Inverse Schrödinger problem with internal measurements

Fernando Guevara Vasquez

University of Utah

"Recent Developments in Hybrid Inverse Problems and Imaging" SIAM Conference on Imaging Sciences, Albuquerque, NM

Collaborators: P. Bardsley, J. Boyer, T. G. Draper, J. C.-L. Tse, T. E. Wallengren, K. Zheng (U. of Utah); Jack Garzella (Juan Diego Catholic High School)
Support: NSF DMS-1411577.

Schrödinger problem with internal measurements

 ϕ_{j} ϕ_{i} ϕ_{i} ϕ_{i}

$$\begin{cases} -\Delta u_j + qu_j = \phi_j \text{ in } \Omega \\ + BC \text{ on } \partial \Omega \end{cases}$$

- $\phi_i(\mathbf{x}) = \text{source (or leak) term at } j \text{th location}$
- $q(\mathbf{x}) = \text{(possibly complex) Schrödinger potential}$

0

Inverse Problem

Find *q* from measurements

$$M_{i,j}(t) = \int d\mathbf{x} \ \phi_i(\mathbf{x}) u_j(\mathbf{x}).$$

Application: Hydraulic Tomography

$$\begin{cases} S \frac{\partial v_j}{\partial t} = \nabla \cdot [\sigma \nabla v_j] + \psi_j & \text{in } \Omega \\ + BC & \text{on } \partial \Omega \\ v_j(\mathbf{x}, 0) = \text{Initial condition} \end{cases}$$

• $\psi_j(\mathbf{x}, t) = \text{source (or leak) term at } j - \text{th well}$

- $v_i(\mathbf{x}, t) = \text{head}$ (hydraulic pressure) caused by j—th well
- $S(\mathbf{x}) = \text{storage coefficient}$
- $\sigma(\mathbf{x}) = \text{hydraulic conductivity}$

Inverse Problem

Find S and σ from measurements

$$M_{i,j}(t) = \int d\mathbf{x} \ \psi_i(\mathbf{x},\cdot) \star_t v_j(\mathbf{x},\cdot).$$

From Hydraulic Tomography to the Schrödinger problem

Fourier transform + Liouville identity $\rightsquigarrow v_j \equiv \sigma^{1/2} \widehat{u}_j$ satisfies

$$-\Delta v_j + \left(\sigma^{-1/2}\Delta\sigma^{1/2} + \imath\omega\sigma^{-1}S\right)v_j = \sigma^{-1/2}\widehat{\psi}_j \equiv \phi_j.$$

If $\sigma|_{\sup\widehat{\phi}_i} = \text{known}$,

$$\widehat{M}_{i,j}(\omega) = \int d\mathbf{x} \ \widehat{\psi}_i(\mathbf{x}, \omega) \widehat{u}_j(\mathbf{x}, \omega) \quad (\text{HT meas. in frequency})$$

$$= \int d\mathbf{x} \ \frac{\widehat{\psi}_i(\mathbf{x}, \omega)}{\underline{\sigma}^{1/2}(\mathbf{x})} v_j(\mathbf{x}) \quad (\text{Schrödinger eq. meas.})$$

$$= \widehat{\psi}_i(\mathbf{x})$$

Inverse problem

Find (complex) $q = \sigma^{-1/2}\Delta(\sigma^{1/2}) + \imath \omega S/\sigma$ from measurements

$$\widehat{M}_{i,j}(\omega) = \int d\mathbf{x} \ \widehat{\phi}_i(\mathbf{x},\omega) \widehat{u}_j(\mathbf{x},\omega)$$

Reduced order model based inversion

Main idea

- Find reduced model parameters fitting data from continuum.
- ② Use reduced model parameters to image continuum parameter.

Problem

Are reduced model parameters uniquely determined from data?

References: Borcea, Druskin (2001, 2002); Borcea, Druskin, GV (2008); Druskin, Moskow (2002); Borcea, Druskin, Mamonov (2010); Ding, Ren (2014); Druskin, Mamonov, Thaler, Zaslavsky (2016); Borcea, Mamonov, GV (2016); . . .

