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Schrodinger problem with internal measurements
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—Auj+ quj = ¢ in 2

+ BC on 9f2

. ¢j(x) = source (or leak) term at j—th location

- q(x) =

Inverse Problem

Find g from measurements

(possibly complex) Schrodinger potential

M, ;(t) :/dx oi(x)uj(x).
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Application: Hydraulic Tomography
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( vj(x,0) = Initial condition

(2
j(x, t) = source (or leak) term at j—th well
vj(x, t) = head (hydraulic pressure) caused by j—th well

S(x) = storage coefficient

o(x) = hydraulic conductivity

Inverse Problem

Find S and o from measurements

M,'.j(t) — / dx L',(x ) * vj(x. )
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From Hydraulic Tomography to the Schrodinger problem

Fourier transform + Liouville identity ~~ v; = o‘/zﬂj satisfies

If 6| ~ = known,
Supp @;

Mij(w) = /dx E;(x.w)@(x. w) (HT meas. in frequency)

= /dx L,,(?(. ) vi(x)  (Schrodinger eq. meas.)

Inverse problem

Find (complex) ¢ = 0~ "/2A(c'/?) + 1wS /o from measurements

/T\\Ai_j(w) = /dx C/D\,'(X, C*"')aj(xvc"")
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Reduced order model based inversion

/\S f ./\\ /\\ f Main idea
® Find reduced model parameters fitting
f )\ f data from continuum.

® Use reduced model parameters to image

3 \3 N 3 N .
Vo Vs /\ .2\ f continuum parameter.

Are reduced model parameters uniquely determined from data?

References: Borcea, Druskin (2001, 2002); Borcea, Druskin, GV (2008); Druskin,
Moskow (2002); Borcea, Druskin, Mamonov (2010); Ding, Ren (2014); Druskin,
Mamonov, Thaler, Zaslavsky (2016); Borcea, Mamonov, GV (2016); . ..
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From Hydraulic Tomography to the Schrodinger problem

Fourier transform + Liouville identity ~ v; = al/2

ﬂj satisfies
— A+ (0—]/2A0]/2 — 1w0—15) vi=a % = ¢

If o| ~ = known,
SuUpp @;

Mij(w) = /dx E,-(x.w)ﬁj(x. w) (HT meas. in frequency)

= /dx %, ) vi(x)  (Schrédinger eq. meas.)
. O-I/Z(X)
A

=0;(x)

Inverse problem

Find (complex) ¢ = 0~ "/2A(c'/?) + 1wS /o from measurements

//\\4,-_j(w) = /dx ilx. w)uj(x, w)
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Reduced order model based inversion

/S /} f f /\\ Main idea

® Find reduced model parameters fitting
/S ! f data from continuum.

® Use reduced model parameters to image
N N \Y \Y "\ .
/\ Ve /\ Z\ /\ continuum parameter.
Problem

Are reduced model parameters uniquely determined from data?

References: Borcea, Druskin (2001, 2002); Borcea, Druskin, GV (2008); Druskin,
Moskow (2002); Borcea, Druskin, Mamonov (2010); Ding, Ren (2014); Druskin,
Mamonov, Thaler, Zaslavsky (2016); Borcea, Mamonov, GV (2016); . ..
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Result preview

Jacobian injective at 1 pt — Non-linear problem uniqueness a.e.

Implicit function theorem would only give local uniqueness.
In general: Jacobian injective everywhere % uniqueness.
(related to “Jacobian Conjecture” in algebraic geometry).

Flexible approach inspired by Complex Geometric Optics
(Calderon '80; Sylvester, Uhlmann '87):

® Discrete inverse conductivity problem
® Discrete inverse Schrodinger problem < [today]

®© Matrix versions of @ and @.

® Networks of springs, masses and dampers (part of &):

- Finding spring/damping constants given the masses.
- Finding masses given the spring/damping constants
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Inverse problems in a circuit

~ = vector of admittances in blue

* rE
/

vector of admittances in pink

@ Discrete Conductivity Inverse Problem: Assuming no leaks (g = 0),
find ~+ from electrical measurements at terminal nodes.

® Discrete Schrodinger Inverse Problem: Assuming 7y is known,
find g from electrical measurements at terminal nodes.

Focus on uniqueness question:

Does the data determine the unknown (v or g) uniquely?

05/24/2016

Inverse Schrodinger problem

Fernando Guevara Vasquez (University of Utah)



The discrete Dirichlet problem

Let G = (V, E) be an undirected graph with no self edges. 4 s
V = BU I = vertex set (Boundary + Interior)
E C V x V =edge set 5
- Discrete gradient: V : C¥Y — CE. If i ~ j, (Vu)({i.j}) = u(i) — u()).
- Discrete Laplacian: L, : C¥ — CV, with L, = V*diag (7)V, v € CE.

« Physical interpretation:

‘ (L, u)(i) = net current at node i for node voltages u € C".

The v, g—Dirichlet problem

Let v € CE, g C!. Given f € CB find u e CY st
q

ug = f. (boundary condition)

{ (Lyu)+q©® up =0,
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Dirichlet problem well-posedness

We say the 7, g—Dirichlet problem is well-posed if it admits a unique
solution for all boundary data.

When v € CF and g € C' are such that:
.. ®(v)> 0and

ii. R(q) > —Amin((Lry)u)
then the v, g—Dirichlet problem is well-posed.

