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« Michael Langston, UTK

» Blair Sullivan, NC State

« PhD Students who conducted research




Logistics: Guidelines, Assumptions, Homework

From STAM CSE Organizers

« Broadly accessible
= CSFE applications

» Technical insights Assumptlions: Audience has little
« Technical challenges knowledge about graph analytics

» Solving the challenges butl infinile intelligence.

« Future perspective
« Student training

Homework: Email me (samalova@csc.ncsu.edu) questions/suggestions.




Textbook Written Entirely by
NC State Computer Science Students

* ~40 graduate students
» ~20 undergraduate students

« Co-editors: PhD students
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http://www.crepress.com/product/isbn/9781439860847
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2013 Facts Hunt per Month

1.9 Exabyte global mobile dala trafhic

. 8.2 Petabyvte photos added to Facebook

. 5.8 Trillion cmails
. 149 Billion searches on Google
. 5.2 Billion hours of video walched

. 1.3 Billion dollars advertising revenune of Google

httn:/ /www factshunt.com/ 2014/ 01/ world-wide-internet-usage-facts-and.html




How Big is the Internet?

* 14.3 Trillion - Webpages, live on the Inlernet.

* 48 Billion - Webpages indexed by Google.Inc.

« 14 Billion - Webpages indexed by Microsofl's Bing.

* 672 Exabyvles - 672,000,000,000 Gigabyles (GB) of accessible dala.
* 43,639 Pelabyles - Tolal World-wide Internel Traffic in 2013.

* Over 1 Yolla-byvle - Tolal dala stored on the Inlernet

1 Yotta-byte = 10%* =
1,000,000,000,000,000,000,000,000 Bytes!

http:/ /www factshunt.com/2014/01/world-wide-internet-usage-facts-and.htmi




How Big is Scientific Data?

1PB/vear 20-40TB/simulation 30TB/day

‘\

Climate Astrophysics Cosmology

My laptop:
512 GB (GigaBytes) — 512*10° Bytes

1 TB (TeraByte) — 10'? Bytes
1 PB (PetaByte) — 10'5 Bytes




How to Move and Access the Data?
Technology trends are a rate hmating factor.

Wilh the current trends in lechnology,
moslt of these data will NEVER be touched!

Data doubles every 9 months;
CPU —2 years; Memory — 6 vears.

Performance Gap

e Naturally distributed
2 " || pemory m  but effectively immovable
ES 10000 .
S% Storage @B Performance
S& 000 ' =
=3 o o
S Streaming/Dynamic
l but not re-computable
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What Analysis Methods to Use? ‘@

Analysis methods fail for a few gigabvtes.

Method Complexity: Algorithm Complexily
Calculate means O(n) n nlog(n) | n?
Calculate FFT O(n log(n)) |

“10 gaage -8
Calculate SVD O(r s ¢) iy ai
Clustering algorithms O(n*) | 10-® seec. | 107sec.

1075 Sec. | 1 Ssec.

If n=10GB, then what
is O(n) or O(n?) on a
teraflop computers?

103 see. | 3 hrs

0.1 Sec.

1GB = 10° bytes
1Tflop = 107 opl/sec

For illustration chart assumes 10-2 sec.
(1THlop/sec) calculation time per data point




How to Make Sense of Data?

Know Your Limits & Be Smanrt!

Nol humanly possible Lo browse a pelabyle of dala.
Analysis musl reduce dala lo quanlilies of inlerest.

Computations:
Must be smart about which
probe combinations Lo see!

Physical Lxperiments:
Must be smart aboul probe
placement!

More analysis
To see 1 percent of a petabyte at 10 megabytes per second takes:
35 8-hour days!




It is not just the Size

Pop u!lllﬁ -
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Data Describes Complex Patterns/Phenomena

| How lo untangle the riddles of the complexily? I

~ r Sinale Analytical tools that find the “dots”
. i i ingie gene
Jr,np . A from data signiﬁmnﬂy reduce data.

— “,
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The Data Science Challenge

Challenge: How Lo “connect the dols” o answer importanl guestions?

