

A non linear preconditioner for coupling transport with chemistry in porous media

Laila AMIR¹ & Michel KERN²

¹ Faculty of sciences and technology, Marrakech, Morocco ² INRIA Paris, France

SIAM (GS19) Houston, Texas, USA (March 13, 2019)

Laila AMIR & Michel KERN Reactive transport

Outline

Chemical laws and transport equation

- Chemical laws in the equilibrium
- Chemical and transport equations

Coupled models

- Coupling by global approach
- Using Newton-Krylov methods

Non linear and linear preconditionning

- Block Jacobi and Block Gauss Seidel
- Elimination of some unkowns

Numerical results

- MoMaS Benchmark (1D configuration)
- EX11 Phreeqc (2D configuration)

Goals of this work

- Study **preconditioning** methods for the linearized coupled problem, and their **relationship** to **elimination methods** where the **mobile concentrations are eliminated**
- Obtain methods (Newton and GMRES) with convergence independent of the mesh size.
- Application to 1D and 2D configurations

Previous work

- Solve reactive-transport models by Newton-Krylov,
- Keep transport and chemistry modules separate,

Chemical laws in the equilibrium Chemical and transport equations

Chemical reactions in the equilibrium

We can write \Rightarrow Chemical system

$$egin{aligned} &\sum_{j=1}^{N_{s}}(S_{cc})_{ij}\mathbf{X}_{j} \leftrightarrows 0 & i=1,\ldots,N_{r}\ &\sum_{j=1}^{N_{s}}(S_{ar{c}c})_{ij}\mathbf{X}_{j}+\sum_{j=1}^{ar{N}_{s}}(S_{ar{c}ar{c}})_{ij}ar{\mathbf{X}}_{j} \leftrightarrows 0 & i=1,\ldotsar{N}_{r}, \end{aligned}$$

 $(X_j)_{j=1,...,N_S}$ mobile species and $(\bar{X}_j)_{j=1,...,\bar{N}_S}$. immobile species

Condensed form

$$S\begin{pmatrix}\mathbf{X}\\\bar{\mathbf{X}}\end{pmatrix} = \begin{pmatrix}S_{cc} & 0\\S_{\bar{c}c} & S_{\bar{c}\bar{c}}\end{pmatrix}\begin{pmatrix}\mathbf{X}\\\bar{\mathbf{X}}\end{pmatrix} \leftrightarrows \begin{pmatrix}0\\0\end{pmatrix}$$

Chemical laws in the equilibrium Chemical and transport equations

Chemical and advection-diffusion equations

Ideal solution : activity = concentration.

We denote by \mathbf{c}_j (resp. $\mathbf{\bar{c}}_j$) the concentration of species \mathbf{X}_j (resp. $\mathbf{\bar{X}}_j$).

Mass action law (logarithmic form)Mass conservation
$$\begin{pmatrix} S_{cc} & 0\\ S_{\bar{c}c} & S_{\bar{c}\bar{c}} \end{pmatrix} \begin{pmatrix} \log \mathbf{c}\\ \log \bar{c} \end{pmatrix} = \begin{pmatrix} \log K\\ \log \bar{K} \end{pmatrix},$$
+Mass conservation $\phi \partial_t \mathbf{c} + \mathcal{L}(\mathbf{c}) = S_{cc}^T r + S_{\bar{c}c}^T \bar{r},$ $\phi \partial_t \bar{\mathbf{c}} = S_{\bar{c}\bar{c}}^T \bar{r},$

where \mathcal{L} denotes the advection–diffusion operator :

Advection-diffusion operator (2D)

$$\mathcal{L}(\mathbf{c}) = -\operatorname{div}(\mathbf{D}\operatorname{grad}\mathbf{c}) + \operatorname{div}(\mathbf{uc})$$

Chemical laws in the equilibrium Chemical and transport equations

Mass conservation with total concentrations

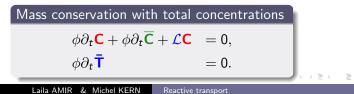
Elimination of the reaction rates

We follow the approach of Saaltink et al. [Water Resour. Res., 1998] by introducing a kernel matrix U such that $US^T = 0$. We can choose U of the form $\begin{pmatrix} U_{cc} & U_{c\bar{c}} \\ 0 & U_{\bar{c}\bar{c}} \end{pmatrix}$,

