Forecasting U.S. elections using compartmental models

SIAM Applications of Dynamical Systems: May 2019

Alexandria Volkening MBI, Ohio State

Daniel Linder Augusta University

Mason Porter

UCLA

Grzegorz Rempala Ohio State

Web: <u>go.osu.edu/volkening</u> Email: <u>volkening.2@mbi.osu.edu</u> Twitter: @al_volkening

Motivation & background

Goal: Better understand the election forecasting process

{Tables from The Upshot, NY Times}

Motivation & background

- Due to polls being off in states with similar demographics
- 538 accounts for this by randomly varying the vote among groups with common features

3

Goal: Account for directed relationships between states

Example related previous work

Example statistical or economic approaches to forecasting:

Klarner (2008) Hummel, Rothschild (2014) Abramowitz (2016) Alexander, Ellingson (2019)

Fundamentals- & polls-based Fundamentals-based Fundamentals-based Polls-based Bayesian model (2016)

Example dynamical systems approaches to election dynamics:

Fernàndez-Gracia, Suchecki, et al. (2014) Galam (2017) Braha, de Aguiar (2017) voter model (results data) local majority rule model voter model (results data)

Goals & outline

Goals:

- Develop a model that accounts for directed interactions between states
- Shed light on the forecasting process & raise questions
- Help suggest improved ways of polling and forecasting elections

Approach: Compartmental models of infection fit to polling data

{US images from Wikipedia; Graph from LA Times}

Modeling approach

Our approach: Reframe the SIS compartmental model for elections

- 2 contagions = Democrat & Republican voting inclinations
- Susceptible = Undecided voters
- Parameters fit to polling data for each election year

$$I_R^j$$

Our model

 $S^i =$ expected fraction of undecided (or non) voters in module i $I_R^i =$ expected fraction of Republican voters in module i $I_D^i = 1 - S^i - I_R^i =$ expected fraction of Democrat voters in module iN = 249,485,228 = total number of voting-age individuals in the US $N^i =$ number of voting-age individuals in each module

Dem.
$$\frac{dI_D^i}{dt}(t) = \underbrace{-\gamma_D^i I_D^i}_{\text{Dem. loss}} + \underbrace{\sum_{j=1}^M \beta_D^{ij} \frac{N^j}{N} S^i I_D^j}_{\text{Dem. infection}}$$
Rep.
$$\frac{dI_R^i}{dt}(t) = \underbrace{-\gamma_R^i I_R^i}_{\text{Rep. loss}} + \underbrace{\sum_{j=1}^M \beta_R^{ij} \frac{N^j}{N} S^i I_R^j}_{\text{Rep. infection}}$$
Provide the second second

 $S^{i}I_{R}^{j}$

Incorporating public polling data

- Parameters are fit to polls in the year leading up to an election
- Polls are averaged by month
- No adjustments to polls of likely voters, registered voters, or all adults
- No adjustments for poll accuracy, recency, or partisanship
- No adjustments for convention bounce, third parties, or undecided voters

Forecasting the 2012 presidential race

- Actual results: Romney 206, Obama 332
- Accuracy: 100%
- Model agrees with 538

{US image from <u>https://www.forbes.com/sites/quora/2012/11/07/how-accurate-were-nate-silvers-predictions-for-the-2012-presidential-election/#65aca396fe3c</u>}

Forecasting the 2016 presidential race

- Model forecast agrees with 538 with the exception of OH
- FL, MI, NC, OH, PA, and WI are predicted incorrectly
- CO, IA, MN, NV, NH, and VA are predicted correctly

Accuracy in past elections

Election	FiveThirtyEight.com	Our model	Sabato
2016 President	90.2%	88.2%	90.2%
2016 Senate	90.9%	87.9%	93.9%
2016 Governor	NA	91.7%	83.3%
2012 President	100%	100%	96.1%
2012 Senate	NA	90.3%	93.5%
2012 Governor	NA	88.9%	77.8%

Our simple compartmental model approach often agrees with popular forecasters and gives similar accuracy

