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The Model

Point charge at height [

Permittivity: €,
Density: p

Surface tension: o

Density: pg+p

—ok(z) + pgh(z) = %0 (8—(’5)2 for € (—00,00).



Governing equations

(Dimensionless) Governing Equations:

(1+h§g)))3/2 @ = — (Voé(z,h) -n(zx))?* for z € (—oo, o)
— oloctrostatc Dresstra

gravity electrostatic pressure

elastic tension

¢: dimensionless electric potential above the interface.
n: upward unit normal to the interface.

V2¢(m,y) = —qi(z,y —1)in {h(z) <y:x € (—00,00)}

¢(xz,h(z)) =0 for x € (—o0, 00)

h(x) — 0 asz — Ltoo.



MEMS devices

Rigid plate

® y=1

EEIEEE
— T~ =0

Elastic sheet
r=—L/2 x=L/2

Potential difference is applied between plate and conducting
sheet.

Sheet deflects towards the plate and reaches equilibrium for
relatively low potential difference.

Beyond a critical potential difference, no equilibrium exists
(pull-in instability).

Pelesko, Lindsay, Moulton, Brubaker, Lega, ...



Schematic bifurcation diagram

Continuation method



Conformal maps and the pullback of harmonic functions

Definition

A function F(w) defined on 2 C C is called conformal at wq € €2
if it preserves angles in a neighborhood of wy.

Theorem

Let ¢ solve Laplace’s equation in 2 C C, and let F : {2 —
defined by z = F(w) = z(u,v) + iy(u,v) be conformal in €.
Then the function ¢ defined by ¢(z,y) = ¢(u,v) solves Laplace’s
equation in $g.



Conformal mapping

Conformal maps may be identified with one-to-one analytic functions.

Theorem
A map F : Q0 — C defined on a domain 2 C C is conformal if nd only if the
function F is analytic and has non-vanishing derivative (F' # 0) everywhere on

(2.

Conformal maps provide a rich class of candidate profiles

Theorem (Riemann mapping theorem)
If ) is a non-empty simply-connected proper open subset of C, then there exists

a bijective analytic function f from 2 onto the unit disc D = {w : |w| < 1}.



Mapping the domain

Reduce from complicated domain to simpler domain D C C:

o+q

A
B m
> / \ =0 | e+q 9B |
o , *
C
0
u

Solution for the electrostatic potential on the disk with point charge at the
origin:

O(w) = —5 - log [u]



Complex variable formulation |

We recast the governing equations in terms of ((0) = F(e*?) = x(0) +ih(0).

Gravitational term:

h(z(0)) = Im(¢(0)).

Elastic term:
_ z9(0)hge(0) — ho(0)zee(0)
Iﬁ(ﬂ:(@)) — (373(9) + hg(g))B/Z .

_ Im(oe(8)Co(0))
()




Complex variable formulation |l

Electrostatic term:

Induced pressure |Vé|? on 8D has uniform magnitude (g/27)2.

Equipotentials are separated by a factor of |Fy,(€*)| = |o(8)|
near ((6).

So electrostatic term is

2
Vé(2(6), h(6)) - nf? = ( q <9>|> |



Governing equations

Tm (Lo (0)Co(0)) B q ’
G e = <2w|<9<9>\)

for § € (—m,m).

A “real” equation for a complex valued function.

Lemma

Let F(w) be an analytic function defined on D. The real and
imaginary parts of I satisfy the relationship

Re(F(w)) = —Im(H|[F](w))
Im(F(w)) = +Re(H|F]|(w))

on 0D, where ‘H s the Hilbert Transform.



The periodic Hilbert transform H of a periodic function £ is defined by

HEl(9) =t 5 [ oot (5) 1666 - 0) ~ (6 + )] at

e—0 27T

Natural mapping between analytic functions on the closed unit disk and

Fourier series: |
T(w) = Zanw" < Z ane™ = v(0)
n mn

Since T is analytic at 0, it follows that
1 27

= o : v(@)einedO =0 forn=1,2,... (1)

a—n

Equations are local in the transform domain (in terms of n), but are nonlocal
integral equations in terms of 6.



