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Simulation of a field scale seismic wave acquisition experiment



Multicomponent data acquisition

Source

Geophones
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OBN acquisition: 4C data
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Elastic imaging is not widely applied
• Large computational cost compared with acoustic 

imaging (Kelly et al., 1976; Virieux, 1984, 1986 )
– 5 times in runtime and memory in 2D
– 9 times in runtime and memory in 3D

• Deteriorated image for converted waves (Chang and 
McMechan, 1987; Yan and Sava, 2008; Cheng et al., 
2016)
– Polarity reversal at normal incidence
– Complicated, cumbersome, and ad hock 

5



Industry standard imaging algorithm
PP reflection image PS reflection image

² Converted wave imaging appears noisier, less coherent, and challenging for joint interpretation
² Images are obtained with 5 times the computation and memory cost of the acoustic images
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Proposed imaging algorithm
PP reflection image PS reflection image

ü Converted wave imaging shows consistent geological features with higher resolution
ü Imaging cost are reduced by 60% in computation and 80% in memory
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Outline
• Elastic wave equations
– Revisit of the elastic wave equations
– A new set of separated P- and S-wave equations

• The elastic imaging condition
– PP and PS images from inverse problem formulation
– Source-free converted wave imaging condition

• Discussions and conclusions

8



Seismology 101: elastodynamic system

• Linear, isotropic, elastic medium

Newton’s Law:

⇢
@2ui

@t2
= @j⌧ij + fi

Hooke’s Law:

⌧ij = ��ij@kuk + µ(@iuj + @jui)

⌧ij

ui

fi

⇢,�, µ

particle displacement 

element of the stress tensor

force

density and Lame constants

² Need to propagate (and store) 5 fields in 2D, and 9 fields in 3D

² Cannot interpret the P- and S-wave directly from the equations

(Aki and Richards, 1980)
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Seismology 101: elastodynamic system
• The second-order system

ui

⇢,�, µ

particle displacement 

density and Lamé constants

⇢ü =(r�)(r · u) +rµ · [ru+ (ru)T ]

+ (�+ 2µ)rr · u� µr⇥r⇥ u+ f

² Need to propagate (and store) 3 fields in 2D, and 3 fields in 3D

² Require more strict stability condition

² Cannot interpret the P- and S-wave directly from the equations

(Aki and Richards, 1980)
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P- and S-wave separation in homogenous medium  

• Assuming constant density and smooth Lame constants

² Fully decoupled P- and S-wave propagations
² Cannot interpret the mode-conversion directly from the equations

ü = ↵rr · u� �r⇥r⇥ u+ f

P̈ � ↵r2P = r · f
S̈� �r2S = r⇥ f

P = r · u, S = r⇥ u

↵ =
�+ 2µ

⇢
= V 2

p ,� =
µ

⇢
= V 2

s

P = r · u, S = r⇥ u

↵ =
�+ 2µ

⇢
= V 2

p ,� =
µ

⇢
= V 2

s

(Aki and Richards, 1980)
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Seismology 101: mode conversion
Incident P Incident S

P SV P

SV P

solid
solid

SV

P

SV

P

SV 

solid
solid

² Is mode conversion unconditional at solid interfaces?
ü New set of equations: clear mode conversion and its condition
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New set of separated P- and S-wave equations

P̈ � ↵r2P =r · f
+ Pr2↵+ 2r↵ ·rP

� 2Pr2�

� 2r� ·r⇥ S

ß Source term

ß P-wave interacts with Vp boundary
ß P-wave interacts with Vs boundary
ß S-wave interacts with Vs boundary

P-wave propagation

Li et. al., Geophysics, 2018 13



New set of separated P- and S-wave equations
ß Source term

ß P-wave interacts with Vs boundary
S-wave propagation

S̈� �r2S =r⇥ f

+r� ·rS� (r�)⇥ (r⇥ S)

+ 2(r�)⇥ (rP )

ß S-wave interacts with 
Vs boundary

Li et. al., Geophysics, 2018 14



Insights from the equations

P̈ � ↵r2P =Pr2↵+ 2r↵ ·rP � 2Pr2� � 2r� ·r⇥ S+r · f
S̈� �r2S =r� ·rS� (r�)⇥ (r⇥ S) + 2(r�)⇥ (rP ) +r⇥ f

ü New set of equations: coupled but separated for P- and S-

propagations in heterogeneous (Lamé) media (constant density)

ü Wave-medium interactions can be directly interpreted

ü Mode-conversion only happens at S-wave discontinuities!

