Conservative Explicit Local Time-Stepping Schemes for The Rotating Shallow Water Equations

T.T. Phuong Hoang

Department of Mathematics and Statistics Auburn University

> SIAM GS19 - Mar 12, 2019 Houston, TX

Collaborators:

- Lili Ju, Zhu Wang (University of South Carolina)
- Wei Leng (LSEC, Chinese Academy of Sciences)
- Konstantin Pieper (Florida State University)

Acknowledgment:

• US Department of Energy as part of the project E3SM (Energy Exascale Earth System Model), previously known as ACME, to develop the next generation of Earth System Models.

Reference:

 H., LENG, JU, WANG AND PIEPER, Conservative explicit local time-stepping schemes for the shallow water equations, J. Comput. Phys., 2019.

크

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ →

Ocean Modeling by MPAS-Ocean¹

Figure courtesy of MPAS-Ocean.

¹**MPAS**: Model for **P**rediction **A**cross **S**cales Project funded by the Department Of Energy (DOE)

크

Ocean Modeling by MPAS-Ocean¹

Figure courtesy of MPAS-Ocean.

• Large-scale, nonlinear problems \longrightarrow **explicit** time-stepping & parallel simulation.

¹**MPAS**: Model for **P**rediction **A**cross **S**cales Project funded by the Department Of Energy (DOE)

Ocean Modeling by MPAS-Ocean¹

Figure courtesy of MPAS-Ocean.

Multi-resolution Voronoi mesh [Figure reprinted from Ringler et al. (2011)]

- Large-scale, nonlinear problems → explicit time-stepping & parallel simulation.
- Multi-resolution meshes → time step sizes restricted by the size of the smallest cell.
- \implies Multi-scale time stepping algorithms.

¹**MPAS**: Model for **P**rediction **A**cross **S**cales Project funded by the Department Of Energy (DOE)

• Spatially-dependent time steps

- \longrightarrow local CFL conditions for stability.
- Explicit schemes
 - \longrightarrow parallel, easy to incorporate into MPAS-Ocean.
- Conservation properties.
- Desired high-order accuracy in time.

LTS algorithms of predictor-corrector type

- Osher and Sanders (1983): first order in space (finite volume discretization) and in time (explicit Euler)
- Dawson and Kirby (2001): second-order in space (high resolution methods with slope limiters) and in time (Heun's method)
- Sanders (2008): Godunov-type finite volume method, efficiency of a first-order LTS algorithm in term of computational cost via extensive numerical experiments.
- Krivodonova (2010): second-order in space (discontinuous Galerkin methods) and in time (Heun's method); Ashbourne (2016): extensions to third and fourth order Runge-Kutta methods.
- Trahan and Dawson (2012): Runge-Kutta discontinuous Galerkin finite elements, first-order accurate in time near the local time-stepping interface.

Ξ.

< 日 > < 回 > < 回 > < 回 > < 回 > <

LTS algorithms of predictor-corrector type

- Osher and Sanders (1983): first order in space (finite volume discretization) and in time (explicit Euler)
- Dawson and Kirby (2001): second-order in space (high resolution methods with slope limiters) and in time (Heun's method)
- Sanders (2008): Godunov-type finite volume method, efficiency of a first-order LTS algorithm in term of computational cost via extensive numerical experiments.
- Krivodonova (2010): second-order in space (discontinuous Galerkin methods) and in time (Heun's method); Ashbourne (2016): extensions to third and fourth order Runge-Kutta methods.
- Trahan and Dawson (2012): Runge-Kutta discontinuous Galerkin finite elements, first-order accurate in time near the local time-stepping interface.