We define the total analytic concentration, the total mobile and immobile concentrations for the species as :

$$\mathbf{T} = \mathbf{C} + \mathbf{\bar{C}}, \quad \mathbf{C} = U_{cc} \mathbf{c}, \quad \overline{\mathbf{C}} = U_{c\bar{c}} \mathbf{\bar{c}},$$

The system of the mass conservation can be rewritten as



Chemical and transport equations

The chemical equilibrium problem

The subsystem formed by :

Mass action laws

$$\begin{pmatrix} S_{cc} & 0\\ S_{\bar{c}c} & S_{\bar{c}\bar{c}} \end{pmatrix} \begin{pmatrix} \log \mathbf{c}\\ \log \bar{c} \end{pmatrix} = \begin{pmatrix} \log K\\ \log \bar{K} \end{pmatrix},$$

$$+ \begin{array}{c} \text{Definition of the totals} \\ \begin{pmatrix} \mathbf{T}\\ \mathbf{\bar{T}} \end{pmatrix} = \begin{pmatrix} U_{cc} & U_{c\bar{c}}\\ 0 & U_{\bar{c}\bar{c}} \end{pmatrix} \begin{pmatrix} \mathbf{c}\\ \bar{\mathbf{c}} \end{pmatrix}.$$

is a closed system that enables computation of the individual concentrations \mathbf{c} and $\mathbf{\bar{c}}$ given the totals \mathbf{T} and \mathbf{T} .

$$\begin{array}{ll} \mbox{The chemical sub-problem as a function} \\ \Psi_{\sf C}: & {\sf R}^{\it Nc} \rightarrow {\sf R}^{\it Nc} \\ & {\sf T} \mapsto \Psi_{\sf C}({\sf T}) = \bar{\sf C} = U_{c\bar{c}} \, \bar{\sf c} \end{array}$$

its jacobian

$$J_C = \mathbf{\Psi}_{\mathbf{C}}'(\mathbf{T}_{:j})_{j=1,\dots,N_h}$$

Coupling by global approach Using Newton-Krylov methods

The coupled formulation

Transport equation

 $A\mathbf{c}^{n+1} = B\mathbf{c}^n + M\Delta t q^{n+1},$

Chemistry is local \Rightarrow we can eliminate the individual concentrations at each point by using the operator ψ_C . This only leaves **C**, \overline{C} , **T** as unknowns :

Coupled formulation

$$\begin{split} \phi \partial_t \mathbf{C} + \phi \partial_t \bar{\mathbf{C}} + \mathcal{L}(\mathbf{C}) &= 0, \\ \mathbf{T} &= \mathbf{C} + \bar{\mathbf{C}}, \\ \bar{\mathbf{C}} &= \psi_{\mathbf{C}}(\mathbf{T}). \end{split}$$

Non linear system

$$f\begin{pmatrix} \mathbf{C} \\ \mathbf{T} \\ \bar{\mathbf{C}} \end{pmatrix} = \begin{pmatrix} (A \otimes I)\mathbf{C} + (M \otimes I)\bar{\mathbf{C}} - \mathbf{b}^n \\ \mathbf{T} - \mathbf{C} - \bar{\mathbf{C}} \\ \bar{\mathbf{C}} - \Psi_C(\mathbf{T}) \end{pmatrix} = 0$$

with $\mathbf{b}^n = B\mathbf{C}^n + M\bar{\mathbf{C}}^n$.

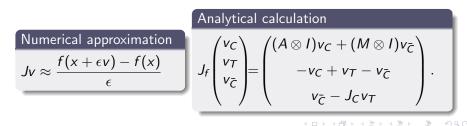
Coupling by global approach Using Newton-Krylov methods

Using Newton Krylov method

Storage of Jacobian matrix is expensive, size of matrix is $3N_xN_c \times 3N_xN_c$

Use inexact Newton method :

- Solve the linear system by an iterative method (GMRES),
- Approximation of Newton direction: $||f'(x_k)d + f(x_k)|| \le \eta_k ||f(x_k)||$
- GMRES require only Jacobian matrix by vector products,



Block Jacobi and Block Gauss Seidel Elimination of some unkowns

Linear preconditionning

Since the Jacobian matrix isn't explicitly computed, and in our model J_f has a block structure, we choose a preconditioner defined by block.

