

Challenges for numerical analysis in large-scale simulations

S. Bauer^{*}, D. Drzisga^{*}, T. Horger^{*}, M. Huber^{*}, M. Mohr^{*}, U. Rüde^{*}, L. Wunderlich^{*}, B. Wohlmuth^{*} (LMU, FAU, TUM)

supported by the Gauss Centre for Supercomputing (GCS) and the DFG priority programme: Software for Exascale Computing (1648)

Technical University of Munich (TUM)

July 11, Portland 2018 SIAM Annual Meeting

Overview

- Aspects of simulation technologies for PDEs
- Hybrid assembling based on domain partitioning
 - Surrogate polynomials for large scale FE
 - Local static condensation for patch-wise IGA

• Large FE scale simulation

- All-at-once multigrid solver
- Agglomeration for the coarse solver
- Error estimation and control
 - Adaptive error control for resilience
 - Adaptivity in sampling and surrogates

The analysis of PDEs is **fundamental** for developing efficient numerical schemes

Multi-scale models are **essential** for predictive simulation of complex phenomena

Uncertainties increase drastically the computational complexity

Scalable algorithms are indispensible for exploiting capabilities of HPC architectures

Motivation — 6/45

The computing power development

In the last two decades:

- Performance increase by $1\,000\,000$
- Memory increase by 10000

Fastest supercomputer (Nov 2017):

The Sunway TaihuLight supercomputer (China), [Fu et al. 16]

- performance by a factor of pprox 20, pprox 500
- but only a factor of ≈ 3 , ≈ 60 in memory

compared to JUQUEEN (Germany), Hexagon (Norway)

Observations: The classical $\mathcal{O}(N^s)$ cost count metric is too simplistic. Cost for communication and memory traffic **cannot** be ignored. Some challenges for large scale FE

The geometry: blending from reference to physical domain

> The flow solver: all-at-once MG for saddle point systems

The error control: adaptivity beyond mesh refinement

Curved geometries in 3D: two-scale approach

Classical approach: element assembling – sparse matrix format – solve

Uniform refinement for non-polyhedral domains:

- Cheap and well-suited for on-the-fly but asymptotically wrong
- **Optimal** complexity and order **but** expensive

Illustration of two stencil entries as index functions over a 2D plane

Observation: Stencil entries are smooth functions within each macro-element

Cost reduction versus accuracy loss (3D)

Idea: Replace the flop intense on-the-fly assembling by the evaluation of piecewise higher order **surrogate polynomials**

Observation: Drastic cost reduction compared to standard isoparametric FEM

Influence of the surrogate order and macro mesh-size on accuracy

To the right: Increase in the number of macro-elements from 60 to 30720 **From top to bottom:** Increase in the 3d refinement level from 2 to 6

Abstract framework: transformation

• Transfer of the *physical* domain Ω by F onto the reference domain $\widehat{\Omega}$

$$s_{i,i+\epsilon_j} = \int_{\Omega} \nabla \phi_i \cdot K \nabla \phi_{i+\epsilon_j} = \int_{\widehat{\Omega}} \nabla \hat{\phi}_i \cdot \frac{DF \cdot K \cdot DF^T}{|\det DF|} \nabla \hat{\phi}_j$$

• Exploit a hybrid mesh structure, i.e. unstructured initial mesh and uniform refinement

unstructured coarse mesh (2D) - structured stencil (3D) - transformed uniformly refined mesh (2D)

Replace the stiffness matrix entries per macro-element by a surrogate polynomial

Abstract framework: approximation

Coefficient (left) and q = 1, 2, 4, and 7 (from left to right)

Question: How to choose the polynomial degree and number of surrogate polynomials?