ü Discontinuities only in Vp are transparent to S-wave

Li et. al., Geophysics, 2018
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Elastic simulations in heterogeneous media

(Removed direct arrival)

P data S data
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Outline
• Elastic wave equations
– Revisit of the elastic wave equations
– A new set of separated P- and S-wave equations

• The elastic imaging condition
– PP and PS images from inverse problem formulation
– Source-free converted wave imaging condition

• Discussions and conclusions
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Imaging condition
image = source wavefield meets scattered wavefield
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Imaging condition

² Wavefields only recorded on the 
boundary
² Source: source signature
² Scattered: receiver recordings

² How do the wavefields meet?
² P-wave: scalar
² S-wave: vector

ü Approximate wavefields by 
solving wave equations
ü Source: forward propagation
ü Scattered: backward propagation

ü Formulate imaging problem as an 
inverse problem
ü P-wave: take a gradient
ü S-wave: take a curl

image = source wavefield meets scattered wavefield
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Imaging as an inverse problem
• Match the modeled P-wave data with the recorded P-wave data

Jp(↵,�) =
1

2
||dp � dp0 ||22

r↵Jp =

✓
@P

@↵

◆⇤����
↵=↵0,�=�0

(dp � dp0)

=4
�
r2P0

�⇤
(⇧p)

�⇤�dp

• Conventional PP-image

Forward propagated 
source P-wavefield

Backward propagated 
“scattered” P-wavefield

Z

t
dtIpp =

Li et. al., Geophysics, 2018 20



Imaging as an inverse problem
• Match the modeled S-wave data with the recorded S-wave data

• Converted PS-image

Forward propagated 
source P-wavefield

Backward propagated 
“scattered” S-wavefield

Z

t
dt

Js(↵,�) =
1

2
||ds � ds0 ||22

r�Js =

✓
@S

@�

◆⇤����
↵=↵0,�=�0

(ds � ds0)

=� 2(rP0)
⇤ · (r⇥⇧�⇤

s �ds)

Ips = grad curl

Li et. al., Geophysics, 2018 21



Elastic imaging using acoustic propagators

• Migration velocity models are often smooth
• Wave-equations reduce to fully decoupled P- and S-wave 

equations for their potential fields
• They can be efficiently solved using acoustic propagators

r↵Jp =

✓
@P

@↵

◆⇤����
↵=↵0,�=�0

(dp � dp0)

=4
�
r2P0

�⇤
(⇧p)

�⇤�dp

r�Js =

✓
@S

@�

◆⇤����
↵=↵0,�=�0

(ds � ds0)

=� 2(rP0)
⇤ · (r⇥⇧�⇤

s �ds)
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Elastic simulations in heterogeneous media

(Removed direct arrival)

P data S data
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PP Image PS Image

Using acoustic 
propagators

Using elastic 
propagators
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PP Image PS Image

Using acoustic 
propagators

Using elastic 
propagators
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Comparison of the computational costs

Using
Cost

Acoustic propagator Elastic propapagtors

Memory nx*nz*3 nx*nz*3*5

Floating-point operations O(nx*nz) O(nx*nz*5)

# of simulations 2 1

Memory saving up to 80%, run time saving 60%
Run time saving up to 80%, memory saving 60%
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Elastic imaging in 3D using acoustic prop.
PP Image PS Image
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Elastic imaging in 3D using elastic prop.
PP Image PS Image
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Comparison of the computational costs

Using
Cost

Acoustic propagator Elastic propapagtors

Memory nx*ny*nz*3 nx*ny*nz*3*9

Floating-point operations O(nx*ny*nz) O(nx*ny*nz*9)

# of simulations 4 1

Memory saving up to 88.9%, run time saving 55.6% 
Run time saving up to 88.9%, memory saving 55.6%
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Outline
• Elastic wave equations
– Revisit of the elastic wave equations
– A new set of separated P- and S-wave equations

• The elastic imaging condition
– PP and PS images from inverse problem formulation
– Source-free converted wave imaging condition

• Discussions and conclusions
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Source free converted imaging

31



r�Js =

✓
@S

@�

◆⇤����
↵=↵0,�=�0

(ds � ds0)

=� 2 (rP0)
⇤ · (r⇥⇧�⇤

s �ds)� 2 (r�P )⇤ · (r⇥⇧�⇤
s �ds).

Imaging as an inverse problem
• Match the modeled S-wave data with the recorded S-wave data 

with higher-order terms

• Converted PS-image

Backward propagated 
“scattered”P-wavefield

Backward propagated 
“scattered” S-wavefield

Z

t
dt

Js(↵,�) =
1

2
||ds � ds0 ||22

grad curl

Du et. al., Geophysics, 2019 32
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Velocity imprints by elastic propagators
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Elastic Propagator Acoustic Propagator

(Du et al., 2018) 

P̈ � ↵r2P =Pr2↵+ 2r↵ ·rP � 2Pr2� � 2r� ·r⇥ S+r · f
S̈� �r2S =r� ·rS� (r�)⇥ (r⇥ S) + 2(r�)⇥ (rP ) +r⇥ f
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PP Image

Too-slow near surface velocity

S(t)p

PS Image SFCW Image

R(t)s

R(t)p

Toy VSP imaging example

Du et. al., Geophysics, 2019
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P velocity model PP Image

Image salt 
boundary without 

salt model
Different 

illumination

Near-salt SEAM model

Du et. al., Geophysics, 2019
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S velocity model PS Image

Higher 
resolution

Different 
illumination

Near-salt SEAM model

Du et. al., Geophysics, 2019
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S velocity model SFCW Image

Cannot 
image

far-offset

Near-salt SEAM model

Du et. al., Geophysics, 2019
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PP Image PS Image SFCW Image

Near wellbore imaging
- accurate near surface velocity
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• The events in PP and PS images are pushed down by faster migration velocities. 
• The overburden velocity error has stronger impact on the shallower layers.

PP Image PS Image SFCW Image

Near wellbore imaging
- Too-fast near surface velocity



Discussions and conclusions
Ø We derive a new set of coupled, but separated wave 

equations for P- and S-wave propagation

Ø This work provides a straightforward interpretation of 
elastic wave physics and a rigorous theoretical basis for 
the elastic image conditions

Ø Better interpretation of the PP and PS images based on 
fundamental wave physics
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Discussions and conclusions
Ø Advantages of using acoustic propagators for elastic 

imaging
• Lower memory and computational cost
• Free of the artifacts caused by the unphysical wave 

mode conversion:
1. Artifacts near the receiver locations
2. Imprints of S-wave velocity model – “in-situ” 

mode conversions
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Limitations
• Constant density assumption
– P- and S-waves are fully coupled at all density

discontinuities
– Images are contaminated with density contrasts

• P- and S-data separation in the recorded data
– Potential data are needed for this formulation
– Inverse problem to solve for the separated fields

42



Acknowledgements
• Singapore Economic Development Board for

supporting the Petroleum Engineering
Program

• Singapore MOE Tier 1 Grants R-302-000-165-
133 and R-302-000-182-114

43



References
• Chang, W.-F., and G. A. McMechan, 1987, Elastic reverse-time migration: Geophysics, 52, 1365–1375, doi: 

10.1190/1.1442249. 

• Cheng, J., T. Alkhalifah, Z. Wu, P. Zou, and C. Wang, 2016, Simulating propagation of decoupled elastic waves using low-rank 

approximate mixed-domain integral operators for anisotropic media: Geophysics, 81, no. 2, T63–T77, doi: 10.1190/geo2015-

0184.1. 

• Du, Y., Elita Li, Y., Yang, J., Cheng, A., & Fang, X. (2018). Source-free converted-wave reverse time migration: Formulation and
limitations. Geophysics, 84(1), S17-S27. 

• Kelly, K., R. Ward, S. Treitel, and R. Alford, 1976, Synthetic seismograms: A finite-difference approach: Geophysics, 41, 2–27

• Li, Y., Y. Du, J. Yang, A. Cheng, and X. Fang, 2018, Elastic reverse time migration using acoustic propagators: Geophysics, 83,
no. 5, S399–S408. 

• Luo, Y., and G. Schuster, 1990, Parsimonious staggered grid finite-differ- encing of the wave equation: Geophysical Research 
Letters, 17, 155–158, doi: 10.1029/GL017i002p00155. 

• Virieux, J., 1984, SH-wave propagation in heterogeneous media: Velocity- stress finite-difference method: Geophysics, 49, 

1933–1942, doi: 10 .1190/1.1441605. 

• Virieux, J., 1986, P-SV wave propagation in heterogeneous media: Velocity- stress finite-difference method: Geophysics, 51, 
889–901, doi: 10.1190/1 .1442147. 

• Yan, J., and P. Sava, 2008, Isotropic angle-domain elastic reverse-time migration: Geophysics, 73, no. 6, S229–S239, doi: 
10.1190/1.2981241. 

44



Complete set of equations for constant 
density media
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