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Overview

Aspects of simulation technologies for PDEs

Hybrid assembling based on domain partitioning
e Surrogate polynomials for large scale FE

e Local static condensation for patch-wise IGA
Large FE scale simulation

e All-at-once multigrid solver

e Agglomeration for the coarse solver

Error estimation and control

e Adaptive error control for resilience
e Adaptivity in sampling and surrogates
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Aspects of modern simulation technologies for PDEs

Mathematical modelling
The analysis challenge

Local well-posedness of Blackstock wave equation: Let  be an C?!
regular domain and c? b >0, k € R. Assume that |1|JO|§[3+|¢1|§12 < k small

enough. Then there exists a unique solution s € X, satisfying the following
energy estimate 4

I s T2 < S, 2+ 1W122): Numerical Analysis

The algorithmic challenge

dj(Q)[h] = — fonp Qkluup + [c®]Vu - Vp + [b]Vi - Vp)hTn dxdt

Uncertainty Quantification
The stochastic challenge

Peta-scale systems
The HPC challenge

The analysis of PDEs is fundamental for developing efficient numerical schemes

Motivation — 3/45



Aspects of modern simulation technologies for PDEs

Mathematical modelling
The analysis challenge

capillary-tissue coupling

I 1 \

Numerical Analysis
The algorithmic challenge

RS\ WA coupling over the surface
WA VAL \
of each segment

Uncertainty Quantification
The stochastic challenge

Peta-scale systems
The HPC challenge

Multi-scale models are essential for predictive simulation of complex phenomena
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Aspects of modern simulation technologies for PDEs

—100,000 cells/ml Mathematical mOdeIIing
25000 calom The analysis challenge

—10,000 cells/ml
——5,000 cells/ml

o Numerical Analysis
1024 . The algorithmic challenge
512 09 @
- 0.8 E 3
= 256 % Fo07 & 8
E o o6 § g
H \\ N s 3
o 64 F04 8
E 32 \ 03 E
16 \\ z:: B
8 T T T T T T 0 Synchronization point
2048 4096 8192 16384 32768 65536 131072 . — |
Uncertainty Quantification

e==Qptimal @@mMLMC e=Parallel efficiency The stochastic cha"enge

Peta-scale systems
The HPC challenge

Uncertainties increase drastically the computational complexity
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Aspects of modern simulation technologies for PDEs

Numerical Analysis
The algorithmic challenge

Uncertainty Quantification
The stochastic challenge

Peta-scale systems
The HPC challenge

Ep—_—
£ 4"‘

Scalable algorithms are indispensible for exploiting capabilities of HPC architectures
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The computing power development

In the last two decades:

Performance Development e Performance increase by 1000 000
1 EFlop/s e Memory increase by 10000
S 1 PFop/s Fastest supercomputer (Nov 2017):
g o®® : . e st . .
g et The Sunway TaihuLight supercomputer
= 1TFIop/s°'... ‘*‘“‘“ ._."'.. (China), [FU et al. ].6]
A o performance by a factor of ~ 20, ~ 500
- —— Sum — #1 —=— #500
1 GFlop/s_, ="

e but only a factor of ~ 3, ~ 60 in memory
100 MFlops/s 1996 2000 2004 2008 2012 2016

Lists compared to
JUQUEEN (Germany), Hexagon (Norway)

Observations: The classical O(N?®) cost count metric is too simplistic.

Cost for communication and memory traffic cannot be ignored.
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Some challenges for large scale FE

The geometry:
blending from reference to physical domain

The flow solver:
all-at-once MG for saddle point systems

The error control:
adaptivity beyond mesh refinement
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Curved geometries in 3D: two-scale approach

Classical approach: element assembling — sparse matrix format — solve

Uniform refinement for non-polyhedral domains:

e Cheap and well-suited for on-the-fly
but asymptotically wrong

e Optimal complexity and order
but expensive

lllustration of two stencil entries as index functions over a 2D plane

x1078

12
-0.04

i
15
L

-0.05

-0.06

-0.07

-0.08

-0.09 .l
30 30

20 20

ask v o N A o ®
v 1 1 1 / / /

N

25

Observation: Stencil entries are smooth functions within each macro-element
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Cost reduction versus accuracy loss (3D)

