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SPDE with random coefficients

Stochastic PDE:

K (x, Mz, &))u(z, \(x,£)) = f(x), +B.C.

Random process \ Random output u
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@ The Full-Order Model
© A generative Bayesian surrogate model
e Sample problem: 2D stationary heat equation

@ Results
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The Full-Order Model (FOM)

o Discretize
K (z, Mz, §))u(z, Nz, ) = f(z),  +B.C.
to a set of algebraic equations

Uy Ap(§) =0

e Usually large (Nequations ~ millions)

e Expensive, repeated evaluations for UQ (and various
deterministic tasks, e.g. optimization/control, inverse
problems. .. )
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Surrogate models

Idea: Replace FOM U = U¢(Ay) by cheaper, but less
accurate input-output map Uy = f(Ay; 6) based on

. NN
training data D = {U}z), A}Z)}_l
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Surrogate models

Idea: Replace FOM U = U¢(Ay) by cheaper, but less
accurate input-output map Uy = f(Ay; 6) based on

. NN
training data D = {U}z), AE‘Z)}_l

Problem: High dimensional uncertainties Ay - learning direct
functional mapping (e.g. PCE [Ghanem, Spanos 1991] ,
GP [Rasmussen 2006], neural nets [Bishop 1995]) will fail
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Surrogate models

Idea: Replace FOM U = U¢(Ay) by cheaper, but less
accurate input-output map Uy = f(Ay; 6) based on

. NN
training data D = {U}z), AE‘Z)}_l

Problem: High dimensional uncertainties Ay - learning direct
functional mapping (e.g. PCE [Ghanem, Spanos 1991] ,
GP [Rasmussen 2006], neural nets [Bishop 1995]) will fail

Solution: Coarse-grained model: Use models based on coarser
discretization of PDE, U, = U.(A.)
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Surrogate models

Idea:

Problem:

Solution:

Question:

Replace FOM Uy = U #(A¢) by cheaper, but less
accurate input-output map Uy = f(Ay; 6) based on

training data D = {U(i), )\(z‘)}N
P i
High dimensional uncertainties Ay - learning direct

functional mapping (e.g. PCE [Ghanem, Spanos 1991] ,
GP [Rasmussen 2006], neural nets [Bishop 1995]) will fail

Coarse-grained model: Use models based on coarser
discretization of PDE, U, = U.(A.)

Relation between U y and coarse output U, but
also relation between fine/coarse inputs Az, A,
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Coarse-graining of SPDE’s

coarse
grain

@ Retain as much as possible information on Uy during
coarse-graining, i.e.

Information bottleneck [Tishby, Pereira, Bialek, 1999]

maxg I(Ac,Uf;O) S.t. I(Af,)\c;o) < I
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Concept: Coarse grain random field A,. ..

e Probabilistic mapping Ay — Ac: pe(Ac|As, 0:)

(Ae)

encode

@ Goal: Prediction of U, not reconstruction of Ay!
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...solve ROM and reconstruct U from U,

e A. —» U,: solve
r.(UeAe) =0

@ Decode via coarse-to-fine map U, = Uy : p.f(Uy|U,,0.f)

Uy

reconstruct
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Graphical Bayesian model

() 6-)

Figure: Bayesian network defining p(U s|As, 0., 6.f).

p(Uf|Afvec;00f) = /pcf(Uf|Uc;ch)p(UclAc)pc(Ac|)\f7ec)dUcd)\c

- / Pes (U5 [U(A), 0c)pe(Ael Az, )N

SIAM CSE 17 — Mar 15, 2017 REDUCED ORDER MODELING OF SPDE’s




Model training

o Maximum likelihood:

(0*0) = arg max Zlng }Z>|A5}),9c,9cf)

cf 0., cf

@ Maximum posterior:

0. i)y (i
(fo> = argema)ichogp ;)|A§)790,90f) +log p(B.,0.1)

@ Data: ‘ ‘ . ‘
AP ~pAP), U =ua).
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Expectation-Maximization algorithm

BUPIAY,0.,0.5) = / Per(UPIULAD), 0.)p. AP A, 0.)dAL

— Likelihood contains N integrals over N latent variables )\ﬁi)

— Use Expectation-Maximization algorithm [Dempster, Laird, Rubin 1977] :
find lower bound

10og(B(U AL, 0., 6.))
o e (UL UAD), 0.0 AV IAY, 6, :
E/Q(Z)(Ag))log pey (U |U( ) (J;))p( | ) FNG
g (Ae”)
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Expectation-Maximization algorithm

o Maximize iteratively:

E-step: Find optimal ¢{” (A o< pes (U UML), 0p)pe (A A, 0.)
given current estimate 8; of optimal @ and compute expectation
values (MCMC, VI, EP)

M-step: Maximize lower bound F;(8) =3, F0; ¢ (AD)) wort. 0 to
find 0t+1

\
Orre 02 »

Figure: Expectation-Maximization algorithm illustration
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Expectation-Maximization algorithm

o Maximize iteratively:

E-step: Find optimal ¢{” (A o< pes (U UML), 0p)pe (A A, 0.)
given current estimate 8; of optimal @ and compute expectation
values (MCMC, VI, EP)

M-step: Maximize lower bound F;(8) =3, F0; ¢ (AD)) wort. 0 to
find 0t+1

F2(6)

Figure: Expectation-Maximization algorithm illustration
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Expectation-Maximization algorithm

o Maximize iteratively:

E-step: Find optimal ¢{” (A o< pes (U UML), 0p)pe (AN, 0.)
given current estimate 8; of optimal 8 and compute expectation
values (MCMC, VI, EP)

M-step: Maximize lower bound F;(8) = >, fé“(@; qt(i>(>\£i>)) w.r.t. 8 to
ﬁnd 9t+1

log p(@
o g p(6)

Figure: Expectation-Maximization algorithm illustration
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Expectation-Maximization algorithm

o Maximize iteratively:

E-step: Find optimal ¢{” (A{") & pes (U [U(AL), 05)pe (AP AL, 6.)
given current estimate 8; of optimal 8 and compute expectation
values (MCMC, VI, EP)

M-step: Maximize lower bound F;(6) =3, ffi)(e; qi")(A(j))) w.r.t. 8 to
ﬁnd 0t+1

Figure: Expectation-Maximization algorithm illustration
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Expectation-Maximization algorithm

o Maximize iteratively:

E-step: Find optimal ¢{” (A{") & pes (U [U(AL), 05)pe (AP AL, 6.)
given current estimate 8; of optimal 8 and compute expectation
values (MCMC, VI, EP)

M-step: Maximize lower bound F;(6) =3, ffi)(e; qi")(A(j))) w.r.t. 8 to
ﬁnd 0t+1

log p(0)

Figure: Expectation-Maximization algorithm illustration
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Model predictions

6 6:)

Figure: Bayesian network defining p(U ¢|Af, 0., 0.¢).

DU 02,0:) = [ 5oy (USIUA)02)pe(AclA s 02)dA.
Given Ay and 67,07,
@ sample Ac from pe(Ac| Ay, 07),
@ solve coarse model U, = U.(A.),

@ sample Uy from p(U;|U,, 07;)
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Sample problem: 2D heat equation

Va(—Az,&{(x)) VT (x,&(x))) =0, +B.C.
where {(x) ~ GP(0, cov(x;, x;)) with

2
cov(xi, xj) = exp {—W} ,

and
)\hia if g(w) > k>

Ao, otherwise
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FOM data samples
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Figure: Data samples for ¢p; = 0.35, [ = 0.098, ¢ = 100
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FOM data samples

As 100
m i 1

Figure: Data samples for ¢p; = 0.35, [ = 0.098, ¢ = 100
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FOM data samples

-50

Figure: Data samples for ¢p; = 0.35, [ = 0.098, ¢ = 100
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FOM data samples
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Figure: Data samples for ¢p; = 0.35, [ = 0.098, ¢ = 100
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Model specifications

@ A — Ac:
Element numbering with index k
Nteatures
log )\c,k = Z GCngOj(Af,k) + Uka, Zk ~ N(O, 1),
j=1
o U.—Uy:

pcf(Uf’Uc(zc)a ecf) = N(Uf|WUc(Zc)7 S)

with feature functions ;, coarse-to-fine projection W, diagonal
covariance S = diag(s).
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Feature functions ¢;(A )

@ Any function ¢; : (R*)3™*7%) s R admissible
@ Could/should be guided by physical insight:

o Effective-medium approximations
@ Self-consistent approximation (SCA)[Bruggeman 1935],
o Maxwell-Garnett approximation (MGA)[Maxwell 1873],
@ Differential effective medium approximation (DEM)
[Bruggeman 1935]. ..

e Morphology-describing features:

@ Lineal path function[Lu, Torquato 1992],
@ (Convex) Blob area,

@ Blob extent,

@ Distance transformations. . .

Left: Convex area (blue), max. extent (red), pixel-cross (green).
Right: distance transform
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Sparsity priors

e Strategy: Include as many features ¢; as possible, employ
sparsity prior for feature selection

e Laplace prior (LASSO):

P(0ei) o< exp {—y/7[0cl},
o ARD prior:

O [ LN Oi]0,7)drs =
ci) X _ c,ilY, Ti)aT; =
P, 0o Ti ’ |0c.i
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Which features are activated?

Optimal 6, for different contrasts

—e— 10 T Tmax. high cond. | I I I
—c =20 '
1.5H—c =50 log geom.
mean along y
log SCA
* : Ir B
>
0.5F n!
1) E— L4 A P Y Y PO B T Y.
1 V 1 Y VVT 1 1 1
50 100 150 200 250 300

component %

@ The higher the contrast, the more geometry matters
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rned effect operty

Flnescale conductivity ﬁeld Af

. . . |
i i *1

Coarse-grained conductivity ﬁeld
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@ Note that pe(Ac|As, 0:) = N(log Ac| @0, = = diag(o?)), and we plot
(Ae), =®0.+ Lo?
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many training samples do we need?

Predictive error vs. number of training data
1.2 T T T T T

(] 1 1 1 1 1 1 1
10 20 30 40 50 60 70 80

Number of training samples N

@ Few data is needed, errors converge quickly
@ The finer the coarse mesh, the better the predictions
@ The finer the coarse mesh, the less data is needed

@ But: the finer the coarse mesh, the more expensive the
training/predictions
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Predictions

Prediction histogram of Uy,
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Figure: Histogrammatic predictive distribution of temperature at
lower right corner, p(Uy,r| Ay, 0)
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Predictions
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Figure: Predictions on different test data samples for Nej . = 8 X 8,
¢ni =0.2,1=0.078 and ¢ = 3\\?0 = 10. Colored: Uy, blue: (Uy)
grey: £o.
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Predictions
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Predictions
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Figure: Test sample 3 from different angles
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Figure: Test sample 3 from different angles
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Figure: Test sample 3 from different angles
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Figure: Test sample 3 from different angles
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100

Figure: Test sample 3 from different angles
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Figure: Test sample 3 from different angles
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100 A
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100

Figure: Test sample 3 from different angles
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100 A
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Figure: Test sample 3 from different angles
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100 A
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100 A
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Predictions
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Predictions

/\
N\
100 4
50 o 3
04
-50

7 — Mar 15° REDUCED ORDER MODELING OF SPDE’



Predictions
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Figure: Test sample 3 from different angles
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Predictions
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Figure: Test sample 3 from different angles

7 — Mar 15%, 2017 REDUCED ORDER MODELING OF SPDE




Predictions
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Predictions
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Predictions
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Figure: Test sample 3 from different angles
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Predictions
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Predictions
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Predictions
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Figure: Test sample 3 from different angles
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Predictions
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Predictions
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Predictions
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Figure: Test sample 3 from different angles
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Predictions
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Predictive uncertainty
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Figure: Optimal variances o*2 of p.. (1.) and optimal variances s of
Dcf-
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Scaling of the algorithm

Training:
Quantity N Scaling
#Data O(N)
dim(Ay) ?
dim(U y) O(N)
dim(A ) dim(Uc) | O(N3)
dim(8.) O(N3)
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Predictions:
Quantity N Scaling
#Data 0(1)
dim(Ay) ?
dim(U ¢) O(N)
dim(A ) dim(Ue) | O(N3)
dim(6.) O(N)
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Is the model applicable for all kinds of microstructur

¢2 =0.2,1 =0.078 c=10,1=0.078 c=10,¢0 =0.2
1
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contrast ¢ volume fraction ¢, length scale [

Figure: Predictive error for different microstructural parameters and a
4 x 4 coarse grid.

@ There are regimes where the model works optimally/ will
fail
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Summary & Outlook

@ Replace FOM by cheaper, but less accurate ROM

@ Learn probabilistic output-output, but also input/input mappings
between fine and coarse solver

@ Predict by sampling Ac, solving coarse model, sampling U s

@ Potentially find interpretable features for effective material properties

Outlook
@ Anisotropic A.

@ Account for correlations among Acx’s

@ Adaptive coarse mesh refinement
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