Data Assimilation for State Estimation of Fault Behavior

Shiran Levy, Femke Vossepoel (TU Delft), Marie Bocher (ETH Zürich) and Ylona van Dinther (ETH Zürich and Utrecht University)

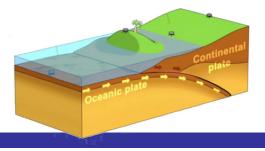
13 March 2019

Overview

- Introduction: Data assimilation in a seismo-thermo-mechanical model
- Methodology: Use of a time-lag particle filter
- Results: ensemble generation and state updates
- Preliminary conclusions
- Recommendations/ongoing work

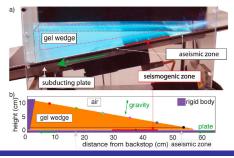
Building on work of van Dinther et al. (GJI, 2019)

https://www.dropbox.com/s/6zp3zva2bzxvydc/ggz063.pdf?dl=0

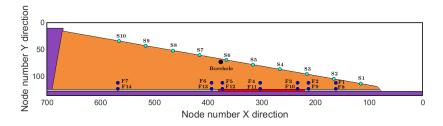


Seismo-Thermo-Mechanical (STM) model

- Seismic cycle simulator that can be configured on a range of scales
- > 2D domain for laboratory experiment, as described in van Dinther et al. (2013a,b)
- Conservation equations and rheological constitutive equations
- Continuum-mechanics-based approach for visco-elasto-plastic material
- Rate-dependent friction coefficient, adaptive time-stepping
- Characteristic-based Lagrangian marker-in-cell method of Gerya & Yuen (2007)



Seismo-Thermo-Mechanical (STM) model setup



- Setup representing laboratory scale
- 701x136 nodes
- Air (white), Gelatin (orange), Fault (red- seismic and gray- aseismic zones), backstop wall (magenta)
- Marker-in-cell of interest: surface (GPS) markers (light blue) borehole location (black) and fault markers (blue)
- Assuming observations available at borehole location

Data assimilation concept (Ensemble Kalman Filtering)

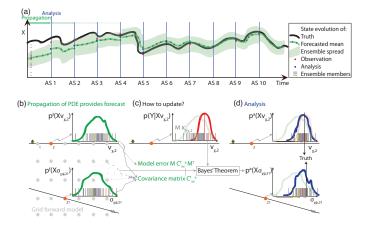
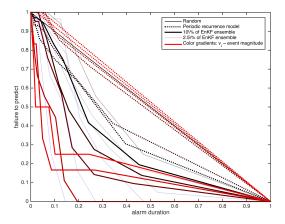


Figure taken from van Dinther et al. (2019)

Data assimilation improves forecasting skills



Results with EnKF

- Assimilated data obtained from the borehole location at intervals of 30 time steps (time step \approx 60 ms; one cycle varies around 20-25 s)
- using a straightforward EnKF implementation with a limited ensemble size (20 members)
- correcting all nodal values for five physical variables (i.e. v_{χ} , v_{ψ} , $\sigma_{\chi'\chi}$, $\sigma_{\chi'\psi}$ and P)

- In velocity, seismic events well captured. Dynamic stress increase due to approaching rupture front not well captured. Pressure remains uncertain.
- When dynamics are strongly nonlinear, the use of a particle filter may be more appropriate

Particle Filter in a Seismo-Thermo-Mechanical model

Estimate the dynamic state variable ψ given data d use Bayes' theory to find the posterior:

$$p(\psi_{0:t}|d_{1:t}) = \frac{p(d_{1:t}|\psi_{0:t})p(\psi_{0:t})}{p(d_{1:t})},$$
(1)

Representing prior pdf by particles x; (dropping subscript t):

$$p(\psi) = \sum_{i=1}^{N} \frac{1}{N} \delta(\psi - \psi_i), \qquad (2)$$

and using (1) gives

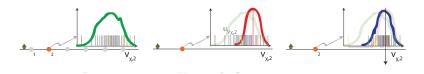
$$p(\psi|d) = \sum_{i=1}^{N} w_i \delta(\psi - \psi_i), \qquad (3)$$

with w; given by

$$w_i = \frac{p(d|\psi_i)}{\sum_{j=1}^N p(d|\psi_j)}.$$
(4)

Particle Filter in a Seismo-Thermo-Mechanical model

For variable $v_{\chi,2}$ the prior, likelihood and posterior could look like this:



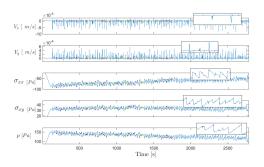
Setup of the perfect model test

- simulate "true" model evolution and sample synthetic observations at the borehole; add noise
- > generate 300 initial conditions to simulate ensemble members for the particle filter
- > at each assimilation step, assimilate the synthetic observations
- in the particle filter, this is done by multiplying likelihood with prior, in effect: calculating weight for each realisation
- misfit of ensemble mean with truth is an indicator of the performance of the data-assimilation approach

Time-lagged sampling for ensemble generation

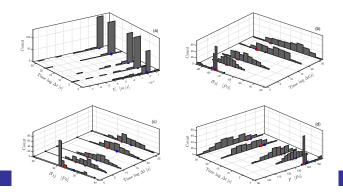
Particles are generated by sampling the model evolution at different times. This approach is similar to the "lagged average forecasting" approach of Hoffman & Kalnay (1983):

$$p(\psi|d) = \sum_{i=1} w_i \delta(\psi - \psi_{t+i\Delta t}).$$



Results

- Ensemble of 300 particles,
- Varying time lag Δt
- Increasing Δt results in a larger ensemble spread for σ_{ii} , σ_{ij} and P, but not for v
- red: synthetic observations for a specific state variable (without noise), blue: observations with noise and black: variance of the observational error



Results

- Present implementation of the PF results in an ensemble spread with sufficient variability
- Generally speaking, fit to the data is less good than in the EnKF implementation
- At borehole location, stresses and pressure are reasonably well captured
- In seismogenic zone, stresses and pressure are poorly captured, velocity somewhat better

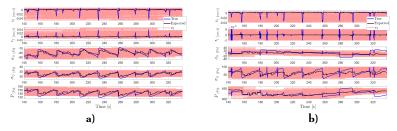


Figure: Analysis at a) the borehole b) the middle of the seismogenic zone. Light background is a collection of 300 particles' paths.

Preliminary conclusions

- ▶ Use of particle filter for data assimilation in STM requires further investigation.
- Sampling an evolution of an STM model at lagged time intervals is an effective way to generate an ensemble for particle filtering.
- The assimilation of noisy observations into a perfect model suggests that the particle filter is able to reconstruct the state space of the STM model.
- Strong correlation in variables likely limits solution space.
- Further refinement of the ensemble generation approach should lead to a better ensemble coverage of the state space.

Recommendations/ongoing work

Explore methodology

- Use time-lag approach in combination with additional perturbances (e.g. perturb location of Gauss-point markers) for ensemble generation
- Increase filter efficiency: investigate use of proposal density function in particle filter
- Investigate parameter updates with particle filter
- Different model setup
 - Different laboratory experiments
 - Induced seismicity due to gas extraction

Interested in this project? We have a number of PhD positions in Delft and Utrecht; please email me at f.c.vossepoel@tudelft.nl

Thank you!