Other approaches

- Berger and Oliger (84), Berger and LeVeque (98): adaptive mesh refinement methods
- Constantinescu and Sandu (07, 09): multi-rate time-stepping methods
- Grote, Mehlin and Mitkova (15): Runge-Kutta based LTS algorithms

(日)

Nonlinear SWEs in vector-invariant form

(1)
$$\frac{\partial h}{\partial t} + \nabla \cdot (h\boldsymbol{u}) = 0,$$

(2)
$$\frac{\partial \boldsymbol{u}}{\partial t} + q(h\boldsymbol{u}^{\perp}) = -g\nabla(h+b) - \nabla K,$$

- h: fluid thickness, u: fluid vector velocity,
- k: unit vector pointing in the local vertical direction,
- $\boldsymbol{u}^{\perp} = \boldsymbol{k} \times \boldsymbol{u}$: the velocity rotated through a right angle,
- $q = \frac{\eta}{h}$: potential vorticity, $\eta = \mathbf{k} \cdot \nabla \times \mathbf{u} + f$: the absolute vorticity,
- $K = |\boldsymbol{u}|^2/2$: the kinetic energy,
- g: gravity, f: Coriolis parameter and b: bottom topography.

Multi-resolution Spherical Centroidal Voronoi Tessellations (SCVTs)

A multi-resolution Voronoi-Delaunay mesh by SCVT with 27,857 grid points

æ

Spatial discretization: TRiSK² scheme

C-grid staggering

- Primal mesh: a Voronoi tessellation
- Orthogonal dual mesh: its associated Delaunay triangulation
- *h_i*: the mean thickness over primal cell *P_i*
- *u_e*: the component of the velocity vector in the direction normal to primal edges
- *q_v*: the mean vorticity (curl of the velocity) over dual cell *D_v*

Finite volume discretization

²TRISK: Thurburn, Ringler, Skamarock and Klemp (JCP, 2009).

- Exact conservation of **mass**.
- Conservation of total energy (sum of the potential and kinetic energy) up to time truncation error.
- Robust simulation of potential vorticity.
 - ensuring the accuracy and physical correctness of the simulation of geophysical flows
- Good performance on highly variable spatial meshes.
- Accuracy in space: between first- and second-order.
 - depending on the quality of the meshes used

크

Explicit SSP-RK time-stepping

• System of ODEs resulting from spatial discretization:

 $\partial_t \boldsymbol{V} = F(\boldsymbol{V}).$

• Strong Stability Preserving Runge-Kutta (SSP-RK) time-stepping:

Forward Euler

$$\boldsymbol{V}_{n+1} = \boldsymbol{V}_n + \Delta t_n F(\boldsymbol{V}_n).$$

< 日 > < 回 > < 回 > < 回 > < 回 > <

르

Explicit SSP-RK time-stepping

• System of ODEs resulting from spatial discretization:

 $\partial_t \mathbf{V} = F(\mathbf{V}).$

Strong Stability Preserving Runge-Kutta (SSP-RK) time-stepping:
 Forward Euler

$$\boldsymbol{V}_{n+1} = \boldsymbol{V}_n + \Delta t_n F(\boldsymbol{V}_n).$$

SSP-RK2 (Heun's method)

$$\begin{aligned} \overline{\boldsymbol{V}}_{n+1} &= \boldsymbol{V}_n + \Delta t_n \boldsymbol{F}(\boldsymbol{V}_n), \\ \boldsymbol{V}_{n+1} &= \frac{1}{2} \boldsymbol{V}_n + \frac{1}{2} \left(\overline{\boldsymbol{V}}_{n+1} + \Delta t_n \boldsymbol{F}(\overline{\boldsymbol{V}}_{n+1}) \right). \end{aligned}$$

< 日 > < 回 > < 回 > < 回 > < 回 > <

르

Explicit SSP-RK time-stepping

• System of ODEs resulting from spatial discretization:

 $\partial_t \mathbf{V} = F(\mathbf{V}).$

Strong Stability Preserving Runge-Kutta (SSP-RK) time-stepping:
 Forward Euler

$$\boldsymbol{V}_{n+1} = \boldsymbol{V}_n + \Delta t_n F(\boldsymbol{V}_n).$$

SSP-RK2 (Heun's method)

$$\begin{aligned} \overline{\boldsymbol{V}}_{n+1} &= \boldsymbol{V}_n + \Delta t_n F(\boldsymbol{V}_n), \\ \boldsymbol{V}_{n+1} &= \frac{1}{2} \boldsymbol{V}_n + \frac{1}{2} \left(\overline{\boldsymbol{V}}_{n+1} + \Delta t_n F(\overline{\boldsymbol{V}}_{n+1}) \right). \end{aligned}$$