Conformal parameterization of the interface
We write ((0) = z(0) + ih(8) = iF(e?) for 0 € (—m, 7).

( is a parametrized representation of the candidate deflection
profile in the image plane.

=0} - = //\‘\C(g)

/

0 0
u I

r — ftoo,y — 0 as 6 — *x1

No other singularities in the unit disk or its boundary.



Boundary conditions

a:%::oo,y%()as@%::l

F(w) has a simple pole at w = 1. Consequently (1 + w)F'(w) is analytic on D.

Representations of F':

- G0
_G=D) | Glw) = G(=1)
1 +w 1 +w
_G(D1-w [G(-1) | G(w)—G(-1)
2 + w 2 1 4+ w |
:Az+wlfmm




Conformal reformulation

F(w):ailz - B(w)
f(9) = lim F(w)
((6) = i£(0)
q° - Im([fpe(0)fo(0)]
wpor "Vt reE - =0

27
/ (1+e?)f(0)e™dg =0 forn=1,2,...
0

I = F(0) = —/zw(l e"’) £ (6)do,



Collocation method

~ 1 —w M
F(w) =« (l—l—w) —|—Zﬁjw5.

- 0 M N

f(0) = —iatan (5) 4 Zﬂjeije for § € (—m, )
j=0

o, Bo, B1, ..., By are all real
M .
l=a+B Y (-1)'8;=0
j=0
Residual :

472| fo(6)|? | fo(0)]3



Discretization
We specify heights h; (imaginary part of {) at each red node:

1.5

1..

0.5f

1 0 i
Symmetry and decay = heights at other nodes.

Methods of Numerical Conformal Mapping, R. Wegmann (2005)

Method is intrinsically non-adaptive!; Wilkening, 2011.



Introduction Electromechanical Systems Collocation Method Matched Profiles Other Comments

Computed Solutions

L

0 05 1 15 2

Left: computed solutions with [ =1, M = 256.

Right: ¢-h(0) bifurcation diagrams for [ € {0.25,0.5,0.75,1}.

24
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Introduction Electromechanical Systems Collocation Method Matched Profiles Other Comments

Computed Solutions

)

- 0 5 0 05 1 15 2
i

Left: computed solutions with [ =1, M = 256.

Right: ¢-h(0) bifurcation diagrams for [ € {0.25,0.5,0.75,1}.

24



Introduction Electromechanical Systems Collocation Method Matched Profiles

Computed Solutions

Other Comments

)

0 05 1 15

Saddle-node bifurcation corresponds to pull-in.

Define € = [ — h(0).

24



Introduction Electromechanical Systems Collocation Method Matched Profiles

Computed Solutions

Other Comments

)

0 05 1 15
q

Interface tips sharpen and approach a corner as € — 0.

Collocation method fails for small € in each case.

24



Introduction Electromechanical Systems Collocation Method Matched Profiles

Computed Solution Resolution

[ =1, h(0) = 0.96 (¢ = 0.04), M = 256:

Other Comments

1

0.8;

‘ * 10 _5 0
10 15 log (@)

Left: Small-¢ profiles are poorly resolved for large x.

Right: Small-¢ profiles are well-resolved for small x.

95



Crowding

Under a conformal map, equally spaced nodes on the unit circle concentrate
near re-entrant corners and spread away from “convex” corners.

Methods for numerical conformal mapping 395
1.0 LN B L B 'r'.‘r T | T 1 1 T .v..v T Y T+l 7+%v7xw TJ ..OO P——
0.5 -
[ ] 107?
O.OPL- -
i 1
-0.5F <4 1074
| :.
-1.0F -
" 1
1 107
_1.57— —
200 1 j M EPEPEPEPE BT PP 108...1...1.,.;,.A
-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 0 20 40 60 80

Fig. 8. The same as Figure 7 for the conformal mapping from the unit disk to the heart of Example 3 calculated
by the smoothed AP method.

