Multiparameter Full-Waveform Inversion with Near-Interface Sources using Staggered-grid Finite Differences

Joseph Jennings, Martin Almquist and Eric Dunham Department of Geophysics, Stanford University March 12, 2019

Problem setup

 ho_1, K_1

 ho_2, K_2

Full-Waveform Inversion

$$\begin{array}{l} \underset{\rho(x),K(x),f(t)}{\text{minimize}} \quad F(v,p), \quad \text{where} \\ F(v,p) &= \frac{w_1}{2} \int_0^T \left(v(x_R,t) - v_{\text{data}}(t) \right)^2 dt \\ &\qquad + \frac{w_2}{2} \int_0^T (p(x_R,t) - p_{\text{data}}(t))^2 dt \\ \\ \text{subject to} \quad \rho \dot{v} + p_x = 0, \end{array}$$

$$\frac{1}{K}\dot{p} + v_x - f(t)\delta(x - x_S) = 0.$$

Full-Waveform Inversion

$$\begin{array}{l} \underset{\rho(x),K(x),f(t)}{\text{minimize}} \quad F(v,p), \quad \text{where} \\ F(v,p) &= \frac{w_1}{2} \int_0^T \left(v(x_R,t) - v_{\text{data}}(t) \right)^2 dt \\ &\qquad + \frac{w_2}{2} \int_0^T (p(x_R,t) - p_{\text{data}}(t))^2 dt \end{array} \right] \quad \begin{array}{l} \underset{\text{Loss function}}{\text{Loss function}} \\ \text{(least squares)} \\ \text{subject to} \quad \rho \dot{v} + p_x = 0, \\ &\qquad \frac{1}{K} \dot{p} + v_x - f(t) \delta(x - x_S) = 0. \end{array} \right] \quad \text{PDE constraint}$$

Optimizing the functional

Local/gradient-based optimization is preferred
 Requires use of the adjoint method

Adjoint method: Forward modeling

Forward Modeling $p_{1_{min}}(x), K_{1_{min}}(x)$ $p_{2_{min}}(x), K_{2_{min}}(x)$ $p_{2_{min}}(x), K_{2_{min}}(x)$

Adjoint method: Calculate residual

Adjoint method: Adjoint modeling

Adjoint method: Calculate gradient

Adjoint method: Update parameters

Problem setup

 $\downarrow x_S$

 ρ_1, K_1

Finite difference discretization

Reduced accuracy at boundaries

Ocean-bottom node acquisition (OBN)

OBN: Adjoint problem

2. Sources can be on/near interfaces

Shifting leads to gradient errors

2. Sources can be on/near interfaces

Shifting of sources leads to gradient errors

1. High-order accurate modeling of the forward problem

1. High-order accurate modeling of the forward problem

- Accurate finite difference (FD) stencils at boundaries and interfaces
- Modeling of point sources at interfaces

1. High-order accurate modeling of the forward problem

- Accurate finite difference (FD) stencils at boundaries and interfaces
- Modeling of point sources at interfaces

2. Immediate availability of the discrete adjoint

1. High-order accurate modeling of the forward problem

- Accurate finite difference (FD) stencils at boundaries and interfaces
- Modeling of point sources at interfaces

2. Immediate availability of the discrete adjoint

 Semi-discrete adjoint equations are the same as the forward with different source

Dual consistency (Berg and Nordstrom, 2012)

Continuous

• Forward:

 $\rho \dot{v} + p_x = 0$ $\frac{1}{K} \dot{p} + v_x = \delta(x - x_S) f(t)$ Discrete

• Forward:

• Adjoint:

• Adjoint:

Dual consistency (Berg and Nordstrom, 2012)

Continuous

• Forward:

 $\rho \dot{v} + p_x = 0$ $\frac{1}{K} \dot{p} + v_x = \delta(x - x_S) f(t)$

Discrete

• Forward:

 $\rho \dot{\mathbf{v}} + \mathbf{D}_{+}\mathbf{p} = \mathbf{0}$ $K^{-1} \dot{\mathbf{p}} + \mathbf{D}_{-}\mathbf{v} = f(t)\mathbf{d}_{S-}$

• Adjoint:

Adjoint:

Dual consistency (Berg and Nordstrom, 2012)

Continuous

• Forward:

 $\rho \dot{v} + p_x = 0$ $\frac{1}{K} \dot{p} + v_x = \delta(x - x_S) f(t)$ • Adjoint: Discrete

• Forward:

 $\rho \dot{\mathbf{v}} + \mathbf{D}_{+}\mathbf{p} = \mathbf{0}$ $K^{-1} \dot{\mathbf{p}} + \mathbf{D}_{-}\mathbf{v} = f(t)\mathbf{d}_{S-1}$

• Adjoint:

$$\rho \tilde{v}' + \tilde{p}_x = w_1 \delta(x - x_R) r_v(t)$$
$$\frac{1}{K} \tilde{p}' + \tilde{v}_x = -w_2 \delta(x - x_R) r_p(t)$$

Dual consistency (Berg and Nordstrom, 2012) Continuous Discrete • Forward: • Forward: $\rho \dot{\mathbf{v}} + \mathbf{D}_+ \mathbf{p} = \mathbf{0}$ $\rho \dot{v} + p_r = 0$ $K^{-1}\dot{\mathbf{p}} + \mathbf{D}_{-}\mathbf{v} = f(t)\mathbf{d}_{S-}$ $\frac{1}{\kappa}\dot{p} + v_x = \delta(x - x_S)f(t)$ Adjoint: · Adjoint: Discretize $\rho \tilde{v}' + \tilde{p}_x = w_1 \delta(x - x_R) r_v(t)$ $\rho \tilde{\mathbf{v}}' + \mathbf{D}_+ \tilde{\mathbf{p}} = w_1 \mathbf{d}_{R-} r_v(t)$ $K^{-1}\tilde{\mathbf{p}} + \mathbf{D}_{-}\tilde{\mathbf{v}} = -w_2 \mathbf{d}_{R+} r_p(t)$ $\frac{1}{K}\tilde{p}' + \tilde{v}_x = -w_2\delta(x - x_R)r_p(t)$ 22

Outline for presentation

1. Summation-by-parts with simultaneous approximation term method (SBP-SAT)

2. Adjoint optimization with SBP-SAT

3. Numerical examples

Summation-by-parts (SBP) operator $\frac{\partial p}{\partial x} \approx \mathbf{Dp},$

Summation-by-parts (SBP) operator $\frac{\partial p}{\partial x} \approx \mathbf{Dp},$

 $\mathbf{D} = \frac{1}{h} \begin{bmatrix} \theta_{11} & \theta_{12} & \theta_{13} & \theta_{14} \\ \theta_{21} & 0 & \theta_{23} & \theta_{24} \\ \theta_{31} & \theta_{32} & 0 & \theta_{33} & \theta_{34} \\ \theta_{41} & \theta_{42} & \theta_{43} & 0 & \theta_{45} & \theta_{46} \\ 0 & 0 & \frac{1}{12} & -\frac{8}{12} & 0 & \frac{8}{12} & -\frac{1}{12} \\ & & \ddots & \ddots & \ddots & \ddots & \ddots \end{bmatrix}$

Summation-by-parts (SBP) operator $\frac{\partial p}{\partial x} \approx \mathbf{Dp}$, Interior: 4th-order accuracy

Summation-by-parts (SBP) operator $\frac{\partial p}{\partial x} \approx \mathbf{Dp}$, Interior: 4th-order accuracy Boundary: 2nd-order accuracy

Summation-by-parts (SBP) operator $\frac{\partial p}{\partial x} \approx \mathbf{Dp}$, Interior: 4th-order accuracy Boundary: 2nd-order accuracy

Global: 3rd -order accuracy

Discrete form of integration-by-parts

1. Inner-product

•
$$(u,v) = \int_{a}^{b} u(x)v(x)dx$$

• $(\mathbf{u}, \mathbf{v}) = \mathbf{u}^T \mathbf{H} \mathbf{v}$, (H : discrete quadrature)

Discrete form of integration-by-parts

1. Inner-product

•
$$(u,v) = \int_{a}^{b} u(x)v(x)dx$$

• $(\mathbf{u}, \mathbf{v}) = \mathbf{u}^T \mathbf{H} \mathbf{v}$, (H : discrete quadrature)

2. Integration-by-parts and SBP \$\left(u, \frac{dv}{dx}\right) = -\left(\frac{du}{dx}, v\right) + u(x)v(x)|_a^b\$ \$\left(u, Dv) = -(Du, v) + u_N v_N - u_0 v_0\$

Why is this useful?