Block Jacobi	Block Gauss Seidel
$ \begin{split} \mathbf{P}_{\mathbf{B}\mathbf{J}}^{-1} \mathbf{J}_{\mathbf{f}} \mathbf{v} &= \\ \begin{pmatrix} v_{C} + ((\mathbf{A}^{-1}\mathbf{M}) \otimes \mathbf{I}) \mathbf{v}_{\overline{\mathbf{C}}} \\ v_{C} + v_{T} - v_{\overline{C}} \\ -J_{C} v_{T} \end{pmatrix}, \end{split} $	$ \begin{array}{l} \textbf{P}_{\text{BGS}}^{-1} J_{f} \textbf{v} = \\ \begin{pmatrix} v_{\mathcal{C}} + & \left(\left(\textbf{A}^{-1} \textbf{M} \right) \otimes \textbf{I} \right) \textbf{v}_{\bar{\textbf{C}}} \\ v_{\mathcal{T}} - v_{\bar{\mathcal{C}}} & + & \left(\left(\textbf{A}^{-1} \textbf{M} \right) \otimes \textbf{I} \right) \textbf{v}_{\bar{\textbf{C}}} \\ v_{\bar{\mathcal{C}}} - J_{\mathcal{C}} v_{\bar{\mathcal{C}}} + J_{\mathcal{C}} \left(\left(\textbf{A}^{-1} \textbf{M} \right) \otimes \textbf{I} \right) \textbf{v}_{\bar{\textbf{C}}}. \end{pmatrix} \end{array} \right) $

• Neither A^{-1} nor the Kronecker product are computed.

• $\mathbf{w} = ((\mathbf{A}^{-1}\mathbf{M}) \otimes \mathbf{I}) \mathbf{v}_{\overline{\mathbf{C}}}$ is computed by solving $\mathbf{A}\mathbf{W} = \mathbf{M}\mathbf{V}_{\overline{\mathbf{C}}}^{\mathsf{T}}$ with $v_{\overline{\mathbf{C}}} = \operatorname{vec}(V_{\overline{\mathbf{C}}})$, and $w = \operatorname{vec}(W)$.

Block Jacobi and Block Gauss Seidel Elimination of some unkowns

Non linear preconditionning

Elimination of the unkowns T

Elimination of the unkown T from the original system leads to a system with only C and \bar{C} as unkowns.

Elimination of the unkowns T and C

$$h(\overline{\mathsf{C}}) = \overline{\mathsf{C}} - \Psi_{\mathcal{C}} \Big((A^{-1} \otimes I) (\mathbf{b}^n - (M \otimes I)\overline{\mathsf{C}}) + \overline{\mathsf{C}} \Big) = 0.$$

the Jacobian by vector product

$$J_h v = v - J_C J_T v = v - J_C v + J_C ((\mathbf{A}^{-1}\mathbf{M}) \otimes \mathbf{I}) \mathbf{v}.$$

Block Jacobi and Block Gauss Seidel Elimination of some unkowns

Elimination as a block factorization of the Jacobian

Elimination seen as a linear change of variables, with matrix

$$B = \begin{pmatrix} I & 0 & (A^{-1}M) \otimes I \\ 0 & I & -(I - A^{-1}M) \otimes I \\ 0 & 0 & I \end{pmatrix}$$

Leads to a block factorization of original Jacobian

$$J_{f} = J_{\tilde{f}}B = \begin{pmatrix} A \otimes I & 0 & 0 \\ -I & I & 0 \\ 0 & -J_{C} & \mathbf{J_{h}} \end{pmatrix} \begin{pmatrix} I & 0 & (A^{-1}M) \otimes I \\ 0 & I & -(I - A^{-1}M) \otimes I \\ 0 & 0 & I \end{pmatrix}.$$

Links between elimination and block preconditioning

 J_h is Schur complement of J_f , both BJ and BGS replace J_h by I

Laila AMIR & Michel KERN

Reactive transport

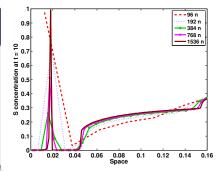
MoMaS Benchmark (1D configuration) EX11 Phreeqc (2D configuration)

MoMaS Benchmark : 1D easy advective case

1D MoMaS Benchmark, [Results : Comp. Geosc. (2010)]

Synthetic benchmark for reactif transport with **significant numerical difficulties** :

- Large variations in equilibrium constants,
- Large stochiometric coefficients,



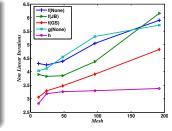
イロト イボト イヨト イヨト

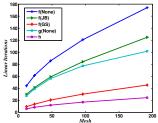
- Our results are in good agreement with those of other teams.
- Intensity of the peak and its localization are close to the reference solution (Ix=0.0175, S=0.985)

MoMaS Benchmark (1D configuration) EX11 Phreeqc (2D configuration)

Influence of preconditioning strategies

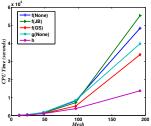
* the alternative formulation *h* has the smallest number both for NL. and L. iterations.
* independence of the mesh size.





h requires less CPU time then other methods.
* Good efficiency of *h*, with BGS precond. as a distant second.