Accounting for uncertainty

Dem.
$$dI_{D}^{i}(t) = \left(\underbrace{-\gamma_{D}^{i}I_{D}^{i}}_{\text{Dem. turnover}} + \sum_{j=1}^{M} \underbrace{\beta_{D}^{ij}\frac{N^{j}}{N}S^{i}I_{D}^{j}}_{\text{Dem. influence from state }j \text{ to state }i}\right) dt + \underbrace{\sigma dW_{D}^{i}(t)}_{\text{uncertainty}}$$
Rep.
$$dI_{R}^{i}(t) = \left(-\gamma_{R}^{i}I_{R}^{i} + \sum_{j=1}^{M}\beta_{R}^{ij}\frac{N^{j}}{N}S^{i}I_{R}^{j}\right) dt + \sigma dW_{R}^{i}(t)$$
Undec.
$$dS^{i}(t) = \left(\gamma_{D}^{I}I_{D}^{i} + \gamma_{R}^{i}I_{R}^{i} - \sum_{j=1}^{M}\beta_{D}^{ij}\frac{N^{j}}{N}S^{i}I_{D}^{j}\right) - \left(\sum_{j=1}^{M}\beta_{R}^{ij}\frac{N^{j}}{N}S^{i}I_{R}^{j}\right) dt + \sigma dW_{S}^{i}(t)$$

Forecasting the 2018 governor races

Model forecast on Nov. 3 compared to final 538 forecast on Nov. 6
We miss the same states as 538

Forecaster	Gov. margin error	Gov. $\#$ states missed	Gov. log-loss error
Our model	4.1 pts.	4 missed	0.590
FiveThirtyEight.com	3.1 pts.	4 missed	0.548
Sabato	NA	1 missed, 1 not called	0.585
Cook	NA	12 not called	0.670
Inside Elections	NA	2 missed, 2 not called	0.619
RealClearPolitics.com	NA	12 not called	0.647

Forecasting the 2018 Senate races

	Model 7 Oct.	Sabato 11 Oct.	IE 12 Oct.	538 30 Oct.	IE 1 Nov.	Model 3 Nov.	Sabato ^{5 Nov.}	538 6 Nov.
Arizona	69.7%			64.5%	Tilt	66.4%		61.4%
Florida	67.0%			70.6%	Tilt	59.1%		70.4%
Indiana	81.4%			67.2%		76.1%		71.8%
Minnesota*	97.1%			89.7%		95.7%		92.4%
Missouri	62.9%			60.1%	Tilt	57.8%		56.9%
Montana	76.6%		Tilt		Tilt	83.3%		76.0%
Nevada	59.6%			59.2%	Tilt	52.3%		57.0%
New Jersey	79.8%			89.9%		77.6%		94.6%
North Dakota	85.0%		Tilt	73.6%		89.0%		73.2%
Ohio	99.8%			95.7%		99.2%		96.7%
Tennessee	69.6%			76.3%		55.7%		80.4%
Texas	87.3%			80.6%		86.7%		78.8%
West Virginia	93.6%		Tilt	89.4%	Tilt	93.5%		87.9%
Wisconsin	94.3%			98%		95.8%		97.7%

Solid Rep. (≧ 95%)
Likely Rep. (≧ 75%)
Lean Rep. (≧ 60%)
Toss-Up (<60%)
Lean Dem. (≧ 60%)
Likely Dem. (≧ 75%)
Solid Dem. (≥ 95%)

Forecaster	Sen. margin error	Sen. # states missed	Sen. log-loss error
Our model	4.6 pts.	3 missed	0.400
FiveThirtyEight.com	3.7 pts.	3 missed	0.410
Sabato	NA	1 missed	0.379
Cook	NA	9 not called	0.553
Inside Elections	NA	1 missed, 1 not called	0.415
RealClearPolitics.com	NA	8 not called	0.071

Thanks for listening!

Support: This work was supported by the MBI & NSF under DMS-1440386.