I'inding the Dots Connecting the Dots Understanding the Dots
Raw Cata m ~ Fmﬂ! tor IDC Manon

B

| . E’*q_.i B

Massive Data Data Science Challenges Providing Data-Driven

Climate; * | luge dimensional space Actionable Deecisions
5-10 Petnbiytes/year «Combinatorial challenge ¢ Produce bioenergy
S -  Stubilize CO

$000 Megabyles/2 uun *Complicaled by noisv dala JHRNIE WL

*Requires high-performance * Clean toxie waste
networks, disks, computers,...




Challenges of Data Science

» Scalability

+ Dimensionality

+ Complex and Heterogencous Data

» Data Quality

« Data Ownership and Distribution

* Privacy Preservation and Other Ethical Issues
» Streaming/Dvnamic/Distributed Data




Trends in Data Science Research

Multiple Non- Non- r : Data

Hy pat hesis domains Linear Stalionary Caunsal Mulli-seale Slamnen.
imp H H H H H l N
Simple | ‘

Dala Single Linear || Stationary | Associative || Single/few | Complex

. domain scales || Dala

" _/' \_ _’,‘ \ _/; ll“\-. _,-"l \ {J;'.

Application Drivers i
Health risk-aware energy systems

Waler management policies as climate change adaptation
Environmentally influenced human diseases

Sustainable local foods & health in changing climate
Adaptation o climale extremes at regimnl'lnddemdnlsmles)
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Big Data: The next frontier for leadership

In this "Era of Big Data" it is obvious that whoever controls

the data-to-knowledge transformation controls the science & technology.  |RSASISLIEE

From data-poor to data-rich transformation

$100 billion data management and analytics sector
economy, growing at almost 10 percent per year,
twice as fast as the software sector as a whole
(Cukier 2010)

-

" The world ... has changed ... data- IA :_“':i IPCt:ﬁmlam
intensive science [is] so different that itis W' === " 5798 of data
worth distinguishing [it] ... as a new, W
fourth paradigm for ... exploration.” =%

--Jim Gray

MeKinsey & Co.




Implications of 5Vs of Big Data

D"-Tﬂlld‘i ﬁ:‘] “lﬂl‘;' Powerful analytic lechniques
s isticale ic ivi i
SRR Veiociy] AT® the privilege of an elile

workflows are growing. group of experts, who are in

Fundamental principles
(e.g., overfitting, training
bias) are easily

overlooked. Tmproper use ol analytic techniques leads

lo erroneous or [lawed business decisions
or scientifie discoveries.




How to represent data mathematically?
Data Object & its Features—> Data Model

Different techniques require different

abstractions for data representation:

— Scalar

R - Seitors Not one hal fits all
— Vectors 2 .

= Aclsvansven Multiple representations
e P Matriora are nom:lcd
—  Sets They are related but oflen
—  Graphs, networks in complementary way
-  Tensors

— Time serics

- Topological manilolds
= - Sets

Mathemalical Data Represenialion (Data Model)

=11 ‘1‘




Big Data problems need Graph Analysis

[Tcalth Care « Finding outbreaks, population epidemiology
s ol N[5, 10 % -8 - Advertising, searching, grouping, influence

Intelligence « Decisions at seale, regulating algorithms

Syslems Bi()l()gy » Understanding interactions, drug design
Power Gnid « Disruptions, conversion
Simulation « Diserete events, eracking meshes

Graphs are a unifying motif for data analysis.

Source: David A. Bader



Why Would Graph Data Analytics Matter?

Enables solving many large-scale data problems

Draws ideas [rom manv lields:

« Machine Learning and Al
» Dala Mining

- Pattern Recognition

» Database systems

« Stalistics

- Mathematics

» Graph Theory

Dilltl'llllt‘llbl\?f Apps (.xraph Data Analytices Aectionable Intelligence

* Dala reduction
« Caplure inter-connections

- Powerful data model

LLmergency response to
weather extremes

Real-time fmud preventlions
Cyberallack delection

[1calth carc monitoring &
forecasting patient’s stale




The taste of Graph Data Analytics...

