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The Model

Permittivity: e0
Density: r0

Density: r0+r

Surface tension: s

Point charge at height l

y = h HxL



Governing equations



MEMS devices

Pelesko, Lindsay, Moulton, Brubaker, Lega, …
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Schematic bifurcation diagram

Continuation method



Conformal maps and the pullback of harmonic functions



Conformal mapping



Solution for the electrostatic potential on the disk with point charge at the

origin:

ˆ�(w) = � q

2⇡
log |w|

Mapping the domain



Complex variable formulation I

We recast the governing equations in terms of ⇣(✓) = F (e

i✓
) = x(✓) + ih(✓).



Complex variable formulation II



Governing equations

� Im(⇣✓✓(✓) ¯⇣✓(✓))

|⇣✓(✓)|3
+ Im(⇣(✓)) =

✓
q

2⇡|⇣✓(✓)|

◆2

for ✓ 2 (�⇡,⇡).

A “real” equation for a complex valued function.





Conformal parameterization of the interface

x ! ±1, y ! 0 as ✓ ! ±1

No other singularities in the unit disk or its boundary.



Boundary conditions

x ! ±1, y ! 0 as ✓ ! ±1

F (w) has a simple pole at w = 1. Consequently (1 + w)F (w) is analytic on D.

Representations of F :

F (w) =
G(w)

1 + w

=
G(�1)

1 + w
+

G(w)�G(�1)

1 + w

=
G(�1)

2

1� w

1 + w
+


G(�1)

2
+

G(w)�G(�1)

1 + w

�

= A
1� w

1 + w
+B(w)



Conformal reformulation



Collocation method

Residual :



Discretization

Methods of Numerical Conformal Mapping, R. Wegmann (2005)

Method is intrinsically non-adaptive!; Wilkening, 2011.



Selective Withdrawal
Introduction Electromechanical Systems Collocation Method Matched Profiles Other Comments

Computed Solutions

−2 0 20

0.2

0.4

0.6

0.8

1

x

h
(x
)

0 0.5 1 1.5 20

0.2

0.4

0.6

0.8

1

q
h
(0
)

Left: computed solutions with l = 1, M = 256.

Right: q-h(0) bifurcation diagrams for l 2 {0.25, 0.5, 0.75, 1}.

24



Selective Withdrawal
Introduction Electromechanical Systems Collocation Method Matched Profiles Other Comments

Computed Solutions

−2 0 20

0.2

0.4

0.6

0.8

1

x

h
(x
)

0 0.5 1 1.5 20

0.2

0.4

0.6

0.8

1

q
h
(0
)

Left: computed solutions with l = 1, M = 256.

Right: q-h(0) bifurcation diagrams for l 2 {0.25, 0.5, 0.75, 1}.

24



Selective Withdrawal
Introduction Electromechanical Systems Collocation Method Matched Profiles Other Comments

Computed Solutions

−2 0 20

0.2

0.4

0.6

0.8

1

x

h
(x
)

0 0.5 1 1.5 20

0.2

0.4

0.6

0.8

1

q
h
(0
)

Left: computed solutions with l = 1, M = 256.

Right: q-h(0) bifurcation diagrams for l 2 {0.25, 0.5, 0.75, 1}.

24



Introduction Electromechanical Systems Collocation Method Matched Profiles Other Comments

Computed Solutions
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Saddle-node bifurcation corresponds to pull-in.

Define " = l � h(0).
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Computed Solutions
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Interface tips sharpen and approach a corner as " ! 0.

Collocation method fails for small " in each case.
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Computed Solution Resolution

l = 1, h(0) = 0.96 (" = 0.04), M = 256:
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Left: Small-" profiles are poorly resolved for large x.

Right: Small-" profiles are well-resolved for small x.
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Crowding

Under a conformal map, equally spaced nodes on the unit circle concentrate

near re-entrant corners and spread away from “convex” corners.

Methods of Numerical Conformal Mapping, R. Wegmann (2005)
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Introduction Electromechanical Systems Collocation Method Matched Profiles Other Comments

Pressure Balances

l = 1, h(0) = 0.96, " = 0.04:
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Separation motivates consideration of ‘inner’ and ‘outer’ regions
independently.

The main challenge is then recombination.
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Scaling for the “sharp” corners 

Charge concentrates at the tip:

F =
q

2

2⇡✏
�(x)

h� h00

(1 + h02)3/2
= F



Concentrated charge approximation



Leading order bifurcation diagram
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Introduction Electromechanical Systems Collocation Method Matched Profiles Other Comments

Outer Solution Symmetry

Governing equation may be recast:

Im(f
✓✓

(ei✓)f
✓

(ei✓))

|f
✓

(ei✓)|3| {z }
elastic

�Re(f(ei✓))| {z }
gravitational

= 0.

Both terms depend on interface shape only.

We therefore expect the parametrization of the outer map to be
irrelevant (matches intuition).
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Introduction Electromechanical Systems Collocation Method Matched Profiles Other Comments

Outer Solution Symmetry

Symmetry of Outer Solutions

If f solves

Im(f
✓✓

(ei✓)f
✓

(ei✓))

|f
✓

(ei✓)|3 � Re(f(ei✓)) = 0,

then so does
g(ei✓) = f(A(ei✓))

where A is any conformal automorphism (a bijective conformal
map) from D to itself.
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Introduction Electromechanical Systems Collocation Method Matched Profiles Other Comments

Computed Outer Solutions

Outer solutions (solid) vs full computed solutions (dashed),
l = 1, h

1

(0) 2 {0.46, 0.96}:
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Angled lines form boundary conditions for inner solutions.
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Introduction Electromechanical Systems Collocation Method Matched Profiles Other Comments

Inner Solutions

Scaling F = "F , q =
p
"Q:

Im(F
✓✓

(ei✓)F
✓

(ei✓))

|F
✓

(ei✓)|3 + O("2)| {z }
gravity

= � Q2

4⇡2|F
✓

(ei✓)|2 .