{A V-, DF Linder, MA Porter, GA Rempala, Submitted. arXiv 1811.01831}

Web: <u>go.osu.edu/volkening</u>Email: <u>volkening.2@mbi.osu.edu</u>Twitter: @al_volkening

Dynamics of Democracy

Influence of media on opinion dynamics in social networks **Heather Brooks** & Mason Porter

"Very fine people on both sides" of Twitter: Analyzing the network structure of the online conversation about #Charlottesville Joseph Tien

The effect of the convergence parameter in the Deffuant model of opinion dynamics Susan Fennell

A network model of immigration: enclave formation vs. cultural integration Maria D'Orsogna, Tom Chao, & Yao-li Chuang

Interdisciplinary inclusive communities of undergraduates doing social-justice inspired research Carlos Castillo-Chavez

Quantifying gerrymandering using random dynamics Jonathan Mattingly & Gregory Herschlag

A topological approach to detecting neighborhood segregation Michelle Feng

Forecasting U.S. elections using compartmental models Alexandria Volkening, Daniel Linder, Mason Porter, & Grzegorz Rempala

Forecasting the 2012 governor & senate races

Forecasting the 2016 senate & governor races

Assessing the 2018 forecasts

Forecaster	Gov. margin error	Gov. # states missed	Gov. log-loss error		
Our model	4.1 pts.	4 missed	0.590		
FiveThirtyEight.com	3.1 pts.	4 missed	0.548		
Sabato	NA	1 missed, 1 not called	0.585		
Cook	NA	12 not called	0.670		
Inside Elections	NA	2 missed, 2 not called	0.619		
RealClearPolitics.com	NA	12 not called	0.647		
T	с ·	с <i>и</i>	C 1 1		
Forecaster	Sen. margin error	Sen. # states missed	Sen. log-loss error		
Forecaster Our model	Sen. margin error 4.6 pts.	Sen. $\#$ states missed 3 missed	Sen. log-loss error 0.400		
Forecaster Our model FiveThirtyEight.com	Sen. margin error 4.6 pts. 3.7 pts.	Sen. # states missed 3 missed 3 missed	Sen. log-loss error 0.400 0.410		
Forecaster Our model FiveThirtyEight.com Sabato	Sen. margin error 4.6 pts. 3.7 pts. NA	Sen. # states missed 3 missed 3 missed 1 missed	Sen. log-loss error 0.400 0.410 0.379		
Forecaster Our model FiveThirtyEight.com Sabato Cook	Sen. margin error 4.6 pts. 3.7 pts. NA NA	Sen. # states missed 3 missed 3 missed 1 missed 9 not called	Sen. log-loss error 0.400 0.410 0.379 0.553		
Forecaster Our model FiveThirtyEight.com Sabato Cook Inside Elections	Sen. margin error 4.6 pts. 3.7 pts. NA NA NA	Sen. # states missed 3 missed 3 missed 1 missed 9 not called 1 missed, 1 not called	Sen. log-loss error 0.400 0.410 0.379 0.553 0.415		

• Log-loss error is a measure that rewards strong correct forecasts and penalizes strong incorrect forecasts:

$$\log \log s = -\frac{1}{M} \sum_{j=1}^{M} \left(y_i \log p_i + (1 - y_i) \log (1 - p_i) \right)$$

Forecasting the 2018 Senate races

- Model forecast compared to 538 forecast
- We agree by color except for FL and TN

Forecasting the 2018 governor races

	Cook 26 Oct.	IE 1 Nov.	Model 3 Nov.	538 4 Nov.	Sabato ^{5 Nov.}	RCP 5 Nov.	538 6 Nov.
Alaska		Tilt	89.9%	70.2%			68.9%
Connecticut			95.5%	78.6%			79.0%
Florida		Tilt	52.6%	75.7%			77.2%
Georgia		Tilt	53.0%	59.2%			67.8%
lowa		Tilt	67.2%	52.1%			57.3%
Kansas			53.3%	58.2%			57.2%
Maine		Tilt	74.6%	94.4%			94.7%
Nevada		Tilt	54.9%	55.0%			51.5%
Ohio			75.3%	55.2%			59.5%
Oklahoma			55.9%	86.2%			85.7%
Oregon		Tilt	61.1%	81.4%			82.3%
South Dakota		Tilt	60.2%	83.1%			63.1%
Wisconsin			68.3%	60.6%			59.7%