3 SSP-RK3

$$\begin{aligned} \overline{\mathbf{V}}_{n+1} &= \mathbf{V}_n + \Delta t_n F(\mathbf{V}_n), \\ \overline{\mathbf{V}}_{n+1/2} &= \frac{3}{4} V_n + \frac{1}{4} \left(\overline{\mathbf{V}}_{n+1} + \Delta t_n F(\overline{\mathbf{V}}_{n+1}) \right), \\ \mathbf{V}_{n+1} &= \frac{1}{3} V_n + \frac{2}{3} \left(\overline{\mathbf{V}}_{n+1/2} + \Delta t_n F(\overline{\mathbf{V}}_{n+1/2}) \right). \end{aligned}$$

Higher-order SSP-RK

<ロ> <同> <同> < 同> < 同> < 同> < □> <

Local time-stepping (LTS)

$$\left[t^{n},t^{n+1}\right) = \bigcup_{k=0}^{M-1} \left[t^{n,k},t^{n,k+1}\right)$$

★ E ► ★ E ►

æ

Local time-stepping (LTS)

æ

<ロ> <同> <同> < 同> < 同> < 同> <

Local time-stepping (LTS)

Conservative LTS algorithms:

- Predictor-corrector type
- Based on SSP-RK time-stepping and Taylor expansions

æ

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

The second-order predictor based on SSP-RK2 and Taylor expansion:

$$\begin{bmatrix} h_i^{n,k} \\ u_e^{n,k} \end{bmatrix} = (1 - \alpha_k) \begin{bmatrix} h_i^n \\ u_e^n \end{bmatrix} + \alpha_k \begin{bmatrix} \overline{h}_i^{n+1} \\ \overline{u}_e^{n+1} \end{bmatrix}, \\ \begin{bmatrix} \overline{h}_i^{n,k+1} \\ \overline{u}_e^{n,k+1} \end{bmatrix} = (1 - \alpha_{k+1}) \begin{bmatrix} h_i^n \\ u_e^n \end{bmatrix} + \alpha_{k+1} \begin{bmatrix} \overline{h}_i^{n+1} \\ \overline{u}_e^{n+1} \end{bmatrix},$$

for all $i \in \mathcal{C}_{\mathit{P}}^{\mathsf{IF-L1}}$ and $e \in \mathcal{C}_{\mathit{E}}^{\mathsf{IF-L1}}$, where

$$\alpha_k = \frac{k}{M}, \quad \text{for } k = 0, \dots, M-1,$$

and \overline{h}_i^{n+1} for $i \in C_P^{|\text{F-L1}}$ and \overline{u}_i^{n+1} for $e \in C_E^{|\text{F-L1}}$ the values at the first stage of SSP-RK2 with a coarse time step.

크

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Third-order LTS predictor

$$\begin{bmatrix} h_i^{n,k} \\ u_e^{n,k} \end{bmatrix} = (1 - \alpha_k - \widehat{\alpha}_k) \begin{bmatrix} h_i^n \\ u_e^n \end{bmatrix} + (\alpha_k - \widehat{\alpha}_k) \begin{bmatrix} \overline{h}_i^{n+1} \\ \overline{u}_e^{n+1} \end{bmatrix} + 2\widehat{\alpha}_k \begin{bmatrix} \overline{h}_i^{n+1/2} \\ \overline{u}_e^{n+1/2} \end{bmatrix},$$

$$\begin{bmatrix} \overline{h}_i^{n,k+1} \\ \overline{u}_e^{n,k+1} \end{bmatrix} = (1 - \beta_k - \widehat{\beta}_k) \begin{bmatrix} h_i^n \\ u_e^n \end{bmatrix} + (\beta_k - \widehat{\beta}_k) \begin{bmatrix} \overline{h}_i^{n+1} \\ \overline{u}_e^{n+1} \end{bmatrix} + 2\widehat{\beta}_k \begin{bmatrix} \overline{h}_i^{n+1/2} \\ \overline{u}_e^{n+1/2} \end{bmatrix},$$