* the **BJ precond. and** g (elimination 1 unknown) **does not bring an improvement**;

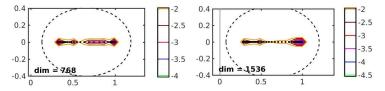


MoMaS Benchmark (1D configuration) EX11 Phreeqc (2D configuration)

Mesh independance convergence of GMRES: field of value explanation

Convergence of GMRES depends of Field of Values

$$W(J_h) = \left\{ rac{x^* J_h x}{x^* x}, x \in \mathbf{C}, x
eq 0
ight\} . [Eigtool(Embree, Trefethen)]$$



Field of values and pesudo-spectra of J_h for $N_x = 768$ and $N_x = 1536$.

The field of values is inside of the dashed curves, it is bounded away from zero, indepently of mesh size.

MoMaS Benchmark (1D configuration) EX11 Phreeqc (2D configuration)

Application to 2D with h formulation

Test case : EX11 Phreeqc (2D)

The injection of *CaCl*² occurs only on part of the left boundary, giving rise to 2D solution.

$$\bar{C}_{BC} = [6 * 10^{-4} , 0 , 1.2 * 10^{-3} , 0]$$

Results

* Chlorine (CI^{-}) is a perfect tracer. Our results show a **good agreement** with the analytical solution [Feike and Dane 1990]. * Ca^{2+} reacts with X^{-} \Rightarrow a disappearance of *KX* and *NaX* \Rightarrow the increase of *K*⁺ and *Na*⁺.

Ca2+ 0.010 0.005 Na+ 0.010 0.005 d-0.010 0.005 К+ n meters 0.010 0.005 0.02 0.04 0.06 0.08 x in meters

t=0.08333 (hrs)

Laila AMIR & Michel KERN

MoMaS Benchmark (1D configuration) EX11 Phreeqc (2D configuration)

Conclusion and perspectives

- An alternative formulation and block preconditioners were used to accelerate the convergence of the Krylov method.
- The alternative formulation requires less CPU time, and the number of linear and non linear iterations becomes independent of the mesh.
- The alternative formulation is applied to **2D test case for ion exchange**, and it gives a good results.
- More studies and tests are under way for 2D configuration
- Extensions to handle kinetic reactions.

Some references

L. Amir, M. Kern

A global method for coupling transport with chemistry in heterogeneous porous media Computational Geosciences, 14 (3), 2010

L. Amir, M. Kern

Preconditioning a coupled model for reactive transport in porous media Int. J. Num. Anal. & Modeling, 16 (1), 2019

S. Lopez, R. Masson, L. Beaude, N. Birgle, K. Brenner, M. Kern, F. SmaÃ⁻, F. Xing

Geothermal Modeling in Complex Geological Systems with the ComPASS Code. Stanford Geothermal Workshop 2018 - 43rd Workshop on Geothermal Reservoir Engineering, 2018.

Vertex-centred discretization of multiphase compositional Darcy flows on general meshes ComputationI Geosciences 16 (4), 2012

J. Carrayrou, M. Kern, P. Knabner

Reactive transport benchmark of MoMaS ComputationI Geosciences 14 (3), 2010

M. W. Saaltink, C. Ayora, J. Carrera

A mathematical formulation for reactive transport that eliminates mineral concentrations Water Resources Research 34 (7), 1998 $\hfill \hfill \hfill$

Laila AMIR & Michel KERN

EX11 Phreeqc (2D configuration)

MoMaS Benchmark (1D configuration) EX11 Phreeqc (2D configuration)

- Code ComPASS (BRGM and LJAD-INRIA)
 C. Guichard, R. Eymard and R. Masson, L. Beaude, ...
- VAG scheme (Vertex Approximate Gradient scheme) C. Guichard and al. 2012