Solid Rep. (≥ 95%)
Likely Rep. (≥ 75%)
Lean Rep. (≥ 60%)
Toss-Up (<60%)
Lean Dem. (≥ 60%)
Likely Dem. (≥ 75%)
Solid Dem. (≥ 95%)

Forecaster	Gov. margin error	Gov. $\#$ states missed	Gov. log-loss error
Our model	4.1 pts.	4 missed	0.590
FiveThirtyEight.com	3.1 pts.	4 missed	0.548
Sabato	NA	1 missed, 1 not called	0.585
Cook	NA	12 not called	0.670
Inside Elections	NA	2 missed, 2 not called	0.619
RealClearPolitics.com	NA	12 not called	0.647

Forecasting the 2018 senate races

							Model 7 Oct.	Sabato 11 Oct.	12 Oct.	538 30 Oct.	IE 1 Nov.	Model 3 Nov.	Sabato ^{5 Nov.}	538 6 Nov.
		2018 Se	natorial E	lections		Arizona	69.7%			64.5%	Tilt	66.4%		61.4%
Safe Red					Florida	67.0%			70.6%	Tilt	59.1%		70.4%	
Safe Blue						Indiana	81.4%			67.2%		76.1%		71.8%
AZ						Minnosota*	07 1%			80.7%		95 7%		02 /%
FL					Model		97.1%			03.7 /6		33.776		52.470
IN					EiveThirtyEight	Missouri	62.9%			60.1%	Tilt	57.8%		56.9%
MN*					Besult	Montana	76.6%		Tilt		Tilt	83.3%		76.0%
МО					- 80% of results	Nevada	59.6%			59.2%	Tilt	52.3%		57.0%
MT						New Jersev	70.8%			89.9%		77.6%		94.6%
NV		•					75.07			70.00/				
NJ						North Dakota	85.0%		Liit	/3.6%		89.0%		73.2%
ND					_	Ohio	99.8%			95.7%		99.2%		96.7%
OH						Tennessee	69.6%			76.3%		55.7%		80.4%
<i>TN</i>						Texas	87.3%			80.6%		86.7%		78.8%
ТХ						West Virginia	93.6%		Tilt	89.4%	Tilt	93.5%		87.9%
WV							00.070		TIIL		THU			
WI				1 1		Wisconsin	94.3%			98%		95.8%		97.7%
+30	+20 Ma	+10 argin lead by	0 party (per	+10 centage poir	+20 +30 nts)		Solid F Likely I Lean F	Rep. (≥95% Rep. (≥75% Rep. (≥60%) 6) T o:)	ss-Up (< 60	0%)	Lean Dem. Likely Dem Solid Dem.	(≥60%) . (≥75%) (≥95%)	

• We differ from 538 in our forecasts of Florida and Tennessee

Forecasting the 2018 governor races

	Cook 26 Oct.	IE 1 Nov.	Model 3 Nov.	538 4 Nov.	Sabato ^{5 Nov.}	RCP 5 Nov.	538 6 Nov.
Alaska		Tilt	89.9%	70.2%			68.9%
Connecticut			95.5%	78.6%			79.0%
Florida		Tilt	52.6%	75.7%			77.2%
Georgia		Tilt	53.0%	59.2%			67.8%
lowa		Tilt	67.2%	52.1%			57.3%
Kansas			53.3%	58.2%			57.2%
Maine		Tilt	74.6%	94.4%			94.7%
Nevada		Tilt	54.9%	55.0%			51.5%
Ohio			75.3%	55.2%			59.5%
Oklahoma			55.9%	86.2%			85.7%
Oregon		Tilt	61.1%	81.4%			82.3%
South Dakota		Tilt	60.2%	83.1%			63.1%
Wisconsin			68.3%	60.6%			59.7%

Solid Rep. (≧ 95%)
Likely Rep. (≧ 75%)
Lean Rep. (≧ 60%)
Toss-Up (< 60%)
Lean Dem. (≧ 60%)
Likely Dem. (≧ 75%)
Solid Dem. (≧ 95%)

- Model accuracy:
- 538 (Nov. 4) accuracy:
- 538 (Nov. 6) accuracy:
- Sabato accuracy:

88.9% (FL, IA, KS, OH wrong)
86.1% (FL, IA, KS, NV, OH wrong)
88.9% (FL, IA, KS, OH wrong)
91.7% (FL, IA, OH wrong)

Approach: Superstates

Combine safe states into red and blue superstates

- 1. Safe Red
- 2. Safe Blue
- 3. Colorado
- 4. Florida
- 5. Iowa
- 6. Michigan
- 7. Minnesota
- 8. Nevada
- 9. North Carolina
- 10. New Hampshire
- 11. Ohio
- 12. Pennsylvania
- 13. Virginia
- 14. Wisconsin

Background: 538

- 1. Collect polls
- Polls weighted by sample size, recency, and 538 pollster rating
- 2. Adjust polls
- Adjustments made to account for third parties, convention bounce, house effects, poll sample (e.g. likely voters or registered voters), etc.
- 3. Combine polls with other data
- Polling data combined with demographic and regional regressions, homestate advantage, etc.
- 4. Simulate election and account for uncertainty
- National, demographic/regional error, state-specific error accounted for

{A user's guide to FiveThirtyEight's 2016 general election forecast; Table from Upshot, NY Times}

Background: HuffPost

- 1. Average polls by state
- Bayesian Kalman filter model used to average polls
- Recent polls more heavily weighted
- Historical data used for priors
- 2. Forecast chance of winning by state
- Model simulated until Nov. 8 assuming voter intentions continue along current trajectories
- Undecideds incorporated into margin of error
- 3. Simulate Electoral College outcome
- Undecideds at the national level incorporated into margin of error
- Monte Carlo within each state, but random numbers are correlated based on state-state correlations of results from past elections

{How we're forecasting the presidential election, HuffPost; Table from Upshot, NY Times}

1. Example model dynamics

Averaging polling data within each month removes finer scale features

{FiveThirtyEight}

2016: Identifying likely voters

{LA Times: Where the presidential race stands today}

- LA Times predicted a Trump win
- Their polls do not ignore "unlikely" voters
- In other polls, likely voters are defined heavily by voter history
- Some demographics who did not vote in 2012 favored Trump

3. Impact of noise in transmission parameters

$$\begin{aligned} \frac{dS^{i}}{dt} &= \gamma_{R}^{i} I_{R}^{i} + \gamma_{D}^{i} I_{D}^{i} - \sum_{j=1}^{14} \beta_{R}^{ij} \frac{N^{j}}{N} S^{i} I_{R}^{j} - \sum_{j=1}^{14} \beta_{D}^{ij} \frac{N^{j}}{N} S^{i} I_{D}^{j} \\ \frac{dI_{R}^{i}}{dt} &= -\gamma_{R}^{i} I_{R}^{i} + \sum_{j=1}^{14} \beta_{R}^{ij} \frac{N^{j}}{N} S^{i} I_{R}^{j} \end{aligned}$$

- Model suggests a robust Republican voter bloc
- Election results were sensitive to noise in Dem. transmission

3. Impact of noise in turnover parameters

$$\begin{aligned} \frac{dS^{i}}{dt} &= \gamma_{R}^{i}I_{R}^{i} + \gamma_{D}^{i}I_{D}^{i} - \sum_{j=1}^{14} \beta_{R}^{ij}\frac{N^{j}}{N}S^{i}I_{R}^{j} - \sum_{j=1}^{14} \beta_{D}^{ij}\frac{N^{j}}{N}S^{i}I_{D}^{j} \\ \frac{dI_{R}^{i}}{dt} &= -\gamma_{R}^{i}I_{R}^{i} + \sum_{j=1}^{14} \beta_{R}^{ij}\frac{N^{j}}{N}S^{i}I_{R}^{j} \end{aligned}$$

 Election results are more sensitive to fluctuations in Dem. turnover than Rep. turnover

Comparison of 2012 & 2016 (presidential)

2016

States with most influential Rep.:
1. FL
2. PA
3. VA
4. OH
5. MI
States with most influential Dem .:
- FI