Methods of Numerical Conformal Mapping, R. Wegmann (2005)



Introduction Electromechanical Systems Collocation Method Matched Profiles

Computed Solution Resolution

[ =1, h(0) = 0.96 (¢ = 0.04), M = 256:

Other Comments

1

0.8;

‘ * 10 _5 0
10 15 log (@)

Left: Small-¢ profiles are poorly resolved for large x.

Right: Small-¢ profiles are well-resolved for small x.
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Introduction Electromechanical Systems Collocation Method Matched Profiles Other Comments

Pressure Balances

| =1, h(0) = 0.96, & = 0.04:

80 1.
60| 038}
o 50.6
= 40| :
: $0.4
= A
20|
0.2
O -------------------------- O
0 0.02 0.04 o 1 s a4 4 s

Separation motivates consideration of ‘inner’ and ‘outer’ regions
independently.

The main challenge is then recombination.

20



Scaling for the “sharp” corners

I =1, h(0) = 0.96 (¢ = 0.04), M = 256:

1
0.8}
) E—
& ; :

Py I T S | e —

0 5 10 15 -10
€T

Charge concentrates at the tip:




Concentrated charge approximation

Away from the interface tip, leading order profile Ay satisfies:

ho (37)
: h = 0.
(L h @pr - L
e e gTavitational

elastic

Solutions exist for hg(0) < v/2 and feature a corner at the tip:

_ B2
hos(0%) = F h°(02) \—/ig ( O};O O

Denote the outer tip angle by 7 /~(ho(0)).

An implicit closed form representation can be computed.

2 2

27(ho(0)) = F = zq_m ~ o (1 —qho(O))




Leading order bifurcation diagram

g = \/(27rh0\/4 = hg) (1 — ho) + O(%/?)
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Introduction Electromechanical Systems Collocation Method Matched Profiles Other Comments

Outer Solution Symmetry

Governing equation may be recast:

Im( fga(e®) fo(e™)) i0
. R - .
| fo(e?)3 %»—/e(i(f )? ’
N —— —— gravitationa
elastic

Both terms depend on interface shape only.

We theretfore expect the parametrization of the outer map to be
irrelevant (matches intuition).

321



Outer Solution Symmetry

Symmetry of Outer Solutions
If f solves

Im( foo(e") fo (™))

olenp et =0,

then so does | |

g(e"’) = f(A(e"))
where A is any conformal automorphism (a bijective conformal
map) from D to itself.

Agp =€~ ¢ € (0,2m),|b] < 1

32



Introduction Electromechanical Systems Collocation Method Matched Profiles Other Comments

Computed Outer Solutions

Outer solutions (solid) vs full computed solutions (dashed),
| =1, h1(0) € {0.46,0.96}:

1

0.8l 0.98!
0.96!
=
Mg
0.94!
0.92!
0 0 2 081 005 0 005 o0

X

Angled lines form boundary conditions for inner solutions.

3



Introduction Electromechanical Systems Collocation Method Matched Profiles

Inner Solutions

Scaling F = ¢F, ¢ = 1/eQ:

Tm(Fpg(e?) Fy(e)) O(c2) = Q°
[ Fp(e)]? AT [Fy(e?)?
gravity

All remaining terms depend on derivatives of [F only.

Other Comments

34



Introduction Electromechanical Systems Collocation Method Matched Profiles

Inner Solutions

Scaling [F = ¢ F', ¢ = 1/eQ:

Tm(Fpg (™) Fy(e)) O(c2) = Q°
[Fy(er?)]? N Am?[Fp(e?)[*
gravity

All remaining terms depend on derivatives of [F only.

Boundary conditions:
FO)—F(1) =1

(sets correct tip-charge separation)

Other Comments

34



Introduction Electromechanical Systems Collocation Method Matched Profiles

Inner Solutions

Scaling F = ¢F, ¢ = 1/eQ:

Tm(Fpg (™) Fy(e)) O(c2) = Q°
[Fy(er?)]? N Am?[Fp(e?)[*
gravity

All remaining terms depend on derivatives of [F only.