$$\begin{bmatrix} \overline{h}_i^{n,k+1/2} \\ \overline{u}_e^{n,k+1/2} \end{bmatrix} = (1 - \gamma_k - \widehat{\gamma}_k) \begin{bmatrix} h_i^n \\ u_e^n \end{bmatrix} + (\gamma_k - \widehat{\gamma}_k) \begin{bmatrix} \overline{h}_i^{n+1} \\ \overline{u}_e^{n+1} \end{bmatrix} + 2\widehat{\gamma}_k \begin{bmatrix} \overline{h}_i^{n+1/2} \\ \overline{u}_e^{n+1/2} \end{bmatrix},$$

for all $i \in \mathcal{C}_P^{\mathsf{IF-L1}}$ and $e \in \mathcal{C}_E^{\mathsf{IF-L1}}$, where

$$\alpha_k = \frac{k}{M}, \quad \widehat{\alpha}_k = \frac{k^2}{M^2}, \quad \beta_k = \frac{k+1}{M}, \quad \widehat{\beta}_k = \frac{k(k+2)}{M^2}, \quad \gamma_k = \frac{2k+1}{2M}, \quad \widehat{\gamma}_k = \frac{2k^2+2k+1}{2M^2},$$

for k = 0, ..., M - 1, \overline{h}_i^{n+1} , $\overline{h}_i^{n+1/2}$ for $i \in C_P^{|\mathsf{F}-\mathsf{L}|}$ and \overline{u}_i^{n+1} , \overline{u}_i for $e \in C_E^{|\mathsf{F}-\mathsf{L}|}$ the values at the first two stages of SSP-RK3 with a coarse time step.

2

< 日 > < 回 > < 回 > < 回 > < 回 > <

- A unified approach to construct high-order, explicit LTS schemes in which different time-step sizes are used in different regions of the domain, global CFL condition replaced by local CFL condition.
 - \longrightarrow time step sizes chosen according to local mesh sizes.
- By construction, all properties of the spatial discretization are preserved: exact conservation of the mass and potential vorticity, and conservation of the total energy within time-truncation errors.
- Implementation: in parallel and can be incorporated into MPAS-Ocean straightforwardly.
 - \implies LTS is efficient in terms of stability, accuracy and computational cost.

Ξ.

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

- On the sphere with a radius of a = 6371.22 km.
- An isolated mountain is placed around the point with longitude and latitude

$$(\lambda_c, \theta_c) = (3\pi/2, \pi/6)$$

with height as $h_s = h_{s_0}(1 - r/R)$, where $h_{s_0} = 2$ km, $R = \pi/9$, $r^2 = \min\{R^2, (\lambda - \lambda_c)^2 + (\theta - \theta_c)^2\}$, and (λ, θ) is the latitude and longitude.

- The initial longitudinal and latitudinal components of velocity are (u, v) = (u₀ cos(θ), 0), where u₀ = 20ms⁻¹.
- The initial thickness is

$$h = h_0 - \frac{1}{g}(a\Omega u_0 + \frac{u_0^2}{2})(\sin(\theta))^2,$$

where $h_0 = 5.96$ km, $\Omega = 7.292 \times 10^{-5} s^{-1}$, and g = 9.80616 ms⁻².

³Williamson et al., A standard test set for numerical approximations to the shallow water equations in spherical geometry, J. Comput. Phys., 1992.

The SWTC5 (Contd.)

- Left: the bottom topography b
- Middle: the cell area of a variable-resolution SCVT mesh:
 - 40,962 cells
 - the coarse cell size is approximately two times of the fine cell size;
- Right: the LTS interface, $\Delta t_{\text{fine}} = \frac{\Delta t_{\text{coarse}}}{M}$

æ

A (B) > A (B) > A (B) >

1 day simulation

• Fixed M = 4, varying Δt

Δt_{coarse}	h	[CR]	U	[CR]
0.5 α	3.38e-06	-	2.20e-05	-
0.25lpha	5.88e-07	[2.52]	3.27e-06	[2.75]
0.125α	7.80e-08	[2.91]	4.20e-07	[2.96]
0.0625α	1.24e-08	[2.85]	6.25e-08	[2.93]

• Fixed $\Delta t = 0.25\alpha$, varying *M*

М	h	u
1	1.69e-06	9.38e-06
2	6.76e-07	3.68e-06
4	5.95e-07	3.27e-06
8	5.88e-07	3.25e-06

æ

< 3 >

< 17 >

(Loading ...)

