential spectrum

- 1. If the initial perturbations are small in the regular and the weighted norms, then
 - y component decays exponentially in the regular norm (therefore Y does)
 - u component stays bounded, so T and P do too
 - in the weighted norm all components decay exponentially

2. If the initial perturbation in addition are small in L^1 -norm, then the perturbation to the *u*-component decays diffusively in L_{∞} -norm, so *T* and *P* do so too.

Full system, $Le^{-1} = \gamma(1 - \mu)$, no restriction on initial conditions.

$$u_t = u_{zz} + yF(hu + (1-h)v), \qquad y_t = \varepsilon y_{zz} - yF(hu + (1-h)v)$$
 $g_t = \varepsilon g_{zz}$

Spectral stability: $g_t = \epsilon g_{zz}$ does not produce point spectrum. The lin operator then has only marginally unstable essential spectrum \implies The spectral results extend to the full system.

Nonlinear stability: [G, Latushkin, Schecter, 2011] \implies The time evolution of perturbations to u and y are the same as in reduced system. If initial perturbations to the front are small in both regular and weighted norm, g stays bounded in the norm without the weight and decays exponentially in the weighted norm. Since perturbation to y decays exponentially in all norms, perturbations to the v behave the same way as perturbations to g = y + v. If, in addition, initial perturbations are also small in L^1 -norm, then the perturbations to g, and therefore v not only stay bounded but decay algebraically in L_{∞} -norm.

Nonlinear convective stability: assumptions

$$Y_t = DY_{xx} + R(Y)$$

Traveling wave: $Y_*(\xi), \xi = x - ct, c > 0$ $Y_- = 0$

Assume that $Y_*(\xi)$ is spectrally stable in \mathcal{E}_{α} and $Y'_* \in \mathcal{E}_{\alpha}$.

Assume that in appropriate variables Y = (U, V) and R(U, 0) = 0 such that

$$egin{aligned} U_t &= D_1 U_{xx} + c U_x + R_1(U,V) \ V_t &= D_2 V_{xx} + c V_x + R_2(U,V) \end{aligned}$$

 D_1 and D_2 nonneg. diag. matrices, and $R_i(U,0) = 0$ and at $Y_- = (0,0)$

$$U_t = D_1 U_{\xi\xi} + cU_{\xi} + D_2 R_1(0,0)V = L^{(1)}U + D_2 R_1(0,0)V$$

 $V_t = D_2 V_{\xi\xi} + cV_{\xi} + D_2 R_2(0,0)V = L^{(2)}V$

Assume that in \mathcal{E}_0 , $\sigma(L^{(2)}) \in \{\operatorname{Re} \lambda \leq -\rho, \ \rho > 0\}$, and $\operatorname{sp}(L^{(1)})$ touches or crosses the imaginary axis, but $L^{(1)}$ generates a bounded semigroup

Nonlinear convective stability: theorems

Theorem. With the given assumptions, perturbations of the traveling wave that are initially small in $\mathcal{E}_0 \cap \mathcal{E}_\alpha$ decay exponentially in \mathcal{E}_α to some shift of the wave. These solutions can be written

$$(U,V)(\xi,t) = U_*(\xi + ilde{c}(t)) + ilde{U}(\xi,t), V_*(\xi + ilde{c}(t)) + ilde{V}(\xi,t))$$

with, for each t, $(\tilde{U}(\xi, t), \tilde{V}(\xi, t))$ in a fixed subspace of $\mathcal{E}_0 \cap \mathcal{E}_\alpha$ complementary to Y'_* . $\tilde{U}(\xi, t)$ stays small in \mathcal{E}_0 , and $\tilde{V}(\xi, t)$ decays exponentially \mathcal{E}_0 . So in the unweighted norm, the *U*-component of a perturbation stays small, and the *V*-component decays.

Theorem. In addition to the given assumptions, suppose the linear equation $\tilde{U}_t = L^{(1)}\tilde{U}$ is parabolic, i .e., the diagonal entries of D_1 are all positive. If the perturbation of the traveling wave is also small in L^1 , then $\tilde{U}(\xi, t)$ stays small in the L^1 -norm and decays like $t^{-\frac{1}{2}}$ in the L^∞ -norm.

[G, Latushkin, Schecter, 2011]