Coefficient (left) and q = 1, 4, 8, and 12 (from left to right)

Numerical results

• Setup (left) and **run-time comparison** (right)

 $-\operatorname{div}\left(K\cdot\nabla u\right)=f\quad \text{in }\Omega+\ \mathsf{BC}$

$$K = \begin{pmatrix} 3x^2 + 2y^2 + 1 & -x^2 - y^2 \\ -x^2 - y^2 & 4x^2 + 5y^2 + 1 \end{pmatrix}$$

$$\begin{array}{c|c} \bullet & \text{Reference} \bullet & q = 0 \bullet & q = 4 \bullet & q = 6 \\ \bullet & q = 7 & \bullet & q = 8 \bullet & \bullet & q = 12 \end{array}$$

• Accuracy comparison for fixed H with respect to q

A two-scale approach — 13/45

Convergence rates with respect to H

Theorem: The H^1 -discretization error is given by $\|\nabla(u - \tilde{u}_h)\| = \mathcal{O}(h^p) + \mathcal{O}(H^{q+1})$

The L^2 -discretization error is given by

 $\|u - \tilde{u}_h\| = \mathcal{O}(h^{p+1}) + \mathcal{O}(H^{q+2})$

p := finite element order, q := surrogate polynomial degree h := finite element basis support diameter, H := surrogate polynomial support diameter

Abstract framework: theory and control

Question: How to choose the required polynomial degree q?

Idea: Increase q adaptively within an iterative multigrid solver

Basic algorithm

- 1. Perform V-cycles with a fixed polynomial degree q until stopping Criteria 1 is satisfied
- 2. Increase polynomial degree $q \leftarrow q + 1$ and perform an additional V-cycle stop if the update satisfies stopping Criteria 2; otherwise go to step 1

Remarks on the selection of the stopping criteria:

Criteria 1: residual, estimator for algebraic error, estimator for total error **Criteria 2:** as above or difference to the updated solution with respect to q + 1

	standard FE		adaptive surrogate FE			
mesh level	L^2 err.	time [s]	L^2 err.	final q	time [s]	ratio
5	8.69e-06	1.09	8.83e-06	5	0.41	38 %
6	2.18e-06	2.89	2.55e-06	5	0.65	22 %
7	5.47e-07	9.48	5.85e-07	6	2.09	22 %
8	1.37e-07	32.93	1.83e-07	6	4.92	15~%
9	3.42e-08	136.78	3.00e-08	7	18.19	13 %

Surrogate polynomials for more general settings

• The **Darcy** case for P2 finite elements

L	Err. ref.	eoc	tts [s]	Err. $q = 4$	Err. $q = 6$	Err. $q = 8$	tts [s]
2	3.67E-05	-	0.00	3.63E-05	3.67E-05	3.67E-05	0.00
3	2.94E-06	3.64	0.01	2.96E-06	2.95E-06	2.94E-06	0.00
4	2.09E-07	3.81	0.09	6.28E-07	2.10E-07	2.09E-07	0.02
5	1.40E-08	3.91	0.82	4.85E-07	1.41E-08	1.40E-08	0.10
6	9.01E-10	3.95	6.91	4.68E-07	1.16E-09	9.01E-10	0.61

• The **Stokes** case with stabilized P1-P1 elements

Patch-wise isogeometric elements

• **Use** standard isogeometric elements on each patch

• Impose weak continuity conditions at interfaces

- B-splines S_h^p
- maximal regularity
- tensorial geometries

- Lagrange multipliers M_h
- reference domain
- physical domain
- **Saddle point** formulation in displacement and surface traction

Elementary references: [de Boor 01], [Schumaker 07], [Cottrell, Hughes, Bazilevs 05], [Höllig 03]

How to define the Lagrange multiplier space?

• Theoretical aspect: reproduction property of order p-1 and inf-sup stability

• **Computational aspect:** local support and biorthogonality

saddle point (left), standard LM (middle) and biorthogonal (right)

allow for local static condensation and symmetric and positive definite system

Biorthogonal basis functions

Straightforward computation by a local inversion Low order approximation properties, but optimal for contact problems:

contact force

-1.5 -1

Good results for **contact problems** in nonlinear elasticity [Seitz, Farah, Kremheller, W, Popp, Wall 16]

Alternative computation with enlarged support

Optimal approximation properties, suitable for domain decomposition [Oswald, W 02]

-0.5

0.5

1

1.5

0

radial position

A dual approach — 19/45

Biorthogonal IGA for contact mechanics

• Rotating ironing with Coulomb friction and neo-Hookean hyperelastic law

Optimal convergence rates due to reduced regularity of the solution resulting from the quasi-variational inequality (reproduction property is limited to P_0 for the LM space)

A locally constructed biorthogonal basis

- **Define** the coefficients **locally** by the inverse of the element mass matrix
- Glue the basis functions globally together such that supp $N_i = {
 m supp} \ \widetilde{\psi}_i$
- Idea: enrich the space by orthogonal functions of the same order, $\int N_i z_j dx = 0$
- Follow the FEM case [Oswald, W 02] and enlarge the support

$$\boldsymbol{\psi}_i = \widetilde{\boldsymbol{\psi}}_i + \boldsymbol{\alpha}_{ij} \mathbf{z}_j$$

How to define α_{ij} such that local support and p-1 reproduction property hold?

The choice of the coefficient

• The locality of the support: Define left center element e_i

 $\alpha_{ij} = 0$ if $N_j = 0$ on e_i results in a support of: 2p + 1 elements

center element

• The reproduction property: Solve a local system for α_{ij} , $i \in I_j$, $\#I_j = p + 1$

$$\sum_{i \in I_j} (p_l, N_i) \alpha_{ij} = (p_l, \phi_j)$$

 p_l , $l = 1, \ldots p + 1$ basis of P_p ϕ_j suitable basis of product space

dual basis with extended support

Lemma: The quasi-interpolant $Qf := \sum_i (f, N_i)\psi_i$ is then **invariant** for P_p

Biorthogonal basis functions

- primal support: p+1 elements
- dual support: 2p + 1 elements [Wunderlich et al, W 18]

Annulus domain: comparing to trace spaces, different mesh-ratio

Optimal convergence rate and local static condensation by biorthogonal basis

Application to nonlinear elasticity

Neo-Hookian material:

Div $\mathbf{FS} + \mathbf{b} = \mathbf{0}$ in Ω $\mathbf{u} = \mathbf{0}$ on $\Gamma_D, \mathbf{FSN} = \mathbf{t}$ on Γ_N

$$\begin{split} \mathbf{S} &= \mathbf{2}\partial \Psi / \partial \mathbf{C} \text{ second Piola-Kirchhoff stress} \\ \mathbf{C} &= \mathbf{F}^\top \mathbf{F} \text{ right Cauchy-Green tensor} \\ \mathbf{F} \text{ deformation gradient} \\ \Psi \text{ strain energy function} \\ \Psi(\mathbf{C}) &= c(\text{tr } \mathbf{C} - 3) + \frac{c}{\beta}((\det \mathbf{C})^{-\beta} - 1) \\ c, \beta \text{ material constants} \end{split}$$

Domain: Spherical shell with a 45°segment removed on the top and bottom **Inclusion:** stiffer material on a thin elliptical crossection **Discretization:** quadratic NURBS **Control points:** 104016

Polynomial stencil approximation

Classical assembling for IGA is quite expensive

• Tensor product structure for 2D IGA-basisfunctions:

• Stiffness matrix entry $K_{i,i+1}$:

Drastic cost reduction in assembling possible by surrogate matrix

Surrogate FE operators in large scale simulation

partly joint work with W. Zulehner (2018)

The solver - 26/45

All-at-once multigrid solver

Abstract saddle point system:
$$\begin{bmatrix} A & B^{\top} \\ B & -C \end{bmatrix} \begin{bmatrix} u \\ p \end{bmatrix} = \begin{bmatrix} f \\ g \end{bmatrix}$$

Different solver strategies:

- preconditioned Krylov space solver (e.g. minres) for indefinite system
- preconditioned Krylov space solver (e.g. cg) for positive definite Schur complement
- all-at-once multigrid for indefinite system

Different smoother strategies:

- Braess–Sarazin type [Braess et al 97] global saddle point structure
- Vanka type [Vanka 86], [Manservisi 06] local saddle point structure
- Uzawa type [Gaspar et al. 14], [Zulehner 00-03] smaller flop and communication count

$$\begin{bmatrix} \hat{A} & 0 \\ B & -\hat{S} \end{bmatrix}$$

Convergence result

Smoothing property [Drzisga et al., W 18] Assume that A is symmetric and positive definite. Let \hat{A} and \hat{S} be symmetric and positive definite matrices satisfying

$$\hat{A} \geq A \quad \text{and} \quad \hat{S} \geq S := C + B A^{-1} B^\top,$$

then the following smoothing property holds for a Uzawa type iteration:

 $\|\mathcal{A}\mathcal{M}^{\nu}\|_{\mathcal{L}\times\mathcal{L}} \leq \sqrt{2} \eta(\nu-1) \|\mathcal{D}_d\|_{\mathcal{L}\times\mathcal{L}}, \quad \nu \text{ number of smoothing steps}$

with
$$\mathcal{D}_d = \begin{bmatrix} \hat{A} & 0\\ 0 & \hat{S} \end{bmatrix}$$
, $\mathcal{M} := \mathsf{Id} - \begin{bmatrix} \hat{A} & 0\\ B & -\hat{S} \end{bmatrix}^{-1} \mathcal{A} \text{ and } \eta(\nu) = \frac{1}{2^{\nu}} \begin{pmatrix} \nu\\ \lfloor (\nu+1)/2 \rfloor \end{pmatrix}$.

Proof: Based on abstract framework of Reusken [91].

Theorem: Level independent W-cycle convergence results are then guaranteed.

Remark: The theory can be extended to a variable V-cycle but not to the V-cycle. Numerical results show that the theory is sharp.

Parallel efficiency on JUQUEEN

Observation: Parallel efficiency is significantly reduced for huge systems **Step 1:** Replace non-scalable Krylov coarse mesh solver by a PETSc solver

- Setup phase: Save matrix in standard CRS format
- MINRES-iteration with block preconditioner
- velocity: AMG preconditioned CG-iteration
- pressure: lumped mass-matrix
- GAMG V(1,0), Chebyshev, 5 lev., threshold 0.01

Step 2: master-slave agglomeration on coarse level

np	DOF	red.	T[s]	coarse	par. eff
30	$8.3\cdot 10^7$	1	16.284	0.043	1.00
120	$3.3\cdot 10^8$	1	16.426	0.050	0.99
960	$2.6\cdot 10^9$	1	17.084	0.171	0.95
7680	$2.4\cdot 10^{10}$	1	17.310	0.382	0.94
61440	$1.7\cdot 10^{11}$	8	17.704	0.877	0.92

results in a parallel efficiency of more than 90%.

np: 61440

Adaptive error control for MG solvers

- Algorithmic recovery strategy:
 - Freeze the data on the adjoint lower primitives (Dirichlet IC)
 - **Replace** the faulty processor by several ones (over balancing)
 - **Control** the catch-up progress (hierarchical residual representation)

Dirichlet-Dirichlet recovery strategy

Dirichlet boundary condition on healthy and on faulty domain

- 1: Solve Au = f by multigrid cycles.
- 2: if Fault has occurred then
- 3: **STOP** solving.
- 4: Recover **Dirichlet** boundary data u_{Γ_F} from row 4
- 5: Initialize inner values u_F with zero
- 6: In parallel approximate Dirichlet problem on subdomains:
- 7: Use n_F MG cycles accelerated by superman η_s to approximate row 5:

8:
$$A_{FF}u_F = f_F - A_{F\Gamma_F}u_{\Gamma_F}$$

- 9: Use n_I MG cycles to approximate row 1
- 10: $A_{II}u_I = f_I A_{I\Gamma_I}u_{\Gamma_I}$
- 11: **RETURN** to row 1 with new values u_I in Ω_I and u_F in Ω_F .

12: **end if**

$$\begin{pmatrix} A_{II} & A_{I\Gamma_{I}} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{Id} & -\mathbf{Id} & \mathbf{0} & \mathbf{0} \\ A_{\Gamma I} & \mathbf{0} & A_{\Gamma\Gamma} & \mathbf{0} & A_{\Gamma F} \\ \mathbf{0} & \mathbf{0} & -\mathbf{Id} & \mathbf{Id} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & A_{F\Gamma_{F}} & A_{FF} \end{pmatrix} \begin{pmatrix} u_{I} \\ u_{\Gamma_{I}} \\ u_{\Gamma} \\ u_{\Gamma} \\ u_{F} \\ u_{F} \end{pmatrix} = \begin{pmatrix} f_{I} \\ \mathbf{0} \\ f_{\Gamma} \\ \mathbf{0} \\ f_{F} \end{pmatrix}$$

Question: How to select n_F and n_I ?

Adaptive tearing and interconnecting

• Error control (left) and local distribution (right)

Hierarchical weighted residual: [Rüde 93]

$$\eta := \| \sum_{l=0}^{L} I_{l}^{L} D_{l}^{-1} I_{L}^{l} r_{L} \|$$

Decouple over the interface and use in the faulty domain only the **inner** residual

• No recoupling (left) and adaptive recoupling for a superman factor of four (right)

The mantle convection model

The **physical model** consists of conservation of **momentum, mass and energy**

$$-\operatorname{div} \boldsymbol{\sigma} = \rho \mathbf{g}$$
$$\operatorname{div}(\rho \mathbf{u}) = 0$$
$$\partial_t(\rho e) + \operatorname{div}(\rho e \mathbf{u}) = -\operatorname{div} \mathbf{q} + \rho H + \boldsymbol{\sigma} : \dot{\boldsymbol{\varepsilon}}$$

Key quantities: velocity \mathbf{u} , temperature T, pressure p, and the mantle viscosity μ . The density ρ is given by the **mineralogy** via an equation of state:

 $\rho = \rho(p, T)$

The **rheology** of the mantle is an active field:

$$\boldsymbol{\sigma} = 2\mu (\dot{\boldsymbol{\varepsilon}} - \frac{1}{3} \operatorname{tr} \dot{\boldsymbol{\varepsilon}} \cdot \mathbf{I}) - p\mathbf{I}, \quad \text{with } \mu = \mu(r, T, \dot{\boldsymbol{\varepsilon}})$$

Notation:

- σ stress tensor
- $\rho\,$ density
- ${\bf g}$ gravitational acceleration
- ${f u}$ velocity
- e internal energy
- ${\bf q}\,$ heat flux per unit area
- H volumetric radiogenic heat production rate
- $\dot{arepsilon}$ rate of strain tensor

Data from measurements

lul

• Outer velocity boundary conditions: Plate tectonic reconstruction

¹⁰
 7.5 Williams, Müller, Landgrebe, Whittaker:
 ⁵ GSA Today, 2012
 ^{2.5}

• **Temperature data:** Representation of seismic data by spherical harmonics:

Grand, van der Hilst, and Widiyantoro: GSA Today, 1997

Simmons, Myers, Johannesson, Matzel, and Grand: Geophysical Research Letters, 2015

Temperature and depth dependent rheology

Viscosity model according to [Davies et al. 2012]: $d_A := 410,660$

$$\mu(r,T) = \exp(4.61 \frac{1-r}{1-r_{\text{inner}}} - 2.99 T) \begin{cases} \frac{1}{10} d_{\text{a}}^3 & \text{for } r > 1 - d_{\text{a}}, \\ 1 & \text{else.} \end{cases}$$

Effects of plate separation (left) and influence of thickness in the astenosphere (right)

Surrogates in stochastic inversion

partly joint work with J.T. Oden, E. Lima, T. Yankeelov et.al. (2017,2018) and with R. Scheichl and B. Gmeiner (2017)

Adaptivity for UQ - 36/45

Basics: Standard Multilevel Monte Carlo

• Model problem:
$$\nabla \cdot (k(x,\omega)\nabla p(x,\omega)) = f(x,\omega), \ \omega \in \Omega$$

- Sampling from $k(x, \omega)$ by e.g.:
 - Truncated Karhunen-Loève (KL) expansion [Ghanem et al 91], [Widom 63] Circulant embedding, [Dietrich et al. 97, Graham et al. 18]
 - PDE-based variants, [Lindgren et al. 11]
- **Standard Monte Carlo** estimator: (*Q* is the quantity of interest)

$$\hat{Q}_{N;h}^{MC} := \frac{1}{N} \sum_{i=1}^{N} Q_h^{(i)}, \quad \mathsf{MSE} = \frac{\mathbb{V}[Q_h]}{N} + (\mathbb{E}[Q_h - Q])^2$$

• Standard Multilevel Monte Carlo estimator: $h := h_L$, $h_l := 1/2h_{l-1}$, $Q_{h_{-1}} := 0$

$$\mathsf{MSE} = \sum_{l=0}^{L} \frac{\mathbb{V}[Q_{h_l} - Q_{h_{l-1}}]}{N_l} + (\mathbb{E}[Q_h - Q])^2, \quad \text{[Giles 08, Barth et al. 11, Cliffe et al. 11]}$$

Adaptivity for UQ - 37/45

Fractional PDE-based sampling

Matérn covariance [Matérn 60], [Abramowitz et al. 65] can be sampled solving a PDE:

$$\left(\kappa^2 - \Delta\right)^{\alpha/2} Y = \sigma \mathcal{W}, \text{ on } \mathbb{R}^d,$$
 [Lindgren et al. 11]

- $\kappa=1/\lambda$ inverse of the correlation length
- $\alpha = \nu + d/2$ depends on the smoothness ν
- $\bullet \ \mathcal{W}$ Gaussian white noise with mean zero and variance one

Window technique can be used to approximate Y on a bounded domain Ω

- Embed $\Omega \subset B^\infty_R(x_c) \subset B^\infty_L(x_c)$, with $L = R + k\lambda$
- Impose BCs on $B^\infty_L(x_c)$, e.g. hom. Neumann
- Approximate Y by Fourier techniques

Lemma: A priori estimate in terms of k: $|C_{Y_L}(x,y) - C_Y(x,y)| = O(e^{-\beta k})$

Sampling of synthetic two-phase material

Two-phase material: χ_I (inclusions) and χ_M (matrix), ϕ volume fraction

$$\chi(\mathbf{x}) = \begin{cases} \chi_I, & \text{if } Y(\mathbf{x}) \ge \sqrt{2 C(0)} \cdot \operatorname{erf}^{-1}(1 - 2 \mathbb{E}[\phi]), \\ \chi_M, & \text{otherwise,} \end{cases}$$

Cast iron with graphite inclusions [Szmytka et al., 17]

 $\nu = 10$

Al-Si alloy with pores inclusions [Charkaluk et al., 14]

 $\nu = 0.5$

Scaling results for adaptive MLMC

Weak scaling for adaptive MLMC

			No. S	Samples	Correlation	ldle
Cores	Mesh	Runtime	Fine	Total	length	time
2 048	1024^{3}	$5.0\cdot 10^3~{ m s}$	68	13 316	1.50E-02	3%
16 384	2048^{3}	$3.9\cdot 10^3~{ m s}$	44	10 892	7.50E-03	4%
131 072	4096^{3}	$5.2\cdot 10^3~{ m s}$	60	10 940	3.75E-03	5%