Idea: Replace the flop intense B o 06 —99 -0
on-the-fly assembling by the S _3_ 1 =
evaluation of piecewise higher | g
order surrogate polynomials o 8 E
Observation: Drastic cost 5 Jes 2
reduction compared to standard E IR
isoparametric FEM D S SO
#DOF
1.3e-03 3.6e-04 8.9e-05 2.3e-05
3.9e-04 9.4e-05 23e-05 5.7e-06
2.1e-0/ 2.5e-05 5.7e-006 1.4e-06
2.1e-04 1.3e-05 1.5e-06 3.6e-07
Influence of the surrogate order 2.2¢e-04  1.3e-05  5.6e-07  9.0e-08
and macro mesh-size on accuracy quadratic (upper) and cubic (lower)
1.2e-03 3.6e-04 8.9e-05 2.3e-05
To the right: Increase in the number 3.5e-04 9.4e-05 2.3e-05 5.7¢-06
of macro-elements from 60 to 30720 1.0e-04 2.4e-05 5.7e-06 1.4e-06
From top to bottom: Increase in the 6.1e-05 6.2e-06 1.4e-006 3.6e-07
3d refinement level from 2 to 6 0.0e-05 2.1e-00 3.6e-07 8.9e-08
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Abstract framework: transformation

e Transfer of the physical domain €2 by F' onto the reference domain 0

~ DF-K-DFT_.
Sijite; = /quz' - KVoite, = /V¢i' Vo;
2 J

| det DF|
Q

e Exploit a hybrid mesh structure, i.e. unstructured initial mesh and uniform refinement
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e

unstructured coarse mesh (2D) — structured stencil (3D) — transformed uniformly refined mesh (2D

e Replace the stiffness matrix entries per macro-element by a surrogate polynomial
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Convergence rates with respect to H

Theorem: The H!-discretization error is given by
IV(u — )| = O(hP) + O(HI*)

The L?-discretization error is given by
lu —@p| = O(RPTH) + O(HTT2)

p := finite element order, q := surrogate polynomial degree
h := finite element basis support diameter, H := surrogate polynomial support diameter

H?' error (g + 1)-convergence L? error (q + 2)-convergence
100F 1 I I I E— T T T T T
1072 1
—2 |
= A (Unls .
oo | N
g g 1
5 =
?) Q
~ 1076 | | o 10—8 - .
10—10 [ hR -
1078 i i i — I I I I I
1 2 3 4 5 1 2 3 4 5
—logy, H —logy, H
—-o—-q=1-® q=2 e-q=3—+q=14 —-o—-q=1-® q=2 e-q=3—+q=14
--- O(H?)--- O(H?) --- O(H3)--- O(H%)
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Abstract framework: theory and control

Question: How to choose the required polynomial degree ¢?

Idea: Increase q adaptively within an iterative multigrid solver

Basic algorithm

1. Perform V-cycles with a fixed polynomial degree g until stopping Criteria 1 is satisfied

2. Increase polynomial degree g < g + 1 and perform an additional V-cycle
stop if the update satisfies stopping Criteria 2; otherwise go to step 1

Remarks on the selection of the stopping criteria:

Criteria 1: residual, estimator for algebraic error, estimator for total error

Criteria 2: as above or difference to the updated solution with respect to ¢ + 1

standard FE

adaptive surrogate FE

mesh level | L% err. | time[s] | L°err. | final g | time [s] ratio
5 8.69e-06 1.09 | 8.83e-06 5 041 | 38 %
6 2.18e-06 2.89 | 2.55e-06 5 0.65 22 %
I 5.47e-07 9.48 | 5.85e-07 6 2.09 22 %
8 1.37e-07 32.93 | 1.83e-07 6 492 | 15 %
9 3.42e-08 | 136.78 | 3.00e-08 7 18.19 | 13 %
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Surrogate polynomials for more general settings

e The Darcy case for P2 finite elements

L | Err. ref. | eoc | tts[s] || Err. q=4 || Err. ¢ =6 || Err. ¢ = 8 | tts [s]
2 | 3.67E-05 | - 0.00 3.63E-05 3.67E-05 3.67E-05 0.00
3 | 2.94E-06 | 3.64 0.01 2.96E-06 2.95E-06 2.94E-06 0.00
4 | 2.09E-07 | 3.81 0.09 6.28E-07 2.10E-07 2.09E-07 0.02
5 | 1.40E-08 | 3.91 0.82 4 .85E-07 1.41E-08 1.40E-08 0.10
6 | 9.01E-10 | 3.95 6.91 4.68E-07 1.16E-09 9.01E-10 0.61
o The Stokes case with stabilized P1-P1 elements

107° E
: . 107! .
“i 10~ . “i ; 10% -
~ ~

1076 E [ B Lol Lol Lol I

DoFs DoFs DoF's

—e— Reference #—q¢=2—-e—q=4 q:6‘ ’+Reference—l—q:2+q:4 q==6 —e— Reference g =2-e—qg=14 q=2©6
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Patch-wise isogeometric elements

e Use standard isogeometric elements on each patch

1

SANG I s (R S, (N S (R ; e B-splines S7
} } } \ | e maximal regularity
q \ \ e tensorial geometries

e Impose weak continuity conditions at interfaces

e Lagrange multipliers M},
e reference domain

e physical domain

e Saddle point formulation in displacement and surface traction

Elementary references: [de Boor 01], [Schumaker 07], [Cottrell, Hughes, Bazilevs 05], [Hollig 03]
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How to define the Lagrange multiplier space?

e Theoretical aspect: reproduction property of order p — 1 and inf-sup stability
-0.5

—— P2-P1 (unstable)
—— P2-P2 (stable)

NN
\
\\

saddle point (left), standard LM (middle) and biorthogonal (right)

allow for local static condensation and symmetric and positive definite system
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Biorthogonal basis functions

Straightforward computation by a local inversion 0
Low order approximation properties, but optimal for
contact problems:

-0.5¢

- = = B-Spline basis function| |

—— Biorthogonal function
\

Good results for contact problems
in nonlinear elasticity
[Seitz, Farah, Kremheller, W, Popp, Wall 16]

Alternative computation with enlarged support
Optimal approximation properties, suitable for
domain decomposition [Oswald, W 02]

contact force
(=) 5} B [e)} o]
T T T T

1 'l 1 1 1
-1.5 -1 -0.5 0 0.5 1 15
radial position

2 3
g

- = = B-Spline basis function |
—— Biorthogonal function

2 3 4 5
g
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Biorthogonal IGA for contact mechanics

e Mesh study for classical Hertz example (qudaratic NURBS)

10 S U A 10 L
8 - g : 8 - :

(2} 2} ()

3 5 : 3

£ & | =

= = : =

3 3 2 - - 3 2+ -
0 0

I I I I I I I I I I I I I I I
-1.5 -1 -0.5 0 0.5 1 1.5 -1.5 -1 -0.5 0 0.5 1 1.5 -1.5 -1 -0.5 0 0.5 1 1.5
radial position radial position radial position

e Rotating ironing with Coulomb friction and neo-Hookean hyperelastic law

Optimal convergence rates due to reduced regularity of the solution resulting from the
quasi-variational inequality (reproduction property is limited to Py for the LM space)
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A locally constructed biorthogonal basis

Define the coefficients locally by the inverse of the element mass matrix
Glue the basis functions globally together such that supp NV, = supp @ZZ
Idea: enrich the space by orthogonal functions of the same order, | N,z; dz =0

Follow the FEM case [Oswald, W 02] and enlarge the support

;0/ ya ¥, =P, + oz
\ \/\"

-1 !
0 1

z; for p =2

How to define ay; such that local support and p — 1 reproduction property hold?
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The choice of the coefficient

e The locality of the support: Define left center element e;

Ckij:OifNjZOOn €;

results in a support of:

2p + 1 elements

center element

o The reproduction property: Solve a local system for «;;, 2 € I;, #1, =p+1

Z(pl,Nz')Oéij — (pl,%‘)
iEIj
pi, Ll =1,...p+ 1 basis of P,
@; suitable basis of product space

dual basis with extended support

Lemma: The quasi-interpolant Qf := ) .(f, N;)1; is then invariant for P,

A dual approach — 22/45



e primal support: p + 1 elements 1}

e dual support: 2p + 1 elements

Biorthogonal basis functions

[Wunderlich et al, W 18]

Optimal

o]

01454 14

0.12

©

o
o
™

0.0696-

convergence rate

- = = B-Spline basis function
—— Biorthogonal function
0 1 2 3 4 5
e

107 10°
—6—Biorth., ratio 1:1 —6—Biorth., ratio 1:1
102 =0 Trace sp., ratio 1:1 102 =0 Trace sp., ratio 1:1

—&—Biorth., slave coarse —&—Biorth., slave coarse

- Trace sp., slave coarse -0 Trace sp., slave coarse
=107 —o— Biorth., fine slave = 404 —o—Biorth., fine slave
S -G Trace sp., fine slave S -0 Trace sp., fine slave
I |

= 10" = q0°®

10738 1 1078 b

107 1071

1 2 3 4 5 6 7 1 2 3 4 5 6 7

Mesh Level

p=23

Mesh Level

p=2

and local static condensation by biorthogonal basis
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Application to nonlinear elasticity

Neo-Hookian material:
DivFS+b=0 in(
u=0 onI'p,FSN=t onIy

S = 20W /OC second Piola—Kirchhoff stress
C = F'F right Cauchy—Green tensor

F deformation gradient Circumferential Cauchy stress (bulk)
¥ strain energy function 80 1900 3000
_ c -3
\II(C) - C(tr C— 3) + E((det C) T 1) Circumferential Cauchy stress (inclusion)
c, 8 material constants 70000 132500. 195000
) B -
N Domain: Spherical shell with a 45°-

segment removed on the top and bottom

Inclusion: stiffer material on a thin elliptical

crossection

displacement Magnitude Discretization: quadratic NURBS
8.322e-01 0.918 1.003e+00 .
— o — Control points: 104016
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Polynomial stencil approximation

Classical assembling for IGA is quite expensive

e Tensor product structure for 2D IGA-basisfunctions:

A

—_— I —_— e

Drastic cost reduction in assembling possible by surrogate matrix
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Surrogate FE operators in large scale simulation

partly joint work with W. Zulehner (2018)

The solver — 26/45



All-at-once multigrid solver

. A BTl [u /
Abstract saddle point system: [B —C’] [p] - [g]

Different solver strategies:
e preconditioned Krylov space solver (e.g. minres) for indefinite system
e preconditioned Krylov space solver (e.g. cg) for positive definite Schur complement

e all-at-once multigrid for indefinite system

Different smoother strategies:

e Braess—Sarazin type [Braess et al 97]
global saddle point structure

e Vanka type [Vanka 86], [Manservisi 06]
local saddle point structure

e Uzawa type [Gaspar et al. 14], [Zulehner 00-03] A 0
smaller flop and communication count

The solver — 27/45



Convergence result

Smoothing property [Drzisga et al., W 18] A A
Assume that A is symmetric and positive definite. Let A and S be symmetric and
positive definite matrices satisfying

A>A and S>S:=C+BA'BT,
then the following smoothing property holds for a Uzawa type iteration:

TAMY |lzsce < V2n(v —1) || Pallexe, v number of smoothing steps

; . ~1
. A 0 A O | y
with Dy = [O g],M:: Id — [B _S’] A and n(y)ZQ_’/(L(z/—i—l)/2J)'

Proof: Based on abstract framework of Reusken [91].

Theorem: Level independent W-cycle convergence results are then guaranteed.

Remark: The theory can be extended to a variable V-cycle but not to the V-cycle.
Numerical results show that the theory is sharp.
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Parallel efficiency on JUQUEEN

Observation: Parallel efficiency is significantly reduced for huge systems

Step 1: Replace non-scalable Krylov coarse mesh solver by a PETSc solver

e Setup phase: Save matrix in standard CRS format
e MINRES-iteration with block preconditioner

e velocity: AMG preconditioned CG-iteration

e pressure: lumped mass-matrix

e GAMG V(1,0), Chebyshev, 5 lev., threshold 0.01

B smooth [ transfer B MPI comm
B residual [ coarse solve I Comp.
Step 2: master-slave agglomeration on coarse level np: 61440
np DOF red. T]s] coarse | par. eff
30 8.3-10" 1 16.284  0.043 1.00
120 3.3-108 1 16.426  0.050 0.99
960 2.6 - 10° 1 17.084 0.171 0.95
7680 | 2.4 -10% 1 17.310 0.382 0.94
61440 | 1.7-10" | 8 | 17.704 0.877 0.92
B smooth [0 transfer B MPI comm
B residual [ coarse so lve B Comp.

results in a parallel efficiency of more than 90%.
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Adaptive error control for

e No recovery at all:

10° QR = : :
ﬂi —O— Fault-Free
—H— Fault

10—4 |

Residual
Residual

10—12 |

10716 :

Iterations

Laplace

e Algorithmic recovery strategy:

MG solvers

10°®

10~

1078

1012

" I%—e—‘Fault-Fre‘e
—H&— Fault

RY

FAUI‘,T & I#ECO\%E
|

10—16

5 1011 11 15 20

Iterations

Stokes

e Freeze the data on the adjoint lower primitives (Dirichlet 1C)
e Replace the faulty processor by several ones (over balancing)
e Control the catch-up progress (hierarchical residual representation)

Resilience in the solver — 30/45



Dirichlet-Dirichlet recovery strategy

Dirichlet boundary condition on healthy and on faulty domain

1: Solve Au = f by multigrid cycles.
2: if Fault has occurred then
3: STOP solving.

4 Recover Dirichlet boundary data ur,, from row 4
5 Initialize inner values uw g with zero
6:
7 Use ng MG cycles accelerated by superman 7)., to approximate row 5:
8 Arrur = fr — Arrpurg
9 Use ny MG cycles to approximate row 1
10: Ajur = fr — Arrur,;
11: RETURN to row 1 with new values uwy in €27 and ug in Qp.
12: end if
A Amr, 0 0 0 ug fr
0 d - 0 0 ur, 0
0 0 up | = | Jr
0 0 — Id 0 ur 0
0 0 0 Aprp Arr up fr

Question: How to select ny and n;?
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Adaptive tearing and interconnecting

o Error control (left) and local distribution (right)

Hierarchical weighted residual: [Riide 93]

L
=) 1D Ipre]

[=0

Decouple over the interface and use in the
faulty domain only the inner residual

10° : :
— fault-free
— Nno-rec.
1073} adaptiv ||
5
5 10701 .
e £, \ 1oh L
LRI iR s qd BLIMN
R HEEE R B
1079 RREAE R adn s BT A g |
:l;’«;!f ::".\.""s,;.—,- ibaded ';-‘";’f R..'i-"; "'4;4
Y
10—12 | | | |
0 10000 20000 30000

process id

e No recoupling (left) and adaptive recoupling for a superman factor of four (right)

Est. alg. error

FAULT

1078 -

10712 -

10—16 -

N

T T

—6— Global Est
—&— Faulty Est [
—HB— Healthy Est

A AA_AAA

7 10

Iterations

Est. alg. error

FAULT
‘ T
o —6— No Fault
1074 —B— No Rec.
- ©- Rec. Faulty
- == Stop. Crit.
10-4 |- —&— Recovery
1078 |- N
10-12 |- |
__________ B---------
10716 | ~ | |
0 5 7 10 15
Iterations
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The mantle convection model