Like a dim-sum meal




Graph Data Analytics
PART I: STATIC SINGLE GRAPH




The Curse & Blessings of Intractability

"Problems that would otherwise be impossible
to solve can now be computed, as long as one
settles for what happens on the average.” - J.
F. Traub and H. Woz "niakowskI

Alan Turing, 1036

One of the mathematical achievements of the last century was
the idea that mathematical problems mavbe undecidable, non-

computable, or intractable (Turing, Godel, Church).

Manv data-related problems are intractable
computationally, even on a supercomputer.

Blessings of Intractability
® Randomization-based feasibility

® Average-case complexity
“Breaking Intractability,” SCTENTIFIC AMERTCAN, Jannary 1994

Stagislaw M. Ulam
Nicholas Metropolis




Examples: Intractable Problems

network homology, protein 3-d structure
| matching) are computationally intractable.

Routine Questions:
Identify a minimum set of genes to
knockont to disrupt a set of biochemiecal
pathways (Minimum Vertex Cover);

Many problems (discovery of disease genes, ] "

These questions are
NP-hard problems!

Discover pathways that are similar to a G = 3 :
given signaling pathway (Sub-graph h"aP ts b'-"' ;;’GI ﬁven
Isomorphism); ave to be 22

Find all co-expressed gene clusters in
microarray data (Maximal Cligue);




Example: Maximum Clique Problem

& .
Velig Rev31
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Genes from Mus musenins brain




Does this graph contain a 4-clique?
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Classic Complexity Theory

The Classic View:

e e “forget about it”
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“About ten years ago some compuler scienlists came by and
said they heard we have some really cool problems. They
showed that the problems are NP-complele and went away!”




Parameterized Complexity Theory

Hence, the Parameterized View:

“solvable” e
(evenif P
NP-hard!) /xjff-x*""_'_*,_--- —— ‘

B e “forget about it”

o —

FPT W[l] W[2] - | XP)...

-
S -
- — o

R - . .f/J __J-". v
“heuristics only” ™~ ———— *

Pioneering work of Fellows and Langston




NP-hard # FPT

Not every NP-hard problem is FPT. Many non-FPT problems
can be reduced to an FPT one in polynomial time.

Minimum Vertex Cover is FPT

® Reduce in polynomial time K=/

-
-
-
=
-
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® Via dual graph e S
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Minimum sect of vertices that

Maximum Clique is not FPT cover ALL edges in the graph




Solving Many NP-hard Problems

| Focus on a few optimized core algorithms and efficiently
| solving many other NP-hard non-FPT graph problems.

Non-FPT

Maximum
Common

Subgraph Independent
Isomorphis Subgraph Set

Association
Graph

Polynormual
tme reduction

Complement Polynomual
Graph time reduction
[
a




Take-away Message

« Many real-world problems are reduced Lo problems on graphs

« While graph problems are often computationally intractable
(due to NP-hard nature), recent advanced in Fixed Parameter
Traetability (IFPT) offer practical solutions




Hints of Structure: k-cores expose ree-like backbone

e —— L &P e

S=C Ores resrmaved
Coredfil L OFFIEIOIR VAL
Nodes. 2348
Diameotaer:. 34 |

e -

- . » -
Source: Blair Sll”i‘»gﬂ - Adeock. Mahoney, Sullivan (2012) o




Hints of Structure:

Tree decompositions respeet ground-trath communities

Adcock, Mahonev, Sullivan (2014)

« We ean use framework of tree decompositions to
make loealization algorithmie
« High recall when identifying communilies in
college Facebook networks (heat-maps indicale
Sourees Blur Sullvan concentration of selected communily)




What’s the best-fit (exploitable)

Each structural class has an
associated parameter and
algorithmic (FPT) tools
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Big Question:
Which class(es) do real-
world networks belong to?

= Locally excluding
a rminor

'.. Bounded degres=

—
foom, Linear forests

source: Blamr Sullivan




Graph Mining Task: Community Detection

» Find groups of highly connected nodes that have few

inler-group conneclions A
Y of /

« Many different types:
* Disjoinl
* Overlapping
« Weighted

» [Tierarchical

Fortimatn in Physies Reports, 2010:
" e groups of vertices which probably

share commaon properties and/or
play stimilar roles within the graph”




Disjoint Communities: Modularity

 Modularity mcasures the fraction of cdges that fall
within the communities minus the expected value if the
cdges fall at random

Q_sz( T

Greedy Algorithm:

- Initialize cach vertex in its
own communily

* Merge lwo communilies
that results in highest
modularily gain

» Repeat and sclect best level

)a(cl.c)

« §(€;, ¢;) =0 or1depending if i
and j are in the same communily

* k; =degree of node i

Physical review E 69.6 (2004): 066133



Overlapping Communities:
Clique Percolation

« Motivation: Nodes 5 compion e
commonly belong to more .
than one cohesive group |

» Intuition: communitics
usually consisl of several

complete subgraphs "";ﬁur
Algorithm: | 'fm : &
- Find all cliques of size k el S T
» Merge cliques thal share o e
k-1 edges

. , Nature 435.7043 (2005): 814-818
« Exponential run-time ®




(Overlapping) Communities:
Label Propagation

« Motivation: oplimizing for some SLP{‘_ A!gorithm:
community metric (¢.g., modularity, |[* Initialize cach node

densily) can be slow w/ a unique label

» Intuition: use nelwork structure to |* Al each slep, every
guide community detection process node takes the

« Linear run-time © mosL popular label

of its necighbors

Physical Review E 76.3 (2007): 036106




A Survey & Empirical Evaluation against
Ground Truth Communities

S1.PA did not identify | O Amsason Youtube  DBLP + Lvedournal ® Ot |
communities with good _
clustering coefficient. but 'R H O X % . 8 5 85 B B gl
vielded rhe communities most 08 = A 3+ 8 g 4 4 ;
sinilar to the ground-truth. ¢ - 2 ol : =

2 08 X P

¥ os- AN
These resuits show that = u "
goodness metrics and i PR 1 o
mm mﬁnﬁ ﬂrp m‘. ¥ | ] ] | | | I 1 i p. % I ]
equivalent: communities with o 8 2 w w g zfz\y g [z Q - o

“good” structural properties do & 3 f} 3 8 5 s|” 3 7 @ Z =

not necessarily vield good = - :;j "; g " @ E
performance metrics. - "

Algorithms were empirically compared nsing goodness metrics that measure
the structural properties of the identified communities, as well as performance
metrics that evaluate these communities against the ground-trith

Steve Harenberg, et al: Commumity detection in large-scale networks: A survey and empirical
evalnation. Wiley Interdisciplinary Remews: Computational Statistics: 1030-0068, 2014.




Take-away Message

Community detection is a ubiquitous graph data analvties task.

However, communily definition is problem-dependent.

Evaluating community detection methods requires ground-
truth communities for the problem at hand.

Too many communilies could be detection: which ones are
relevant to the problem at hand?




Coupling Data-driven with Analyst-guided
Discovery

Challenge: To organically consolidate the two complementary stralegies: data-

driven and analyst-guaded.

Dala-driven methods: Aim Lo find all the solutions Lo Lhe Larget problem Lhal

satisfy the objective function(s) and constraints:

« Find novel and unexpected patterns or states, i.e., an Aha moment,

« Beller [or linding strong and most probable signals in the dala, and

» Less robust to finding rare patterns, esp. in the presence of noise or the complex
mixture of signals.

Analyst-guided methods: Bring user’s expert knowledge Lo guide Lhe search Lo the

regions ol inlerest:

 Find solutions that arc most relevant to the target problem at hand,

» Significantly reduce space of solutions for manual examination,

» Perform [asler compulalion, and Analyst-Guided

» Find rarc, less expected patterns e

The user-guided approach
L‘OHI}‘JI&.’I’ES the data-driven Data-Driven
approach for “whal-if” Discovery

tmaginalion.