1. FL 2. PA

- 3. NC 4. OH
- 5. MN

States with most influential Rep.: 1. FL 2. PA 3. OH 4. NC 5. MN

2012

States with most influential Dem.: 1. FL 2. PA 3. OH 4. MN 5. VA

Outlook: transmission parameters

2.5

2

0

• NM

• NV

MI

VOH

2. Forecasting the 2014 senate races

1

I+

D +

R+

R+

R+

R+

D+

R+

R+

D+

R+

R+

D+

D+

D+

R+

R+

D+

D+

R+

R +

R+

D+

R+

R+

R+

D+

R+

D +

D+

D+

R+

R+

R+

R+

R+

{538 Image from https://fivethirtyeight.com/interactives/senate-forecast/}

2016 voter turnover parameters

$$\begin{aligned} \frac{dS^{i}}{dt} &= \gamma_{R}^{i} I_{R}^{i} + \gamma_{D}^{i} I_{D}^{i} - \sum_{j=1}^{14} \beta_{R}^{ij} \frac{N^{j}}{N} S^{i} I_{R}^{j} - \sum_{j=1}^{14} \beta_{D}^{ij} \frac{N^{j}}{N} S^{i} I_{D}^{j} \\ \frac{dI_{R}^{i}}{dt} &= -\gamma_{R}^{i} I_{R}^{i} + \sum_{j=1}^{14} \beta_{R}^{ij} \frac{N^{j}}{N} S^{i} I_{R}^{j} \end{aligned}$$

• High infection rates are associated with high voter turnover

Forecasting the 2014 gubernatorial races

FiveThirtyEight's Gubernatorial Forecasts

Model run, Oct. 31, 2014

Our predictions agree with 538Both models fail at FL, the closest race

{Table from 538}

2016: Example sensitivity analysis

- Noise favors Trump
- Increased Dem. turnover leads OH to vote Rep.
- Reduced interaction between Blue Democrats and OH leads OH to vote Rep.
- Increased Rep. turnover leads NV to vote Rep.

Republican Electoral Vote Sensitivity															
D Loss	0	0	0	0	0	0	0	0	0	0	18	0	0	0	
R Loss	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Red D	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Blue D	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
CO D	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
FL D	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
IN D	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
IA D	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
MI D	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
NV D	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
NM D	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
_ NC D	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
E OHD	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
≤ PAD	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
5 VAD	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
5 WID	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Red R	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Blue R	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
CO R	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
FL R	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
IN R	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
IA R	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
MIR	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
NV R	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
NM R	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
NC R	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
OH R	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
PA R	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
VA R	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
WIR	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Red	Blue	СО	FL	IN	IA	MI mod	NV dule	NM	NC	OH	PA	VA	WI	
	10% increase on each nonzero														

	Diana	0		0	R	epubl	ican E	Electo	ral Vo	te Se	nsitiv	ity	0	0		25
	DLOSS	0	0	0	0	0	0	0	6	0	0	0		0	0	
Interaction with	Rod D	0	0	0	0	0	0		0	0	0	0		0	0	
	Blue D	0	0	0	0	0	0		0	0	0	18	0	0	0	- 20
	COD	0	0	0	0	0	0		0	0	0	0	0	0	0	
	FLD	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	IN D	0	0	0	0	0	0	0	0	0	0	0	0	0	0	- 15
	IA D	0	0	0	0	0	0	0	0	0	0	0	0	0	0	8
	MID	0	0	0	0	0	0	0	0	0	0	0	0	0	0	10
	NV D	0	0	0	0	0	0	0	0	0	0	0	0	0	0	- 10
	NM D	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	NC D	0	0	0	0	0	0	0	0	0	0	0	0	0	0	50
	OH D	0	0	0	0	0	0	0	0	0	0	0	0	0	0	50
	PA D	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3
	VA D	0	0	0	0	0	0	0	0	0	0	0	0	0	0	- 0
	WID	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ŭ
	Red R	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Blue R	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5
	COR	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	FLR	0	0	0	0	0	0	0	0	0	0	0	0	0	0	8
	INR	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	8 83
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	NCR	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	OHB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	PAR	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-2
	VAR	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	WIR	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		Red	Blue	СО	FL	IN	IA	MI	NV	NM	NC	OH	PA	VA	WI	-2
								mod	dule							

10% increase on each nonzero parameter 15% decrease on each nonzero parameter