A R(72) A R(q2)

R(71)

Note: This condition is sufficient but not necessary.
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Dirichlet to Neumann map

Recall:

(L, u)(i) = net current at node i for node voltages u € C".

Dirichlet to Neumann or voltage to current map

Nyg: CB —C?

f —(L,u)g = currents flowing out of B nodes.

Here u is the solution to the v, g—Dirichlet problem with BC f:

(Lyu)i+q® u =0,

ug = f

(assumes v, g—Dirichlet problem is well posed)
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Uniqueness results on finite graphs

Discrete conductivity inverse problem
« All terminals (I = ()): Kirchhoff 1845.
- Rectangular graphs: Curtis, Morrow 90.

» Circular planar graphs: Curtis, Mooers, Morrow '94; Colin de Verdiere
'94; Curtis, Ingerman, Morrow '98.

» Any graph + monotonicity: Chung, Berenstein '05; Chung "10.
If v1 > 7, then same boundary data = same conductivity

» Cylindrical graphs: Lam, Pylyavskyy "12 (no uniqueness).
Discrete Schrodinger problem

» Circular Planar Graphs: Aratz, Carmona, Encinas '14-'15.

This work

- Linearized problem uniqueness = non-linear problem uniqueness a.e.

- Simple uniqueness test: no explicit topological restrictions

» v and g can be complex and/or matrix valued
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The Continuum Schrédinger inverse problem

Find g from Dirichlet to Neumann map A, : f — n - Vu|sq,

where u solves
—Au+ qu=20in €,

u= f on 0f2.

Here Q C R? is a domain with smooth boundary 99).

Uniqueness question

Does A, determine g uniquely?

~~+ YES in d > 3 (Sylvester, Uhlmann '87). Method is called Complex
Geometric Optics (CGO) and has been used in other uniqueness problems:

» Maxwell equations: Ola, Somersalo '96
- Linear isotropic elasticity: Nakamura, Uhlmann '94; Eskin, Ralston "02.

+ Schrodinger equation with magnetic potential: Nakamura, Sun,
Uhlmann "95.
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The Complex Geometric Optics method for Schrodinger

@ Interior Identity: If —Aul?) q;u(i) =0,i=12

/ [(AQI _ qu)(u(])‘aﬂ)} U(Z)‘aQ ds
J o0

[0
JQ
@® Products of solutions to Au = 0 are dense in L*(Q): (Calderdn ’80)
Withy.{ERd. y-y=&-fandy-£=0
= ur(x) =exp[x - (£y + i§)] = harmonic.
= products u,u_ = exp[2ix - £] = Fourier basis for L*(2).

© Show @ = products of solutions u'" u'?) are dense in L2(Q
P

via high frequency asymptotics (Sylvester, Uhlmann "87).
O Uniqueness follows:

Ny, =N, = @1 — Q7 is L to dense set in L*(2)

= q1 = Q7.
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A discrete version of the CGO method?

© Interior Identity: If ul?) solves 7, g;—Dirichlet problem, i = 1, 2:

/[; ul(BZ) © [(A”:*%QI - A‘;’.(h)ug)] — /I(fh = CIZ) ® Uf” O ng).

@® Products of solutions to . 0—Dir. problem are dense in (span) C'
This property is assumed for e.g. g = 0!

© Show @ = products of solutions ugl) . ugz) span Y

~ holds for almost all g1, g2 in appropriate set. (more details soon. . .)

® Uniqueness almost everywhere” follows:

= q; = @, fora.a. gy, q,.
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Consequences

Fact: W(q,q)" = D,\., 4 = Jacobian of A, , at q.

If Jacobian is injective at some p with R(p) > ( = —Amin((Ly~ ) 1) we get:
© Uniqueness for a.a. (q1.q2) € {ze C' | R(z) > ¢}~

® Injective Jacobian fora.a. g€ {z € C' | R(z) > (}.

® Equivalence classes for equivalence relation g1 ~ ¢ & A, 4, = Ay g,
must be of zero measure in {z € C' | R(z) > (}.

- Note #1: Instead of identifying the (g1, g2) that have the same
boundary data, we show they belong to the zero set of an analytic

function.

- Note #2: Can use real analytic functions instead of complex analytic to
obtain similar results if v € Rf and g € R
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A zero set example for Schrodinger

4.0
-2.4

3.5k
= —-3.2

3.0k
41-4.0

2.5F
4-4.8

2.0F
4-5.6

1.5

1.0F

0.5k

Smallest singular value of W(xp, yq) for (x, y) € [0, 4]°.
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Probabilistic interpretation of uniqueness a.e.

If uniqueness a.e. holds, (Q;, Q;) = absolutely continuous random variable
and M is a non-zero probability event:

L2
M

« W(@Q, @) is full rank knowing that (Q;, Q) € M almost surely.
 E[Arq — Al | (@ Q) € M > 0.
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What about Newton’'s method?

Newton’s Method

q®) = given

for k=0,12,...
Find step 6¢\% s.t. Dq/\,."q(k)()‘q(k) = A
Choose step length t, > 0
Update gt¥*) = g(%) + £, 5q(¥)

Theorem

If Jacobian Dq/\ﬂraq(k) is injective, then all feasible choices of the next iterate

q(k“”) are such that the Jacobian is injective, up to finitely many exceptions.
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Numerical comparison: conductivity vs Schrédinger

0.0 0.2 0.4 0.6 0.8

T]I| 15 20 ' p
(a) Conductivity with |E| = 21 (b) Schrodinger with |I| = 21
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