• Strong scaling for fixed sample numbers

Goal-oriented adaptive surrogate construction

- **Different** types of refinement based on **approximation of the adjoint**:
 - p-refinement: local polynomial order of the surrogate on a Voronoi cell is increased
 - level-refinement: model level of the surrogate on a Voronoi cell is increased
 - h-refinement: new generating points for the Voronoi tessellation are added
- Nine dimensional parameter space (orthotropic material parameters)

	Level 1	Level 2	Level 3	Rel. Error	Run Time (s)
	100	0	0	1.04e-02	6,544
2	102	70	0	5.69e-03	20,572
C.	103	73	49	4.70e-04	35,708

• Simplified problem with two dimensional parameter space

Simplified avascular tumor model

Starting point: Mixture theory for different species α

$$\frac{\partial(\rho_{\alpha}\phi_{\alpha})}{\partial t} + \operatorname{div} \left(\rho_{\alpha}\phi_{\alpha}\mathbf{v}_{\alpha}\right) = \rho_{\alpha}(\operatorname{div} \mathbf{J}_{\alpha} + S_{\alpha})$$

 \mathbf{v}_{α} convective velocity, ϕ_{α} volume fraction, ρ_{α} density, $\rho_{\alpha} \mathbf{J}_{\alpha}$ mass flux, S_{α} source term **Under additional assumptions**, a simplified model can be obtained:

$$\frac{\partial \phi_T}{\partial t} = \operatorname{div} \left(M_T \nabla \mu \right) + \lambda_{\operatorname{prol}} \phi_\sigma \phi_T \left(1 - \frac{1}{K} \phi_T \right) - \lambda_{\operatorname{apop}} \phi_T$$
$$\mu = \Psi'(\phi_T) - \epsilon_T^2 \Delta \phi_T$$
$$\frac{\partial \phi_N}{\partial t} = \lambda_{VN} H(\sigma_{VN} - \phi_\sigma) (\phi_T - \phi_N)$$

K carrying capacity, λ_{apop} apotosis rate, λ_{prol} rate of cellular mitosis, σ_{VN} transition point, λ_{VN} transition rate, ϵ_T interaction length, $\Psi(\phi_T) = E_T \phi_T^2 (1 - \phi_T)^2$ double well potential with energy scale E_T , M_T mobility matrix

Seven parameters have to be calibrated plus additional hyperparameters for the noise

Adaptive calibration for C3A liver cancer cells

Setup 1: Treatment of cell cultures with Mitomycin C to inhibit proliferation Reduction of the PDE system to an ODE of expotential decline with rate λ_{apop}

Setup 2: Nutrient rich environment (concentration of fetal bovine serum (FBS) 10%) Reduction of the PDE system to an ODE of logistic type λ_{apop} , K, λ_{prol}

Setup 3: Nutrient poor environment (concentration below 10% of FBS) Reduction of the PDE system to a coupled ODE system λ_{apop} , K, λ_{prol} , λ_{apop} , σ_{VN}

Setup 4: Tracking of cells treated by green fluorescent protein in a short time interval Reduction of the PDE system to a simple phase-field system M_T , ϵ_T

Bayesian update rule for the posterior: y experimental data, d model values

$$\pi(\theta|y) = \frac{\pi(y|\theta)\pi(\theta)}{\pi(y)}, \qquad \pi(y|\theta) = \prod_{j=1}^{J} \prod_{n=1}^{N} \frac{1}{\sqrt{2\pi\sigma^2}} \exp(\frac{-(y_{ij} - d_j(\theta))^2}{2\sigma^2})$$

 $\pi(\theta)$ prior probability density typical uniform or Gaussian (truncated) $\pi(y)$ is a normalizing factor called model evidence, $\pi(y|\theta)$ likelihood function

Numerical results

• Simulation results versus experimental results for setup 1 (a) and setup 2 (b)

Experimental data is **informative** for the parameters in the simplified sub-models

Summary and conclusion

- Modern architectures **require** reevaluation of performance
- Need for surrogate operators in large scale FE simulations
- Need for surrogate models in complex applications
- Calibration in case of uncertainties benefits from hierarchical strategies