The physical model consists of conservation of Notation:
momentum, mass and energy o stress tensor
_dive = g p density
. g gravitational acceleration
div(pu) =0 .
u velocity
Oi(pe) + div(peu) = —divq+ pH + 0o : € ¢ internal energy
o _ q heat flux per unit area
Key quantities: velocity u, temperature I', pressure _ _ _
H volumetric radiogenic heat

p, and the mantle viscosity . The density p is given

by the mineralogy via an equation of state: production rate

rate of strain tensor

™.

p=ppT)

The rheology of the mantle is an active field:

o=2u(é—stré-I)—pl, with = p(r, 7€)
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Data from measurements

e QOuter velocity boundary conditions: Plate tectonic reconstruction

el - e

;.5 Williams, Muller, Landgrebe, Whittaker:
GSA Today, 2012

\HH”H
(&)

r
T §:280000
2800.00 E
E =2100.00
210000 g
E £ 140000
| 140000 :
g - 700.00
-700.00 E
E 0.00
0.00

Grand, van der Hilst, and Widiyantoro: ~ Simmons, Myers, Johannesson, Matzel, and Grand:
GSA Today, 1997 Geophysical Research Letters, 2015
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Temperature and depth dependent rheology

Viscosity model according to [Davies et al. 2012]: d4 := 410, 660

1 73
gds forr>1-—d,,
else.

p(r,T) = exp(4.61 2" —2.997)

1—"inner

|ul
35.00
E

2625

Effects of plate
separation
(left)
and
influence of
thickness in the
astenosphere

(right)

[F17.50
-8.75

EO.OO

|U|25 00
%

“18.75
[12.50
6.25

0.00
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Surrogates in stochastic inversion

partly joint work with J.T. Oden, E. Lima, T. Yankeelov et.al. (2017,2018)
and with R. Scheichl and B. Gmeiner (2017)
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Basics: Standard Multilevel Monte Carlo

Model problem: V - (k(z,w)Vp(z,w)) = f(z,w), w €

Sampling from k(z,w) by e.g.:
- Truncated Karhunen-Loéve (KL) expansion [Ghanem et al 91], [Widom 63]
Circulant embedding, [Dietrich et al. 97, Graham et al. 18]

- PDE-based variants,

[Lindgren et al. 11]

Standard Monte Carlo estimator: (@ is the quantity of interest)

A 1 i

VIQn)
N

+ (E[Qh o QDQ

Standard Multilevel Monte Carlo estimator: h := hyp, h; :=1/2h;_1, Qp_, :=0

L

MSE:Z

[=0

Vi@n — Qn,_,]

Ny

+ (E[Qh o Q]>27

[Giles 08, Barth et al. 11, Cliffe et al. 11]
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Fractional PDE-based sampling

Matérn covariance [Matérn 60], [Abramowitz et al. 65] can be sampled solving a PDE:
2 /2 d
(/i — A) Y =0, onR"% [Lindgren et al. 11]

e k= 1/)\ - inverse of the correlation length
e @ =v+d/2 - depends on the smoothness v

e )V - Gaussian white noise with mean zero and variance one

Window technique can be used to approximate Y on a bounded domain 2

0.5

.10—2 Estimated covariance function

e Embed Q@ C By (x.) C B}’ (x.), with J<| —
L =R+ kA o —
o Impose BCson B°(x.), e.g. hom. Neumann o
e Approximate Y by Fourier techniques |
A
Lemma: A priori estimate in terms of k: §
Cy xX, — Cy(x =50, G_Bk % | | | |
Oy () (2, 9) ( ) 3 v 0.2 04 06 0.8 1

Q=(-1,1)%,x€(0,1),y=0
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Sampling of synthetic two-phase material
Two-phase material: x (inclusions) and x s (matrix), ¢ volume fraction