From Hydraulic Tomography to the Schrödinger problem

Fourier transform + Liouville identity $\rightsquigarrow v_j \equiv \sigma^{1/2} \widehat{u}_j$ satisfies

$$-\Delta v_j + \left(\sigma^{-1/2}\Delta\sigma^{1/2} + \imath\omega\sigma^{-1}S\right)v_j = \sigma^{-1/2}\widehat{\psi}_j \equiv \phi_j.$$

If $\sigma|_{\sup\widehat{\phi}_i} = \text{known}$,

$$\widehat{M}_{i,j}(\omega) = \int d\mathbf{x} \ \widehat{\psi}_i(\mathbf{x}, \omega) \widehat{u}_j(\mathbf{x}, \omega) \quad (\text{HT meas. in frequency})$$

$$= \int d\mathbf{x} \ \frac{\widehat{\psi}_i(\mathbf{x}, \omega)}{\underline{\sigma}^{1/2}(\mathbf{x})} v_j(\mathbf{x}) \quad (\text{Schrödinger eq. meas.})$$

$$= \widehat{\psi}_i(\mathbf{x})$$

Inverse problem

Find (complex) $q = \sigma^{-1/2}\Delta(\sigma^{1/2}) + i\omega S/\sigma$ from measurements

$$\widehat{M}_{i,j}(\omega) = \int d\mathbf{x} \ \widehat{\phi}_i(\mathbf{x},\omega) \widehat{u}_j(\mathbf{x},\omega)$$

Reduced order model based inversion

Main idea

- Find reduced model parameters fitting data from continuum.
- ② Use reduced model parameters to image continuum parameter.

Problem

Are reduced model parameters uniquely determined from data?

References: Borcea, Druskin (2001, 2002); Borcea, Druskin, GV (2008); Druskin, Moskow (2002); Borcea, Druskin, Mamonov (2010); Ding, Ren (2014); Druskin, Mamonov, Thaler, Zaslavsky (2016); Borcea, Mamonov, GV (2016); . . .

Result preview

This work

Jacobian injective at 1 pt \implies Non-linear problem uniqueness a.e.

Implicit function theorem would only give local uniqueness. In general: Jacobian injective everywhere ⇒ uniqueness. (related to "Jacobian Conjecture" in algebraic geometry).

Flexible approach inspired by Complex Geometric Optics (Calderón '80; Sylvester, Uhlmann '87):

- Discrete inverse conductivity problem
- 2 Discrete inverse Schrödinger problem ~ [today]
- 3 Matrix versions of 1 and 2.
- 4 Networks of springs, masses and dampers (part of 3):
 - Finding spring/damping constants given the masses.
 - Finding masses given the spring/damping constants

Inverse problems in a circuit

- γ = vector of admittances in blue
- q = vector of admittances in pink

- 1) Discrete Conductivity Inverse Problem: Assuming no leaks (q = 0), find γ from electrical measurements at terminal nodes.
- 2 Discrete Schrödinger Inverse Problem: Assuming γ is known, find q from electrical measurements at terminal nodes.

Focus on uniqueness question:

Does the data determine the unknown (γ or q) uniquely?

The discrete Dirichlet problem

Let G = (V, E) be an undirected graph with no self edges.

$$V = B \cup I \equiv \text{vertex set (Boundary + Interior)}$$

$$E \subset V \times V \equiv \text{edge set}$$

- Discrete gradient: $\nabla : \mathbb{C}^V \to \mathbb{C}^E$. If $i \sim j$, $(\nabla u)(\{i,j\}) = u(i) u(j)$.
- Discrete Laplacian: $L_{\gamma}: \mathbb{C}^{V} \to \mathbb{C}^{V}$, with $L_{\gamma} \equiv \nabla^{*} \text{diag}(\gamma) \nabla$, $\gamma \in \mathbb{C}^{E}$.
- · Physical interpretation:

 $(L_{\gamma}u)(i)$ = net current at node i for node voltages $u \in \mathbb{C}^{V}$.

The γ , q-Dirichlet problem

Let $\gamma \in \mathbb{C}^E$, $q \in \mathbb{C}^I$. Given $f \in \mathbb{C}^B$ find $u \in \mathbb{C}^V$ s.t.

$$\begin{cases} (L_{\gamma}u)_I + q \odot u_I = 0, \\ u_B = f. \quad \text{(boundary condition)} \end{cases}$$

Dirichlet problem well-posedness

We say the γ , q-Dirichlet problem is well-posed if it admits a unique solution for all boundary data.

Proposition

When $\gamma \in \mathbb{C}^E$ and $q \in \mathbb{C}^I$ are such that:

i.
$$\Re(\gamma) > 0$$
 and

ii.
$$\Re(q) > -\lambda_{\min}((L_{\Re\gamma})_{II})$$

then the γ , q-Dirichlet problem is well-posed.

Note: This condition is sufficient but not necessary.

Dirichlet to Neumann map

Recall:

 $(L_{\gamma}u)(i)$ = net current at node i for node voltages $u \in \mathbb{C}^{V}$.

Dirichlet to Neumann or voltage to current map

$$\Lambda_{\gamma,q}: \mathbb{C}^B \to \mathbb{C}^B$$

$$f \to (L_{\gamma}u)_B = \text{currents flowing out of } B \text{ nodes.}$$

Here *u* is the solution to the γ , q-Dirichlet problem with BC f:

$$\begin{cases} (L_{\gamma}u)_I + q \odot u_I = 0, \\ u_B = f. \end{cases}$$

(assumes γ , q—Dirichlet problem is well posed)

Uniqueness results on finite graphs

Discrete conductivity inverse problem

- All terminals ($I = \emptyset$): Kirchhoff 1845.
- · Rectangular graphs: Curtis, Morrow '90.
- Circular planar graphs: Curtis, Mooers, Morrow '94; Colin de Verdière '94; Curtis, Ingerman, Morrow '98.
- Any graph + monotonicity: Chung, Berenstein '05; Chung '10.
 If γ₁ ≥ γ₂ then same boundary data ⇒ same conductivity
- · Cylindrical graphs: Lam, Pylyavskyy '12 (no uniqueness).

Discrete Schrödinger problem

Circular Planar Graphs: Araúz, Carmona, Encinas '14-'15.

This work

- Linearized problem uniqueness ⇒ non-linear problem uniqueness a.e.
- Simple uniqueness test: no explicit topological restrictions
- γ and q can be **complex** and/or **matrix valued**

The Continuum Schrödinger inverse problem

Find q from Dirichlet to Neumann map $\Lambda_q: f \to \mathbf{n} \cdot \nabla u|_{\partial\Omega}$, where u solves

$$\begin{cases} -\Delta u + qu = 0 \text{ in } \Omega, \\ u = f \text{ on } \partial \Omega. \end{cases}$$

Here $\Omega \subset \mathbb{R}^d$ is a domain with smooth boundary $\partial \Omega$.

Uniqueness question

Does Λ_q determine q uniquely?

 \rightsquigarrow YES in $d \ge 3$ (Sylvester, Uhlmann '87). Method is called Complex Geometric Optics (CGO) and has been used in other uniqueness problems:

- Maxwell equations: Ola, Somersalo '96
- · Linear isotropic elasticity: Nakamura, Uhlmann '94; Eskin, Ralston '02.
- Schrödinger equation with magnetic potential: Nakamura, Sun, Uhlmann '95.

• . . .

The Complex Geometric Optics method for Schrödinger

1) Interior Identity: If $-\Delta u^{(i)} + q_i u^{(i)} = 0$, i = 1, 2:

$$\int_{\partial\Omega} \left[(\Lambda_{q_1} - \Lambda_{q_2})(u^{(1)}|_{\partial\Omega}) \right] u^{(2)}|_{\partial\Omega} dS = \int_{\Omega} (q_1 - q_2)u^{(1)}u^{(2)} dx$$

2 Products of solutions to $\Delta u = 0$ are dense in $L^2(\Omega)$: (Calderón '80)

With
$$y, \xi \in \mathbb{R}^d$$
, $y \cdot y = \xi \cdot \xi$ and $y \cdot \xi = 0$
 $\Rightarrow u_{\pm}(x) = \exp[x \cdot (\pm y + i\xi)] \equiv \text{ harmonic.}$
 $\Rightarrow \text{ products } u_{+}u_{-} = \exp[2ix \cdot \xi] \equiv \text{ Fourier basis for } L^2(\Omega).$

- 3 Show 2 \Rightarrow products of solutions $u^{(1)}u^{(2)}$ are dense in $L^2(\Omega)$ via high frequency asymptotics (Sylvester, Uhlmann '87).
- 4 Uniqueness follows:

$$\Lambda_{q_1} = \Lambda_{q_2} \Rightarrow \overline{q_1} - \overline{q_2} \text{ is } \bot \text{ to dense set in } L^2(\Omega)$$

 $\Rightarrow q_1 = q_2.$

A discrete version of the CGO method?