Boundary conditions:
FO)—F(1)=1
(sets correct tip-charge separation)
arg(F(e'?)) — ™27 ag 0 — Frr

(matches inner limit of outer solutions)

Other Comments

34



Matched Profiles

Inner Solutions

Symmetry of Inner Solutions

It I solves

Im (Fyg(e”) Fy(e™)) _ Q°
|Fy(e)]3 - Am?|Fy(e?)]?

then so does

for any ¢ € R.

R4



Introduction Electromechanical Systems Collocation Method Matched Profiles Other Comments

Computed Inner Solutions

(Rescaled) inner solution (solid) vs full computed solution
(dashed), I = 1, h1(0) = 0.96:




Introduction Electromechanical Systems Collocation Method Matched Profiles

Matched Solutions

Recall:

e Outer solutions can be conformally reparametrized.

e Inner solutions can be scaled and translated.
Posit solutions of the form:

G(e™) = (£G(e™) + Ho) + g(A(e™)) = G(e),

1. (G is an inner solution.

2. g 1s an outer solution.

Other Comments

3K



Introduction Electromechanical Systems Collocation Method Matched Profiles Other Comments

Matched Solutions

Recall:

e Outer solutions can be conformally reparametrized.

e Inner solutions can be scaled and translated.

Posit solutions of the form:

G(e™) = (£G(e™) + Ho) + g(A(e™)) = G(e),

( is an inner solution.
. g 1s an outer solution.
Hg 1s a translation.

A controls the parametrization of the outer solution.

St

G is an ‘overlap function’.

3K



What is matching?

< — -©-Inner
05 .............. Inrlerureglon ........................... |
5 : -*%-Quter
< > **
~ Overlap *%
O 44444 z-plane ........... .............................. ........ KK — — — -
10 10 10 10



Introduction Electromechanical Systems Collocation Method Matched Profiles Other Comments

Matched Solutions

Matched solutions (red) vs full computed solutions (black),
I, = 1, h1(0) = 0.96 (equiv. & = 0.04);

1 ~ ~ ~ 0.15
0.95| 0.1}
= 009 £ 005
0.85 ol
0% 005 01 o015 02 29%% 10 20 30



Introduction Electromechanical Systems Collocation Method

Matched Solutions

Example g-h1(0) bifurcation diagram:

Matched Profiles

Solid: full computed solutions
Dotted: matched solutions

Other Comments

41



Related work, open questions,...

¢ |nverse problem and control: Design forcing for desired
interface shape.

e Capillary effects: Undulations, droplet formation.

e Water waves: Wilkening (2011); Dyachenko, Lushnikov, and
Korotkevich (2015).

e Conformal mappings in “Hybrid variables”: Crowdy, Tanveer
and DeLillo (2014).

e Applications to regularized Hele-Shaw, DLA.






Open questions and ongoing work

Fuller study of the p = 1 modified system with different types of forcing,
Universality?

Investigation of the p = 2 electrostatic problem with

[ > /2.

Study of the resolutions of more general tip singularities in outer solutions
(logarithmic for the modified system described, cusps).

Application of our technique to other problems featuring sharpening ge-
ometry represented by conformal maps (Hele-Shaw, DLA).

The inverse problem and control: design a forcing for a given interface
shape.



p=1, dipole forcing

Solutions for modified problem, forced by a dipole:




p=1, dipole forcing

Pressure balances for modified problem, forced by a dipole:

37 18| S A A —

Pressure
by
o
o
Pressure

o))
o

................................................




h(z)

h(0)

Left: computed solutions with [ =1, M = 256.

Right: ¢-h(0) bifurcation diagrams for [ € {0.25,0.5,0.75, 1}.



Ficure 2. Apparatus for holding two circular soap films in position.



Supported boundary Grounded soap film

L Fixed plate at potential V'






Selective Withdrawal

» Two deep layers of immiscible fluids.

» Fluid from the upper layer is withdrawn at a constant rate Q.

Initial configuration Steady-state selective withdrawal

The resulting steady-state flows are studied.



Topological transition

There are two distinct classes of steady-states in such systems:

Selective withdrawal (hump) Viscous entrainment (spout)

Low @ » High Q)

Transition (through steady states)



Continuous bifurcation?

