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SPDE with random coefficients

Stochastic PDE:

K (x, λ(x, ξ))u(x, λ(x, ξ)) = f(x), +B.C.

Figure: Random process λ(x, ξ) leads to random solutions u(x, ξ).
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The Full-Order Model (FOM)

Discretize

K (x, λ(x, ξ))u(x, λ(x, ξ)) = f(x), +B.C.

to a set of algebraic equations

rf (U f ,λf (ξ)) = 0

Usually large (Nequations ∼ millions)

Expensive, repeated evaluations for UQ (and various
deterministic tasks, e.g. optimization/control, inverse
problems. . . )
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Surrogate models

Idea: Replace FOM U f = U f (λf ) by cheaper, but less
accurate input-output map U f = f(λf ;θ) based on

training data D =
{
U

(i)
f ,λ

(i)
f

}N

i=1

Problem: High dimensional uncertainties λf - learning direct
functional mapping (e.g. PCE [Ghanem, Spanos 1991] ,
GP [Rasmussen 2006], neural nets [Bishop 1995]) will fail

Solution: Coarse-grained model: Use models based on coarser
discretization of PDE, U c = U c(λc)

Question: Relation between U f and coarse output U c, but
also relation between fine/coarse inputs λf ,λc
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Coarse-graining of SPDE’s

Retain as much as possible information on U f during
coarse-graining, i.e.

Information bottleneck [Tishby, Pereira, Bialek, 1999]

maxθ I(λc,U f ;θ) s.t. I(λf ,λc;θ) ≤ I0
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Concept: Coarse grain random field λ,. . .

Probabilistic mapping λf → λc : pc(λc|λf ,θc)

Goal: Prediction of U f , not reconstruction of λf !
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. . . solve ROM and reconstruct U f from U c

λc → U c: solve
rc(U c,λc) = 0

Decode via coarse-to-fine map U c → Uf : pcf (Uf |U c,θcf )
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Graphical Bayesian model

Figure: Bayesian network defining p̄(Uf |λf ,θc,θcf ).

p̄(Uf |λf ,θc,θcf ) =

∫
pcf (Uf |U c,θcf )p(U c|λc)pc(λc|λf ,θc)dU cdλc

=

∫
pcf (Uf |U c(λc),θcf )pc(λc|λf ,θc)dλc.
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Model training

Maximum likelihood:(
θ∗c
θ∗cf

)
= arg max

θc,θcf

N∑
i=1

log p̄(U
(i)
f |λ

(i)
f ,θc,θcf )

Maximum posterior:(
θ∗c
θ∗cf

)
= arg max

θc,θcf

N∑
i=1

log p̄(U
(i)
f |λ

(i)
f ,θc,θcf ) + log p(θc,θcf )

Data:
λ

(i)
f ∼ p(λ

(i)
f ), U

(i)
f = Uf (λ

(i)
f ).
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Expectation-Maximization algorithm

p̄(U
(i)
f |λ

(i)
f ,θc,θcf ) =

∫
pcf (U

(i)
f |U c(λ

(i)
c ),θcf )pc(λ

(i)
c |λ

(i)
f ,θc)dλ

(i)
c

→ Likelihood contains N integrals over N latent variables λ
(i)
c

→ Use Expectation-Maximization algorithm [Dempster, Laird, Rubin 1977] :
find lower bound

log(p̄(U
(i)
f |λ

(i)
f ,θc,θcf ))

≥
∫
q(i)(λ(i)

c ) log

(
pcf (U

(i)
f |U c(λ

(i)
c ),θcf )pc(λ

(i)
c |λ(i)

f ,θc)

q(i)(λ
(i)
c )

)
dλ(i)

c

= F (i)(θ; q
(i)
t (λ(i)

c )), where θ = [θc,θcf ].
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Expectation-Maximization algorithm

Maximize iteratively:

E-step: Find optimal q
(i)
t (λ

(i)
c ) ∝ pcf (U

(i)
f |U c(λ

(i)
c ),θcf )pc(λ

(i)
c |λ(i)

f ,θc)
given current estimate θt of optimal θ and compute expectation
values (MCMC, VI, EP)

M-step: Maximize lower bound Ft(θ) =
∑

i F
(i)
t (θ; q

(i)
t (λ

(i)
c )) w.r.t. θ to

find θt+1

Figure: Expectation-Maximization algorithm illustration
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Model predictions

Figure: Bayesian network defining p̄(Uf |λf ,θc,θcf ).