1. Discrete energy balance \Rightarrow provable stability

- 2. Consistent approximation of continuous adjoint problem
 - Dual consistency

Simultaneous approximation term method

Simultaneous approximation term (SAT) method with SBP (SBP-SAT):

 \rightarrow Weak imposition of boundary conditions (BC)

Simultaneous approximation term method

Simultaneous approximation term (SAT) method with SBP (SBP-SAT):

 \rightarrow Weak imposition of boundary conditions (BC)

$$\rho \frac{\partial \mathbf{v}}{\partial t} = \cdots - c \mathbf{H}^{-1} \left[\mathbf{e}_0 (v_0 - \hat{v}_0) + \mathbf{e}_n (v_N - \hat{v}_N) \right],$$

$$\frac{1}{K} \frac{\partial \mathbf{p}}{\partial t} = \cdots - c \mathbf{H}^{-1} \left[\mathbf{e}_0 (p_0 - \hat{p}_0) + \mathbf{e}_n (p_N - \hat{p}_N) \right].$$

• \hat{p}_0, \hat{v}_0 : "target" variables that satisfy BC

Outline for presentation

- 1. Summation-by-parts with simultaneous approximation term method (SBP-SAT)
 - High-order accurate, energy stable, dual consistency
- 2. Adjoint optimization with SBP-SAT

3. Numerical examples

Continuous optimization problem

$$\begin{array}{l} \underset{\rho(x),K(x),f(t)}{\text{minimize}} \quad F(v,p), \quad \text{where} \\ F(v,p) = \frac{w_1}{2} \int_0^T \left(v(x_R,t) - v_{\text{data}}(t) \right)^2 dt \\ + \frac{w_2}{2} \int_0^T (p(x_R,t) - p_{\text{data}}(t))^2 dt \end{array} \right] \quad \text{Loss function} \\ \text{(least squares)} \\ \text{subject to} \quad \rho \dot{v} + n_r = 0 \end{array}$$

pect to
$$\rho v + p_x = 0,$$

 $\frac{1}{K}\dot{p} + v_x - f(t)\delta(x - x_S) = 0.$

PDE constraint

Semi-discrete (SD) optimization problem

minimize $F(\mathbf{v}, \mathbf{p}),$ where $\boldsymbol{\rho}.\mathbf{K}.f(t)$ $F(\mathbf{v}, \mathbf{p}) = \frac{w_1}{2} \int^T \left((\mathbf{H}_+ \mathbf{d}_{R+})^T \mathbf{v} - v_{\mathsf{data}}(t) \right)^2 dt$ $+\frac{w_2}{2}\int ((\mathbf{H}_{-}\mathbf{d}_{R-})^T\mathbf{p} - p_{\mathsf{data}}(t))^2 dt$ subject to $\rho \dot{\mathbf{v}} + \mathbf{D}_+ \mathbf{p} = \mathbf{0}$,

 $K^{-1}\dot{\mathbf{p}} + \mathbf{D}_{-}\mathbf{v} - f(t)\mathbf{d}_{S-} = \mathbf{0}.$

Point source/receiver operators

minimize $F(\mathbf{v}, \mathbf{p}),$ where $\boldsymbol{\rho}.\mathbf{K}.f(t)$ $F(\mathbf{v}, \mathbf{p}) = \frac{w_1}{2} \int^T \left((\mathbf{H}_+ \mathbf{d}_{R+})^T \mathbf{v} - v_{\mathsf{data}}(t) \right)^2 dt$ $+\frac{w_2}{2}\int^{T}((\mathbf{H}_{-}\mathbf{d}_{R-})^T\mathbf{p}-p_{\mathsf{data}}(t))^2\,dt$ subject to $\rho \dot{\mathbf{v}} + \mathbf{D}_+ \mathbf{p} = \mathbf{0}$, $K^{-1}\dot{\mathbf{p}} + \mathbf{D}_{-}\mathbf{v} - f(t)\mathbf{d}_{S-} = \mathbf{0}.$

(Petersson et al., 2016)

(Petersson et al., 2016)

Residual becomes adjoint source

Source-receiver dual consistency

SD adjoint equations

$$\rho \tilde{\mathbf{v}}' + \mathbf{D}_{+} \tilde{\mathbf{p}} = w_1 \mathbf{d}_{R+} \left(\mathbf{d}_{R+}^T \mathbf{H}_{+} \mathbf{v} - v_{\mathsf{data}}(t) \right),$$

$$K^{-1} \tilde{\mathbf{p}}' + \mathbf{D}_{-} \tilde{\mathbf{v}} = -w_2 \mathbf{d}_{R-} \left(\mathbf{d}_{R-}^T \mathbf{H}_{-} \mathbf{p} - p_{\mathsf{data}}(t) \right)$$

- d_{R₊}: receiver restriction in functional
- $d_{R_{\pm}}$: delta function (point source) in adjoint