W (Q_Qc)fy

l. Cohen and S. R. Nagel, Phys. Rev. Lett. 88, 074501 (2002)



Regularity of the interface

Does the interface become singular?

If not, which parameters control the cutoft
length scale?




Dynamics vs static singularities

Viscous + Capillary

! o ° Forces = No steady
! ! i ! mm state singularities

Alexander Rothert, Reinhard Richter and Ingo Rehberg,
New J. Phys. 5 (2003) 59

Folklore ” Theorem” :

For slow flows,




(a)

Selective Withdrawal in 2D

—

GXE

(8)

Ca ~ Eﬂd

O

g ~ exp(—Ca)

Exponentially sharp cusps!

J. Fluid Mech. (1992), vol. 241, pp. 1-22
Printed in Great Britain

Free-surface cusps associated with flow at low
Reynolds number

By JAE-TACK JEONGTYt AND H. K. MOFFATT



2D free surface cusps

(a) (b)

Q=18s" 26s'

(¢)

2.7s"

)

40s!

® | (h)
5057 705"

-

Fiaure 13. Sequence of photographs showing the transition from crest to cusp as Q is increased through a critical value Q =
2.75 s'. The capillary number €, = uQr_/y has the following values: (a) 15.7; (b) 22.7; (¢) 23.6; (d) 24.4; (¢) 27.9; (f) 34.9; (9) 43.6;
(k) 61.1. The horizontal extent of the free surface shown in each of these photographs is approximately 5 cm.



Modeling Selective Withdrawal

Inviscid fluid

» The upper fluid (z > h) has density py and is very viscous.
» The lower fluid (z < h) has density pg + p and is inviscid.

» The withdrawal flow is equivalent to a point sink.



Electro-mechanical analogue

Electrostatic Analogy: captures the essential features of the fluids
problem in a setting where analysis is simpler.

» Point sink — point charge.
» Velocity field u(») — electrostatic potential .

» Fluid interface — conducting elastic sheet.

Point charge at height /

Permittivity: €,
Density: pg

Surface tension: o

Density: py+p






Discretization: FFT

Discretization: FFT

We compute (FFT) coefficients C), such that

M
Z C, ¢ =h;+0i,j=-M+1,...,M
n=—M-++1

then ‘apply’ the discrete Hilbert transtorm:

Co, n=0,

Cr, n= M,

2C,, n=1,...,M —1,

0, n=—-—(M-—1),...,—1.



Finite dimensional representation

Discrete Analytic functions

The function

M M
F(w) = Z B,w" = ZIB%nw”
n=0

n=—M-++1

is analytic in D and satisfies Re(F(¢%7)) = h; at each node €%,

We combine this map with a “stretching” term to create the tull
family of maps studied.



Collocation Method

Collocation Method

We seek the best fit solution of the form

F(w) = <1+w> Zan

N ——’
H,_/
stretch

deflection
with
F(0) = I,
(1) = h(0),
F(w) = F(w),
M
Y Ba(-1)"=0
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We seek the best fit solution of the form

F(w) = (1 +w> Zan

N ——’
A,_/
stretch

deflection
with
F(0) = I,
(1) = h(0),
F(w) = F(w),
M
Y Ba(-1)"=0



Collocation Method

Collocation Method

We seek the best fit solution of the form

F(w) = (1 +w> Zan

N ——’
H,_/
stretch

deflection
with
F(0) = I,
(1) = h(0),
F(w) = F(w),
M
Y Ba(-1)"=0



Collocation Method

Collocation Method

We seek the best fit solution of the form
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Collocation Method

Collocation Method

We seek the best fit solution of the form

F(w) = (1 +w> Zan

N ——’
H,_/
stretch

deflection
with
F(0) = I,
(1) = h(0),
F(w) = F(w),
M
> Bn(-1)"=0



Residual

Conjugate gradient minimization of residual

Even node spacing also allows efficient evaluation of the residual

pressure
Im(Co(0)Co(0)) o _( q >2
wop MO argm
via the FFT.
Example:










