



Design Example 5: Eccentrically Braced Frame

Presented By: Scott M. Adan, Ph.D., PE, SE Principal Adan Engineering, LLC

### **Acknowledgements**

Project Manager:

Rafael Sabelli, Walter P. Moore

Reviewers:

Geoff Bomba, Forell/Elsesser Benjamin Mohr, HOK









#### 2021 IBC<sup>®</sup> SEAOC Structural/ Seismic Design Manual

Volume 4

EXAMPLES FOR STEEL FRAMED BUILDINGS









### **Learning Objectives**

- 1. Understand the design and reference documents associated with EBF construction.
- 2. Understand EBF concepts, parameters, requirements, and configurations.
- 3. Application of the earthquake lateral force provisions.
- 4. Understand the four-step EBF Design process.



### **Distinguishing Features**

- Substantial Capacity for Inelastic Behavior
- Stiffness of CBF
- 240-feet code allowable height



### **Distinguishing Features**

- Capable of large inelastic deformation
- Ductile fuse
- Energy dissipator

Photos taken from "Full-Scale Testing of Transbay Terminal Center Eccentrically Braced Frame Link Beams," 2012 SEAOC Convention Proceedings.





### **Distinguishing Features**

- Stable hysteretic behavior
- Ductility and Energy Dissipation of MRF
- Response Modification
   Coefficient, R = 8



Figure 13 Specimen 1 link global response

Taken from "Full-Scale Testing of Transbay Terminal Center Eccentrically Braced Frame Link Beams," 2012 SEAOC Convention Proceedings.

### **Real World Applications**

### U.S. Courthouse, San Diego

- Built 2013
- \$300 Million
- 463,700 square feet
- 16 Stories
- 22-ft floor heights
- 320-ft total height (>240)
- PBSD



### **Application**

### U.S. Courthouse, San Diego

- 22-ft floor heights
- 320-ft total height (>240-ft)
- PBSD

Courthouse Photos Courtesy of Tom Sabol





### **Earthquake Performance**

### Napa Earthquake, August 24, 2014

- M6.0 6km NW of American Canyon
- Epicenter near West Napa Fault
- PGA: 0.61g
- \$1 Billion Estimated Overall Loss



### **Earthquake Performance**

# Napa County Criminal Courthouse

- Year Built: 1996
- Construction: EBF
- Posting: Green
- EOR: Thornton Tomasetti
- PBSD
- Green Tagged



Three-Story, 45,000-Square Foot, Courthouse

### **Design Standards**

 AISC 7-16 Minimum Loads for Buildings and Other Structures





### **Design Standards**

 ANSI/AISC 341-16 Seismic Provisions for Structural Steel Buildings

ANSI/AISC 360-16 Specification for

Structural Steel Buildings







#### **Reference Documents**

- AISC Steel Construction Manual
- AISC Seismic Design Manual







#### **Distinguishing Features**

- Six-story
- Office Occupancy
- San Francisco
- Site Class D
- Risk Category II
- $S_s = 1.5g$
- $S_1 = 0.6g$



Irregular, cruciform, X, inverted V

### **Potential Configurations**

### Configurations

- End-link V
- End-link two-story X (AISC 341 F3.6e)
- Center-link inverted-V
- Center-link two-story X









#### **Design Parameters**

- Gravity 67.7 psf
- Seismic 77.7 psf
- R = 8.0
- $\Omega_o = 2.0$
- $C_d = 4.0$  ASCE 7 Table 12.2-1



### **Irregularities**

- Reentrant Corners
- Diaphragm
   Discontinuity ASCE 7 Section

12.3.2.1 and 2



### **Configurations**

- 6 vs. 3 Links
- 12 vs. 8 Brace Connections
- Pin Base
- Brace-to-Link
- Beam-to-Column
- Splices
- Material A992 / A572



### **Design Response Spectra**

#### **Considerations**

ASCE 7 Section 12.6, Table 12.6-1

- < 160 feet
- SDC-D
- Nominal Irregularities
- ELF
- $T > T_{max}$



### **Seismic Response**

#### **Considerations**

- Response Coefficient,  $C_s = 0.072$  ASCE 7 Section 12.8.1.1
- Base Shear, V = 521 kips ASCE 7 Section 12.8.1
- Vertical Distribution ASCE 7 Section 12.8.3

| Level           | ${w}_i$ | $h_i$ | $w_i h_i^{\ k}$ | $C_{vx}$ | $F_x$  |
|-----------------|---------|-------|-----------------|----------|--------|
|                 | (kips)  | (ft)  |                 |          | (kips) |
| Roof            | 656     | 72    | 149,870         | 0.188    | 98     |
| $6^{ m th}$     | 1,315   | 60    | 238,330         | 0.299    | 156    |
| 5 <sup>th</sup> | 1,315   | 48    | 179,516         | 0.225    | 117    |
| 4 <sup>th</sup> | 1,315   | 36    | 124,575         | 0.156    | 81     |
| $3^{\rm rd}$    | 1,315   | 24    | 74,438          | 0.093    | 49     |
| $2^{\rm nd}$    | 1,315   | 12    | 30,866          | 0.039    | 20     |
| Total           | 7,231   |       | 797,595         | 1.000    | 521    |

• Horizontal Distribution ASCE 7 Section 12.8.4

### **Seismic Response**

#### Horizontal Distribution ASCE 7 Section 12.8.4

- Rigid Diaphragm ASCE 7 Section 12.3.2
- 5% Offset ASCE 7 Section 12.8.4.2

| Grid | Direction | $d_i$ | $Rd_i$ | $Rd_i^2$ | $V_{i}$      | $V_{\it tai}$ | $V_{xi}$     |
|------|-----------|-------|--------|----------|--------------|---------------|--------------|
| A    | X         | -75   | -75 R  | 5625 R   | $0.50 F_{i}$ | $-0.024 F_i$  | $0.48 F_{i}$ |
| F    | X         | 75    | 75 R   | 5625 R   | $0.50 F_{i}$ | $0.024  F_i$  | $0.52 F_i$   |
| 1    | Y         | -60   | -60 R  | 3600 R   | $0.50 F_{i}$ | $-0.024 F_i$  | $0.48 F_i$   |
| 5    | Y         | 60    | 60 R   | 3600 R   | $0.50 F_{i}$ | $0.024 F_{i}$ | $0.52 F_i$   |

| Level           | Design Story             | Cumulative    |  |  |
|-----------------|--------------------------|---------------|--|--|
|                 | Shear, $V_{xi}$ , (kips) | Shear, (kips) |  |  |
| Roof            | 51                       | 51            |  |  |
| 6 <sup>th</sup> | 81                       | 132           |  |  |
| 5 <sup>th</sup> | 61                       | 193           |  |  |
| 4 <sup>th</sup> | 42                       | 235           |  |  |
| 3 <sup>rd</sup> | 26                       | 261           |  |  |
| $2^{\rm nd}$    | 10                       | 271           |  |  |
| 1 <sup>st</sup> | 0                        | 271           |  |  |

### **Design Procedure**

### **Four Step Process:**

- 1. Preliminary Member Design (Link, Column and Brace)
- 2. Analytical Analysis and Evaluation
- 3. Final Member Design
- 4. Connection Design

### Link Requirements AISC 341.F3.5b

- I-Shaped (Rolled or Built-up) AISC 341.F3.5b(1)
- Box (Built-up no HSS) AISC 341.F3.5b(1)
- Highly Ductile per AISC 341.D1.1
- I-Shape Flange Exception AISC 341.F3.5b(1)
- Shear Yielding  $e < 1.6 M_p/V_p$
- Flexural Yielding  $e>2.6 M_p/V_p$
- Shear Yielding Estimate:  $e < 1.3 M_p/V_p$

## **Link Size and Length**

- $V_r = V_2 h_{st} / L = 108 \text{ kips}$
- Equation F3-2
- $A_{tw} = V_r / \phi_v 0.6 F_y$ = 4.0 in.<sup>2</sup>
- W10x68

$$V_p = 0.6 F_y A_{tw} = 125$$
 kips Eq. F3-2  
 $M_p = F_y Z = 4265$  kip-in. Eq. F3-8

- $e = 1.3 M_p / V_p = 44 in.$
- Say 48 in.



## **Link Optimization**

- Elements Other Than Link Intended to Remain Elastic
- AISC 341 Section F3.3 Requires Link Strength "Adjustment"
- 1.25 for I-Shaped Links, 1.4 for Box
- Adjusted Shear Strength,  $V_{mh}$
- $V_{mh} = 1.25 R_y V_p = 172 \text{ kips}$

## Link Built Up Sections

- W10x68 Too Large For Upper Floors
- Web to Flange CJP AISC 341.F3.5b(1)
- CJP Demand Critical AISC 341.F3.5b(1)
- Plate Material and Fabrication
- 3-4 Times Cost of Rolled Section (B. Manning)

Preliminary Link Beam Sizes:



### Brace Size AISC 341.5b

- Adjusted Shear Strength, V<sub>mh</sub>
   AISC 341.F3.3
- Moderately Ductile
- Beam-Column Design Estimate (Pin vs Fixed)



- $V_{mh} = V_{mh} (L/L-e) = 198 \text{ kips}$
- $M_{mh} = V_{mh}$  (e / 2) = 344 kip-ft

## **Brace Size**

- Axial,  $P_r = R_{mh} / \phi_c(\sin \beta) = 324 \text{ kips}$
- Moment,  $M_r = 0.50 \ M_{mh} / \phi_c = 191 \ \text{kip-ft}$
- AISC Manual Table 6-1,  $L_b = 17$  ft
- AISC SDM Table 1-3
- W10x77

## Column Size AISC 341.5a

- Highly Ductile
- Three link reduction, 0.88 AISC 341.F3.3(1)(b)
- No Simultaneous Strain Hardening
- $R_{mh} = V_{mh} (e / L e) = 26.5 \text{ kips}$

### **Column Loading**

- $R_{mh} = V_{mh} (e/L-e)$ = 26.5 kips
- $P_{Emh} = 0.88 (\Sigma V_{mh} R_{mh})$ = 531kips

$$P_r = 1.4 D + 0.5 L + 1.0 E$$
  
= 980 kips

$$M_{Emh} = 0.15 (0.88) M_{mh} / \phi_b$$
  
= 50.4 kip-ft



#### **Column Size**

- AISC Manual Table 6-1,  $L_b =$  11 ft
- AISC SDM
   Table 1-3
- W12 x 96



### **Design Procedure**

### **Four Step Process:**

- Preliminary Member Design (Link, Column and Brace)
- 2. Analytical Analysis and Evaluation
- 3. Final Member Design
- 4. Connection Design

### **Analytical Analysis and Evaluation**

### **Analysis Verification**

- Drift Limits
- P-Delta Effects
- Link Rotation Angle AISC 341.F3.4a
- Output Member Forces

### **Analytical Analysis and Evaluation**

### **Computed Period**

T = 1.16s, 1.25s (Invert V, 2SX)

#### **Drift Limits** AISC 341.B1

- $\Delta_a = 0.020 h_{st} = 2.88$  in. ASCE 7 Table 12.12-1
- $\delta_x = \Delta_2 \Delta_1 = C_0 \delta_{xe} / I_e$ = 1.39 in. ASCE 7 Eq. 12.8-15

If 
$$\delta_x > \Delta_a$$
  
Ignore  $T_{max} = 1.05$ , Use  $T_{ASCE 7 12.8.6.1 \& 2}$ 

## **Analytical Analysis and Evaluation**

#### P-Delta Effects ASCE 7 Section 12.8.7

- $\theta = P_x \Delta I_e / V_x h_{sx} C_d \le 0.10$ Vertical Load Designs IBC Table 1607.1
- $P_2 = \Sigma D + \Sigma L = 10,077 \text{ kips}$
- $\theta = 0.07 \le 0.10$

## **Analytical Analysis and Evaluation**

## **Link Rotation Angle**

AISC 341.F3.4a, Figure C-F3.4

Plastic Story Drift Angle

- $\theta_p = \Delta_p / h_{st} = 0.007$ Link Rotation Angle
- $\gamma_p = (L/e) \theta_p$ = 0.05 < 0.08



$$\gamma_p = \frac{L}{e} \theta_p$$

#### **Design Procedure**

#### **Four Step Process:**

- Preliminary Member Design (Link, Column and Brace)
- 2. Analytical Analysis and Evaluation
- 3. Final Member Design
- 4. Connection Design

**Preliminary Member Design** 

#### **Final Sizes**



## **Design Procedure**

#### **Four Step Process:**

- Preliminary Member Design (Link, Column and Brace)
- 2. Analytical Analysis and Evaluation
- 3. Final Member Design
- 4. Connection Design

# Considerations AISC 341.F3.5b(4)

- Link End Stiffeners
- Link Intermediate
   Stiffeners
- Stiffener Weld Requirements
- Brace-To-Link
- Final Link Design
   Check



#### Link End Stiffener AISC 341.F3.5b(4)

- $W_{min} = (b_f 2t_w) / 2 = 4.6$  in
- $t_{min} = 0.75 \ t_w \ge 3/8 \ \text{in} = 0.35 \ \text{in}$

#### Link Intermediate Stiffener AISC 341.F3.5b(4)

Given  $e < 1.6 M_p/V_p$ For  $\gamma_p = 0.08$ ,  $s = (30t_w - d/5) = 12.0$  in For  $\gamma_p \le 0.02$ ,  $s = (52t_w - d/5) = 22.4$  in Therefore, for  $\gamma_p = 0.05$ , s = 17.2 in



#### **Possible Alternatives:**

- Welded Flange Plate (WFP)
   not prequalified
- Welded Unreinforced
   Flange (WUF) geometric compatibility, overhead groove welding, preheat and HAZ
- Pin Connection stiffness reductions, brace options



## **Alternative Connection Designs**



#### Beam-to-Column AISC F3.6b.(a) and (b)

- Beam Segment Is Elastic
   (Outside the Link) AISC 341.F3.5a user note.
- Shall Accommodate Inelastic Drift
- WUF-W Example 2, Figure 2-11

#### Beam-to-Gusset AISC F3.6b.(a) and (b)

- Beam Segment Is Elastic
   (Outside the Link) AISC 341.F3.5a user note.
- Shall Accommodate Inelastic
   Drift
- WUF-W Example 2, Figure 2-11

## Link Stability AISC 341.F3.4b.

- Brace Both Flanges
- End of the Link
- Strength and Stiffness AISC 341.D1.2c
- Similar to SMF Design Example 1 Section 5.3



#### Inelastic Strain AISC 341.F3.5c., 12.1

 Protected Zones (Link, Column Base, Column Splice, WUF-W)

#### Quality Requirements AISC 341.J, AISC 360.N

Quality Assurance Plan (QAP)

## **Design Procedure**

#### **Four Step Process:**

- Preliminary Member Design (Link, Column and Brace)
- 2. Analytical Analysis and Evaluation
- 3. Final Member Design
- 4. Connection Design

#### **Items Not Addressed**

#### **Not Addressed**

- Comparison of Wind and Seismic Forces
- Collector Elements
- Column Splice
- Column Base Connection
- Foundations
- Diaphragm System

## **Questions?**