<ロト <回 > < 回 > < 回 > .

Evolution of total energy

Exact conservation of mass and potential vorticity, M = 4

Phuong Hoang Explicit Local Time-Stepping

æ

No of	40,962 Cells			163,842 Cells		655,362 Cells			
Cores	Time	Speedup	Efficiency	Time	Speedup	Efficiency	Time	Speedup	Efficency
The SSP-RK3 based LTS algorithm									
1	398.50	-	-	1704.73	-	-	7220.48	-	-
2	207.41	1.92	96.1%	838.29	2.03	101.7%	3543.05	2.04	101.9%
4	109.93	3.62	90.6%	420.18	4.06	101.4%	1745.22	4.14	103.4%
8	58.23	6.84	85.6%	213.74	7.98	99.7%	889.65	8.12	101.5%
16	31.82	12.52	78.3%	110.45	15.43	96.5%	461.69	15.64	97.7%
32	18.97	21.00	65.6%	57.51	29.64	92.6%	236.77	30.50	95.3%
64	10.86	36.70	57.4%	30.94	55.10	86.1%	115.57	62.47	97.6%
128	6.93	57.51	44.9%	17.18	99.20	77.5%	60.43	119.48	93.3%

3

Running times of Local time-stepping vs Global time-stepping

- Spatial mesh of 655,362 cells: fine region with 216,701 cells, and coarse region with 438,661 cells.
- Global SSP-RK3 time-stepping: uniform time step size $\Delta t = 0.125\alpha$.
- Local SSP-RK3 time-stepping: $\Delta t_{\text{coarse}} = 0.5\alpha$ and $\Delta t_{\text{fine}} = 0.125\alpha$ (i.e., M = 4).

No. of	The SSP-RK3 algorithm			
Cores	Without LTS	With LTS	Ratio	
1	14476.94	7220.48	2.00	
2	7021.38	3543.05	1.98	
4	3348.39	1745.22	1.92	
8	1722.99	889.65	1.94	
16	883.58	461.69	1.91	
32	463.39	236.77	1.96	
64	229.58	115.37	1.99	
128	119.57	60.43	1.98	

Running times of Local time-stepping vs Global time-stepping

- Spatial mesh of 655,362 cells: fine region with 216,701 cells, and coarse region with 438,661 cells.
- Global SSP-RK3 time-stepping: uniform time step size $\Delta t = 0.125\alpha$.
- Local SSP-RK3 time-stepping: $\Delta t_{\text{coarse}} = 0.5\alpha$ and $\Delta t_{\text{fine}} = 0.125\alpha$ (i.e., M = 4).

No. of	The SSP-RK3 algorithm				
Cores	Without LTS	With LTS	Ratio		
1	14476.94	7220.48	2.00		
2	7021.38	3543.05	1.98		
4	3348.39	1745.22	1.92		
8	1722.99	889.65	1.94		
16	883.58	461.69	1.91		
32	463.39	236.77	1.96		
64	229.58	115.37	1.99		
128	119.57	60.43	1.98		

$$\frac{(4 \times 655362)}{(1 \times 438661 + 4 \times 216701)} \approx 2.01.$$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ● ○ ○ ○

(when the cost for interface predictions and corrections is considered to be negligible).

Summary

- Conservative, explicit LTS algorithms in time for SWEs discretized in space by the TRiSK scheme.
- Time step sizes are restricted by local CFL conditions, instead of by the global CFL condition.
- Numerical results confirm the accuracy, stability and efficiency of LTS algorithms on variable spatial meshes.

Ongoing and future work

- High-order LTS algorithms for conservation laws.
- Numerical simulation of realistic benchmark test cases.
- Extensions of LTS to ocean/coastal coupling.