Query-Driven Community Detection

Challenges

Traditional graph mining algorithms

Technology

(e.g., anomaly deleclion, dense m ?}gg:icd index ofgartia.lly
substructures, frequent subgraphs, cte.) p— search spa .
can be prohibitively compute-/memory- Ul!ll?.l-! index for subsequen L queries
inlensive to Improve query response time and
reduce redundant computations

Graph databases provide scalable

solutions using index structures vet have Q"L_"’f"f“m algorithms [h“_l Operate on
a limiled selection of problems they can disk resident graphs, fetching parts into
solve (e.g., traversal-based queries and s S
exact subgraph matching).

Result/Tmpact

As high as 100x speedups over state-of-the-art
when utilizing pre-computed index.

Significantly reduce peak memory usage compared
to state-of-the-art, up to 1000x (regularly >40x).

Steve Harenberg, et al: Memory-efficient Querv-drnven Community Detection with
Applicanon to Complex Disease Associations. STAM Data Mining 2014: 1010-1018




Comumunity Detection with Knowledge Priors:
Complex Disease Associations

*  Gaill-by-association: genes functionally associaled lo many other genes
related Lo Alzheimer's are also likely associaled

» Commuunity detlection used Lo [ind groups of functionally relaled genes in
human [unctional association network

veoplasms
.L‘iﬁnfiillﬁl Wllh r Pressislse e O SIS

similar gene sels tipeast neop lasms
Acute kidnev mmmry

-M]filﬂff.s \T_‘.-H-:-m!mi inarctan

Disease 2. Obesity
Inabetes mellitms

NO

Primury Dengener v
1. Nerve degeneration
Pulalive assocubion o  Purkiuson's disessse

3. Memory disarders

Steve Larenberg, of ab Memory-efficient Querv-driven Communty Detection with
Application to Complex Disease Associations. SIAM Data Mining 2014 1010-1048




Response-associated Community Detection

* Problem: ldenlify communilies that can be used o analyze or
predicl a response variable of inlerest (e.g., rainfall).

« State-of-the-art: Communily detection techniques are
raditionally unsupervised learning methods2>communilies
identified may not be associated with the response variable.

* Supervised communily delection: idenliyfy communilies

associaled wilh a response variable of inlerest by explicilly
incorporating information of this wvariable during the
community detection process.

Gouzalo Bello, et al: Supervised Community Delection:
Application to Climate lndex Discovery. 2015 (Under Review)




Supervised Community Detection

Goal: partition a given graph into a set of disjoint communities.
Joint optimization criterion: maximize both the “goodness” of the

partilion and the association of the communities with the response

variable:
a-q(C)+ (1 —a)- ¢

where ( is a set of communilies, ¢ is a funection of the “goodness™ of
C, ¢ is the average association of the communities with the response
variable, and « is a tuning parameter to balance the trade-off
between ¢(C) and ¢,..

Use modularity as the “goodness” function 4.

Use correlation to measure the association between a community
and the response variable.

Modify heuristic algorithm for modularity maximization, such as the
Louvain method (Blondel et al., 2008), to maximize the joint
oplimization crilerion.




Communities in Climate Networks:
Climate Indices

Climate indices are defined to quantify climatic phenomena

Many of them are defined in terms of teleconnection patterns or dipoles

North Atlantic Oscillation El Niﬁﬁ (Wérm Phase)

Dipole - difference in sca level pressure T it
patrern - above average Sea
DEDREER (AS ZI0RES INE S FUgIOn ASNr- icane Surface Temperature across the tropical Pactfic

lwads 1o drought bke conditom o U Sabel reron

® b

ENSO index family




Evaluation: Climate Indices Discovered

Climalological relevance of
climate indices discovered
is supported by their
association with traditional
climate indices known lo be
related to seasonal rainfall
in the region.

Improvement of forecast
skill for seasonal rainfall in
the region with respect lo
existing methodologies for
climate index discovery and

official forecasis.
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Time series aml correlation u[ l.md:honnl t:l.unaie
indices (Nino 3.4 and 10D, respeclively)
wilh climale indices discovered
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Accenracy of the prediction of seasonal
rainfall at 4 stations in the Greater Horn of
Africa from 1998 to 2011




Take-away Message

Incorporaling informaltion of the response variable of
interest during the communily detection process allows for
the discovery of communities with a higher association
with this response variable and better predietive skill.




Understanding Climate Change — A Systems Challenge

because of non-linear coupling

of its subsystems (e.qg., the
ocean and the atimosphere).

“The sad trulh of chhmale science is thal the mosi
cructal myformation is the least reliable”

. ul between 1PCC models
(Nalure, 2010) =

N

Physics-based models are essential

Relatively reliable predictions at global scale for
andllary variables such as temperature, pressure
- Least reliable predictions for variables that are
crucial for impact assessment such as regional
precipitation, hurricanes, extremes Ty e




o

1986-2009 Studies to Understand Key Climate Drivers & Dynamic
Factors/Mechanisms Affecting the West African Climate.

== Mechanisms not fully understood
#&— Direct/indirect causality; Documented mechanisms w/ confidence



1986-2009 Studies to Understand Key Climate Drivers & Dynamic

Can data-driven approaches expedite such discoveries?

(AMM): Atlantic
Meridional Mode

Bt Mechanisms not fully understood
#&—> Direct/indirect causality; Documented mechanisms w/ confidence



1986-2009 Studies to Understand Key Climate Drivers & Dynamic

Can data-driven approaches expedite such discoveries?

(AMM): Atlantic
Meridional Mode

Bt Mechanisms not fully understood
#&—> Direct/indirect causality; Documented mechanisms w/ confidence



1986-2009 Studies to Understand Key Climate Drivers & Dynamic

Can data-driven approaches expedite such discoveries?

(AMM): Atlantic
Meridional Mode

Bt Mechanisms not fully understood
#&—> Direct/indirect causality; Documented mechanisms w/ confidence



Data-driven Modeling of a Climate System as a
Complex Network

Climate Data \
ﬁ_—n‘-—_}fkl

L'. bl
S .. }m-}/‘/-h“k
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Climate Network
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Nodes in the graph: grid points on the globe -
Multivariate Networks

Multiphase Networks



Subgraphs Common to Extreme Event
Climate Networks

Netlworks for Climalte Systems during Extreme Evenls




Contrast-based Network Motif Discovery for
Extreme Event Forecasting

Intuition: If an extreme evenlt (e.g. hurricanes) is in one
/ of its key phases (e.g. high activity season), then Lthere

exisl network molifs (recurrent patlerns in climale
networks) that are specific o that phase.

(E) Phase:Low Phase:High

L

. (F) phase-Biased Network Motifs




Hurricane Activity Class Forecast vs. State-of-art

FORTCASTTER Performanee on North Atlantie ITurricane

Metric FORECASTER || |1], 2000 |2], 2010 Random Bagging Boosting

NC State Colorado GA Tech Forest

IAeme.!"I 93-3 [l 64.0 il 655 “ 767 || 733 “ 75.0
6 f | |

| HSS || o090 || 045 || 049 || 0.66 0.60 | 0.62
| PSS | o092 || 044 | o050 || 065 0.63 || 063

| GSS | o096 | o050 || 068 || o0.65 0.67 || 0.66
\ J

MTJmsed Regression Hybrid
[1] P. J. Klotzbach and W. M. Gray, “T'wenty-five yvears of Atlantic basin seasonal hurricane
foreeasts (1984-2008),” Geophys. Res. Letl,, vol. 36, pp. Lo9g 711, 5pp, May 2000.
[2] H M. Kim and P. J. Webster. Extended-range seasonal hurricane forecasts for the North
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HSS: Heidke score, measures how well relative to a randomly selected forecast; |
PSS: Peirce score, difference belween Lhe hil rale and Lhe [alse alarm rale; |
' GS: Gerrity score, occurrences substantially less frequent. |




Graph Data Analytics
PART III: SEQUENCE OF GRAPHS