All remaining terms depend on derivatives of F only.

Boundary conditions:

F (0)� F (1) = 1

(sets correct tip-charge separation)

arg(F (ei✓)) ! e±i⇡/2� as ✓ ! ⌥⇡

(matches inner limit of outer solutions)
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Introduction Electromechanical Systems Collocation Method Matched Profiles Other Comments

Inner Solutions

Symmetry of Inner Solutions

If F solves

Im(F
✓✓

(ei✓)F
✓

(ei✓))

|F
✓

(ei✓)|3 = � Q2

4⇡2|F
✓

(ei✓)|2

then so does
F + c

for any c 2 R.
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Introduction Electromechanical Systems Collocation Method Matched Profiles Other Comments

Computed Inner Solutions

(Rescaled) inner solution (solid) vs full computed solution
(dashed), l = 1, h

1

(0) = 0.96:
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Introduction Electromechanical Systems Collocation Method Matched Profiles Other Comments

Matched Solutions

Recall:

• Outer solutions can be conformally reparametrized.

• Inner solutions can be scaled and translated.

Posit solutions of the form:

G(ei✓) =
⇣
"G(ei✓) +H

0

⌘
+ g(A(ei✓))� G(ei✓).

1. G is an inner solution.

2. g is an outer solution.

3. H
0

is a translation.

4. A controls the parametrization of the outer solution.

5. G is an ‘overlap function’.

38
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Introduction Electromechanical Systems Collocation Method Matched Profiles Other Comments

Matched Solutions

Matched solutions (red) vs full computed solutions (black),
l
1

= 1, h
1

(0) = 0.96 (equiv. " = 0.04):
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Introduction Electromechanical Systems Collocation Method Matched Profiles Other Comments

Matched Solutions

Example q-h
1

(0) bifurcation diagram:
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Solid: full computed solutions
Dotted: matched solutions
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Related work, open questions,… 

• Inverse problem and control: Design forcing for desired 
interface shape.

• Capillary effects: Undulations, droplet formation.

• Water waves: Wilkening (2011); Dyachenko, Lushnikov, and 
Korotkevich (2015).

• Conformal mappings in “Hybrid variables”: Crowdy, Tanveer 
and DeLillo (2014).

• Applications to regularized Hele-Shaw, DLA. 





Open questions and ongoing work

• Fuller study of the p = 1 modified system with di↵erent types of forcing,
Universality?

• Investigation of the p = 2 electrostatic problem with
l >

p
2.

• Study of the resolutions of more general tip singularities in outer solutions
(logarithmic for the modified system described, cusps).

• Application of our technique to other problems featuring sharpening ge-
ometry represented by conformal maps (Hele-Shaw, DLA).

• The inverse problem and control: design a forcing for a given interface
shape.



p=1, dipole forcing



p=1, dipole forcing











Selective Withdrawal



Topological transition



I. Cohen and S. R. Nagel, Phys. Rev. Lett. 88, 074501 (2002)

W / (Q�Qc)
�

Continuous bifurcation?



Regularity of the interface



Alexander Rothert, Reinhard Richter and Ingo Rehberg, 
New J. Phys. 5 (2003) 59 

Folklore ”Theorem”:

For slow flows,

Viscous + Capillary

Forces = No steady

state singularities

Dynamics vs static singularities



Ca ⇡ µ

�
⌦d

R

d
⇠ exp(�Ca)

Exponentially sharp cusps!

Selective Withdrawal in 2D



2D free surface cusps



Modeling Selective Withdrawal



Electro-mechanical analogue





Discretization: FFT

Discretization: FFT

We compute (FFT) coe�cients Cn such that

MX

n=�M+1

Cne
in✓j = hj + 0i, j = �M + 1, . . . ,M

then ‘apply’ the discrete Hilbert transform:

Bn =

8
>>><

>>>:

C
0

, n = 0,

CM , n = M,

2Cn, n = 1, . . . ,M � 1,

0, n = �(M � 1), . . . ,�1.

1



Finite dimensional representation

Discrete Analytic functions

The function

F (w) =
MX

n=�M+1

Bnw
n =

MX

n=0

Bnw
n

is analytic in D and satisfies Re(F (ei✓j )) = hj at each node ei✓j .

We combine this map with a “stretching” term to create the full
family of maps studied.

2



Collocation Method

Collocation Method

We seek the best fit solution of the form

F(w) = A
✓
1� w

1 + w

◆

| {z }
stretch

+
MX

n=0

Bnw
n

| {z }
deflection

with

F(0) = l,

F(1) = h(0),

F(w) = F(w),
MX

n=0

Bn(�1)n = 0.
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Residual

Conjugate gradient minimization of residual

Even node spacing also allows e�cient evaluation of the residual
pressure

Im(⇣✓✓(✓)⇣✓(✓))

|⇣✓(✓)|3
� Im(⇣(✓))�

✓
q

2⇡|⇣✓(✓)|

◆
2

via the FFT.

Example:

⇣(✓j) = G(ei✓j ) = A
✓
1� ei✓j

1 + ei✓j

◆
+

MX

n=0

Bne
in✓j

4