p̄(Uf |λf ,θ
∗
c ,θ

∗
cf ) =

∫
pcf (Uf |U c(λc),θ

∗
cf )pc(λc|λf ,θ

∗
c)dλc

Given λf and θ∗c ,θ
∗
cf ,

sample λc from pc(λc|λf ,θ
∗
c),

solve coarse model U c = U c(λc),

sample Uf from p(Uf |U c,θ
∗
cf )
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Sample problem: 2D heat equation

∇x(−λ(x, ξ(x))∇xT (x, ξ(x))) = 0, +B.C.

where ξ(x) ∼ GP (0, cov(xi,xj)) with

cov(xi,xj) = exp

{
−|xi − xj |2

l2

}
,

and

λ(x, ξ(x)) =

{
λhi, if ξ(x) > k,

λlo, otherwise
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FOM data samples

Figure: Data samples for φhi = 0.35, l = 0.098, c = 100
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Model specifications

λf → λc :

log λc,k =

Nfeatures∑
j=1

θc,jϕj(λf,k) + σkZk, Zk ∼ N (0, 1),

U c → U f :

pcf (U f |U c(zc),θcf ) = N (U f |WU c(zc),S)

with feature functions ϕi, coarse-to-fine projection W , diagonal
covariance S = diag(s).
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Feature functions ϕi(λf,k)

Any function ϕi : (R+)dim(λf,k) 7→ R admissible

Could/should be guided by physical insight:

Effective-medium approximations
Self-consistent approximation (SCA)[Bruggeman 1935],

Maxwell-Garnett approximation (MGA)[Maxwell 1873],

Differential effective medium approximation (DEM)
[Bruggeman 1935]. . .

Morphology-describing features:
Lineal path function[Lu, Torquato 1992],
(Convex) Blob area,
Blob extent,
Distance transformations. . .

Left: Convex area (blue), max. extent (red), pixel-cross (green).
Right: distance transform

SIAM CSE 17 — Mar 1st, 2017 Reduced order modeling of SPDE’s 17/28



Sparsity priors

Strategy: Include as many features ϕj as possible, employ
sparsity prior for feature selection

Laplace prior (LASSO):

p(θc,i) ∝ exp {−√γ |θc,i|} ,

ARD prior:

p(θc,i) ∝
∫ ∞

0

1

τi
N (θc,i|0, τi)dτi =

1

|θc,i|
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Which features are activated?

The higher the contrast, the more geometry matters
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Learned effective property λc

Note that pc(λc|λf ,θc) = N (logλc|Φθc,Σ = diag(σ2)), and we plot
〈λc〉pc = Φθc + 1

2
σ2
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How many training samples do we need?

Few data is needed, errors converge quickly

The finer the coarse mesh, the better the predictions

The finer the coarse mesh, the less data is needed

But: the finer the coarse mesh, the more expensive the
training/predictions
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Predictions

Figure: Histogrammatic predictive distribution of temperature at
lower right corner, p̄(Uf,lr|λf ,θ)
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Predictions

Figure: Predictions on different test data samples for Nel,c = 8× 8,
φhi = 0.2, l = 0.078 and c = λhi

λlo
= 10. Colored: Uf , blue: 〈Uf 〉p̄,

grey: ±σ.
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Predictions

Figure: Test sample 3 from different angles
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Predictive uncertainty

Figure: Optimal variances σ∗2 of pc (l.) and optimal variances s of
pcf .
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Scaling of the algorithm

Training:
Quantity N Scaling

#Data O(N)
dim(λf ) ?
dim(U f ) O(N)
dim(λc),dim(Uc) O(N3)
dim(θc) O(N3)

Predictions:
Quantity N Scaling

#Data O(1)
dim(λf ) ?
dim(U f ) O(N)
dim(λc), dim(Uc) O(N3)
dim(θc) O(N)
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Is the model applicable for all kinds of microstructures?

Figure: Predictive error for different microstructural parameters and a
4× 4 coarse grid.

There are regimes where the model works optimally/ will
fail
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Summary & Outlook

Summary

Replace FOM by cheaper, but less accurate ROM

Learn probabilistic output-output, but also input/input mappings
between fine and coarse solver

Predict by sampling λc, solving coarse model, sampling Uf

Potentially find interpretable features for effective material properties

Outlook

Anisotropic λc

Account for correlations among λc,k’s

Adaptive coarse mesh refinement
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