() = DX Y (x) = 2C(0) - erf (1 - 2E [g)),
Xnm, Otherwise,

o ) ; w ®°
:. i 9 A K ) )
Cast iron with i % : - ‘ Al-Si alloy with
graphite inclusions *° [ @ ® Te s pores inclusions
Byb—, iy
[Szmytka et al., 17] 4 » " & [Charkaluk et al., 14]
b 3o Sl
\" L 5|
P, ’ '
03 v » ‘ / a ‘ '} ' -
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Scaling results for adaptive MLMC

o Weak scaling for adaptive MLMC

No. Samples Correlation Idle

Cores  Mesh Runtime Fine Total length  time
2048 10242 50-10°s 68 13316 1.50E-02 3%
16 384 20482 3.9-10®>s 44 10892 7.50E-03 4%
131 072 40963 5.2-103s 60 10 940 3.75E-03 5%

e Strong scaling for fixed sample numbers
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Goal-oriented adaptive surrogate construction

o Different types of refinement based on approximation of the adjoint:
e p-refinement: local polynomial order of the surrogate on a Voronoi cell is increased
e level-refinement: model level of the surrogate on a Voronoi cell is increased

e h-refinement: new generating points for the Voronoi tessellation are added

e Nine dimensional parameter space (orthotropic material parameters)

Level 1 Level 2 Level 3 | Rel. Error Run Time (s)
100 0 0 1.04e-02 6,544
102 70 0 5.69e-03 20,572
103 73 49 4.70e-04 35,708

e Simplified problem with two dimensional parameter space
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® N & o » ® N o o
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Simplified avascular tumor model

Starting point: Mixture theory for different species «

8(p§t¢a) +div (pagaVa) = paldiv Jo + Sa)

Vv, convective velocity, ¢, volume fraction, p, density, p,J. mass flux, S, source term

Under additional assumptions, a simplified model can be obtained:

O o 1
6’—tT =div (M7Vu) + Apoidpepr(1 — ?ng) — Aapop®T

p="V'(¢r) — cr’Adr

8(;‘% = \vnH(ovy — ¢0) (T — dN)

K carrying capacity, ..., apotosis rate, A, rate of cellular mitosis, oy transition
point, Ay transition rate, ¢7 interaction length, ¥(¢1) = E7¢2 (1 — ¢r)? double well
potential with energy scale Er, )+ mobility matrix

Seven parameters have to be calibrated plus additional hyperparameters for the noise

Adaptivity for UQ — 42/45



Adaptive calibration for C3A liver cancer cells
Setup 1: Treatment of cell cultures with Mitomycin C to inhibit proliferation
Reduction of the PDE system to an ODE of expotential decline with rate A\,

Setup 2: Nutrient rich environment (concentration of fetal bovine serum (FBS) 10%)
Reduction of the PDE system to an ODE of logistic type Aipop, /4, Mool

Setup 3: Nutrient poor environment (concentration below 10% of FBS)
Reduction of the PDE system to a coupled ODE system \,,0p, 5, Aprol, Aapop, OV N

Setup 4: Tracking of cells treated by green fluorescent protein in a short time interval
Reduction of the PDE system to a simple phase-field system A\, er

Bayesian update rule for the posterior: y experimental data, d model values

J N 2
W(Q‘y) _ 7.‘-(y|9)ﬂ-(9)7 y‘@ H H eXp (yij - d](9)> )

m(y) 27?02 202

7(6) prior probability density typical uniform or Gaussian (truncated)
7(y) is a normalizing factor called model evidence, w(y|0) likelihood function
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o Simulation results versus experimental results for setup 1 (a) and setup 2 (b)

Numerical results
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o Posterior for \,,0p after setup 1 (left) and setup 2 (
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Experimental data is informative for the parameters in the simplified sub-models
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Summary and conclusion

Modern architectures require
reevaluation of performance

Need for surrogate operators in
large scale FE simulations

Need for surrogate models in
complex applications

Calibration in case of uncertainties
benefits from hierarchical strategies
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