1) Interior Identity: If $u^{(i)}$ solves γ, q_i —Dirichlet problem, i = 1, 2:

$$\int_{B} u_{B}^{(2)} \odot \left[(\Lambda_{\gamma,q_{1}} - \Lambda_{\gamma,q_{2}}) u_{B}^{(1)} \right] = \int_{I} (q_{1} - q_{2}) \odot u_{I}^{(1)} \odot u_{I}^{(2)}.$$

- 2 Products of solutions to γ , 0—Dir. problem are dense in (span) \mathbb{C}^I This property is assumed for e.g. q=0!
- 3 Show 2 ⇒ products of solutions $u_I^{(1)} \odot u_I^{(2)}$ span \mathbb{C}^I \rightsquigarrow holds for almost all q_1, q_2 in appropriate set. (more details soon. . .)
- 4 "Uniqueness almost everywhere" follows:

$$\Lambda_{\gamma,q_1} = \Lambda_{\gamma,q_2} \Rightarrow \overline{q_1} - \overline{q_2} \text{ is } \perp \text{ to } \mathbb{C}^I$$

 $\Rightarrow q_1 = q_2, \text{ for a.a. } q_1, q_2.$

Consequences

Fact: $W(q,q)^T = D_q \Lambda_{\gamma,q} = \text{Jacobian of } \Lambda_{\gamma,q} \text{ at } q.$

If Jacobian is injective at some p with $\Re(p) > \zeta \equiv -\lambda_{\min}((L_{\Re\gamma})_{II})$ we get:

- 1 Uniqueness for a.a. $(q_1, q_2) \in \{z \in \mathbb{C}^I \mid \Re(z) > \zeta\}^2$.
- 2 Injective Jacobian for a.a. $q \in \{z \in \mathbb{C}^I \mid \Re(z) > \zeta\}$.
- 3 Equivalence classes for equivalence relation $q_1 \sim q_2 \Leftrightarrow \Lambda_{\gamma,q_1} = \Lambda_{\gamma,q_2}$ must be of zero measure in $\{z \in \mathbb{C}^I \mid \Re(z) > \zeta\}$.
 - Note #1: Instead of identifying the (q1, q2) that have the same boundary data, we show they belong to the zero set of an analytic function.
 - Note #2: Can use real analytic functions instead of complex analytic to obtain similar results if $\gamma \in \mathbb{R}^E$ and $q \in \mathbb{R}^I$.

A zero set example for Schrödinger

Smallest singular value of W(xp, yq) for $(x, y) \in [0, 4]^2$.

Probabilistic interpretation of uniqueness a.e.

If uniqueness a.e. holds, $(Q_1, Q_2) \equiv$ absolutely continuous random variable and M is a non-zero probability event:

- $W(Q_1, Q_2)$ is full rank knowing that $(Q_1, Q_2) \in M$ almost surely.
- $\mathbb{E} [\|\Lambda_{\gamma,Q_1} \Lambda_{\gamma,Q_2}\| \mid (Q_1,Q_2) \in M] > 0.$

What about Newton's method?

Newton's Method

$$q^{(0)}=$$
 given for $k=0,1,2,\ldots$ Find step $\delta q^{(k)}$ s.t. $D_q \Lambda_{\gamma,q^{(k)}} \delta q^{(k)} = \Lambda_{\gamma,q^{(k)}} - \Lambda_{\gamma,q}$ Choose step length $t_k>0$ Update $q^{(k+1)}=q^{(k)}+t_k\delta q^{(k)}$

Theorem

If Jacobian $D_q \Lambda_{\gamma,q^{(k)}}$ is injective, then all feasible choices of the next iterate $q^{(k+1)}$ are such that the Jacobian is injective, up to finitely many exceptions.

Numerical comparison: conductivity vs Schrödinger