Easy to obtain adjoint equations

SD adjoint equations

$$\rho \tilde{\mathbf{v}}' + \mathbf{D}_{+} \tilde{\mathbf{p}} = w_1 \mathbf{d}_{R+} r_p(t),$$

$$K^{-1} \tilde{\mathbf{p}}' + \mathbf{D}_{-} \tilde{\mathbf{v}} = -w_2 \mathbf{d}_{R-} r_v(t).$$

- SD forward equations
 - $\rho \dot{\mathbf{v}} + \mathbf{D}_{+}\mathbf{p} = \mathbf{0},$ $K^{-1} \dot{\mathbf{p}} + \mathbf{D}_{-}\mathbf{v} = \mathbf{d}_{s-}f(t).$

Easy to obtain adjoint equations

SD adjoint equations

$$\rho \tilde{\mathbf{v}}' + \mathbf{D}_{+} \tilde{\mathbf{p}} = w_1 \mathbf{d}_{R+} r_p(t),$$

$$K^{-1} \tilde{\mathbf{p}}' + \mathbf{D}_{-} \tilde{\mathbf{v}} = -w_2 \mathbf{d}_{R-} r_v(t).$$

- SD forward equations $\rho \dot{\mathbf{v}} + \mathbf{D}_{+}\mathbf{p} = \mathbf{0},$ $K^{-1}\dot{\mathbf{p}} + \mathbf{D}_{-}\mathbf{v} = \mathbf{d}_{s-}f(t).$
- We can use same code for forward and adjoint!

Outline for presentation

- 1. Summation-by-parts with simultaneous approximation term method (SBP-SAT)
 - High-order accurate, energy stable, dual consistency
- 2. Adjoint optimization with SBP-SAT
 - Source and receiver discretization
 - Source-receiver dual consistency
 - Same code for forward and adjoint
- 4. Numerical examples

Setup for source inversion

Inversion for f(t): iteration movie

Inversion for f(t): misfit reduction

Setup for medium parameter inversion

Inversion for $\rho(x)$: iteration movie

Inversion for $\rho(x)$: misfit reduction

Inversion for K(x): results

Inversion for K(x): misfit reduction

1. SBP-SAT framework is ideal for adjoint optimization

- 1. SBP-SAT framework is ideal for adjoint optimization
 - (a) **Forward problem**: High-order accurate, energy-stable

1. SBP-SAT framework is ideal for adjoint optimization

(a) **Forward problem**: High-order accurate, energy-stable

- Boundaries and interfaces
- Point sources

1. SBP-SAT framework is ideal for adjoint optimization

(a) **Forward problem**: High-order accurate, energy-stable

- Boundaries and interfaces
- Point sources

(b) Adjoint problem: dual-consistent

1. SBP-SAT framework is ideal for adjoint optimization

(a) **Forward problem**: High-order accurate, energy-stable

- Boundaries and interfaces
- Point sources

(b) Adjoint problem: dual-consistent

- Source-receiver dual consistency
- SD adjoint equations are immediately available

1. SBP-SAT framework is ideal for adjoint optimization

(a) **Forward problem**: High-order accurate, energy-stable

- Boundaries and interfaces
- Point sources

(b) Adjoint problem: dual-consistent

- Source-receiver dual consistency
- SD adjoint equations are immediately available

2. Apply to more complicated numerical examples

Questions?

1. Target variables $(\hat{v}_0, \hat{v}_N, \hat{p}_0, \hat{p}_N)$ must satisfy boundary conditions

- 1. Target variables $(\hat{v}_0, \hat{v}_N, \hat{p}_0, \hat{p}_N)$ must satisfy boundary conditions
 - $\hat{w}^+ = R\hat{w}^-$

- 1. Target variables $(\hat{v}_0, \hat{v}_N, \hat{p}_0, \hat{p}_N)$ must satisfy boundary conditions
 - $\hat{w}^+ = R\hat{w}^-$
 - $\hat{w}^{\pm} = \hat{p} \pm \rho c \hat{v}$ characteristic variable
 - $0 \le R \le 1$ reflection coefficient

- 1. Target variables $(\hat{v}_0, \hat{v}_N, \hat{p}_0, \hat{p}_N)$ must satisfy boundary conditions
 - $\hat{w}^+ = R\hat{w}^-$
 - $\hat{w}^{\pm} = \hat{p} \pm \rho c \hat{v}$ characteristic variable
 - $0 \le R \le 1$ reflection coefficient
- 2. Outgoing characteristic is preserved • $\hat{w}^- = w^-$