Bayesian Inference and the Thermodynamic Formalism

0.

SIAM Conference on Applications of Dynamical Systems (DS19)

Sayan Mukherjee

Duke University https://sayanmuk.github.io/

Joint work with:

K. McGoff (UNC Ch) | A. Nobel (UNC CH)

Bayesian Inference and the Thermodynamic Formalism

0.

SIAM Conference on Applications of Dynamical Systems (DS19)

Sayan Mukherjee

Duke University https://sayanmuk.github.io/

Joint work with:

K. McGoff (UNC Ch) | A. Nobel (UNC CH)

Bayesian Inference and the Thermodynamic Formalism

0.

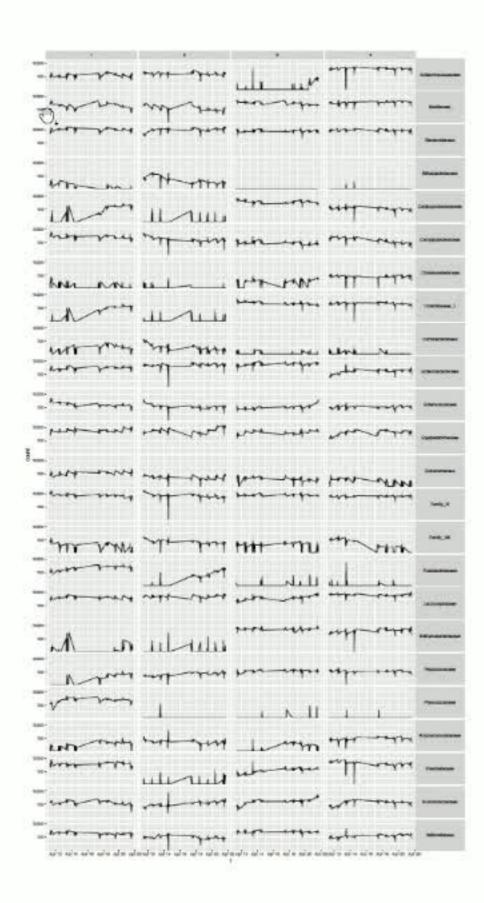
SIAM Conference on Applications of Dynamical Systems (DS19)

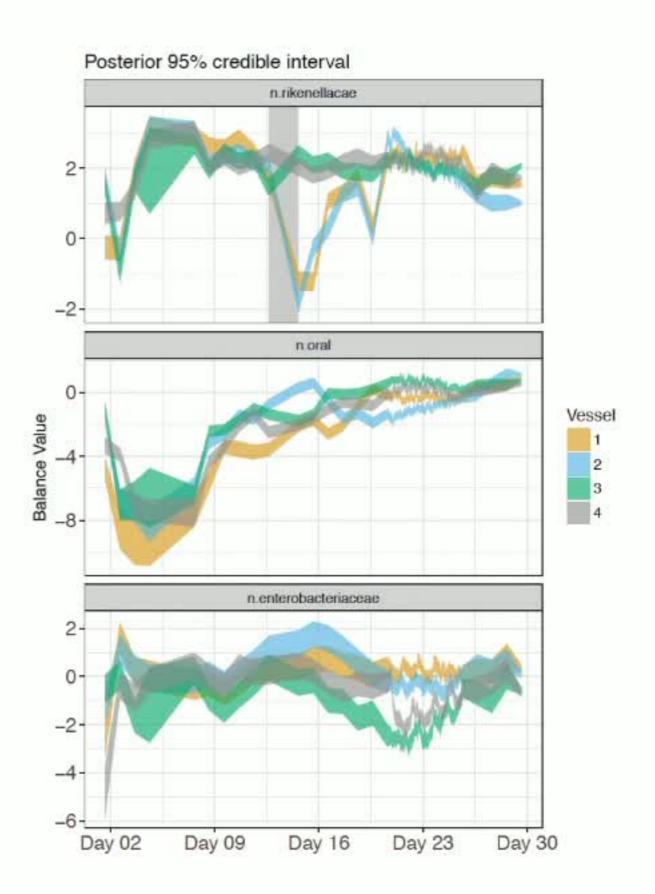
Sayan Mukherjee

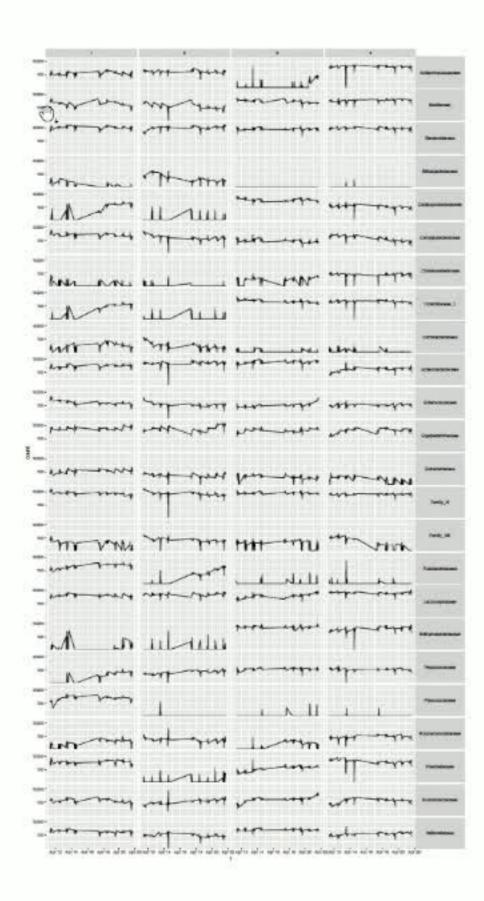
Duke University https://sayanmuk.github.io/

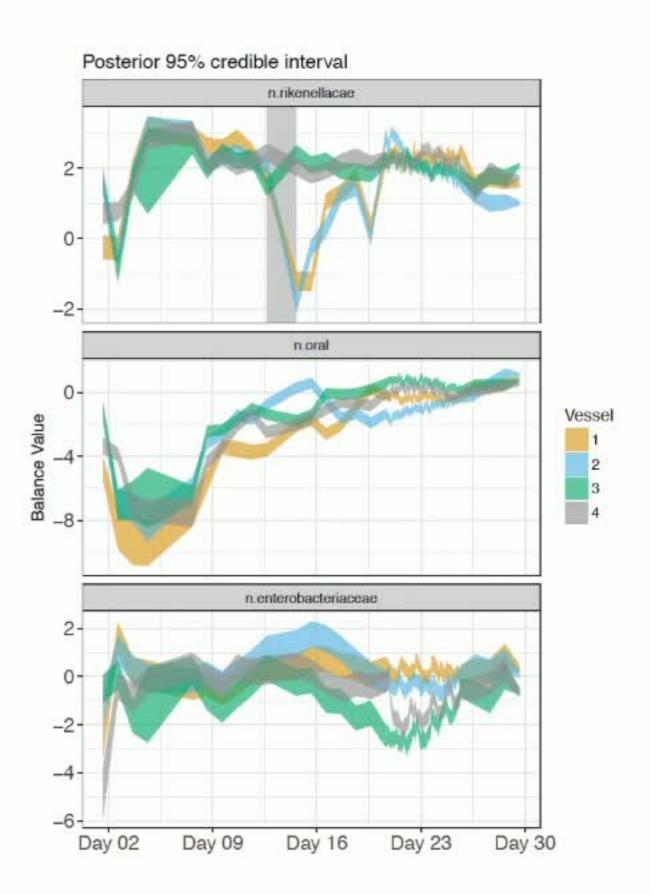
Joint work with:

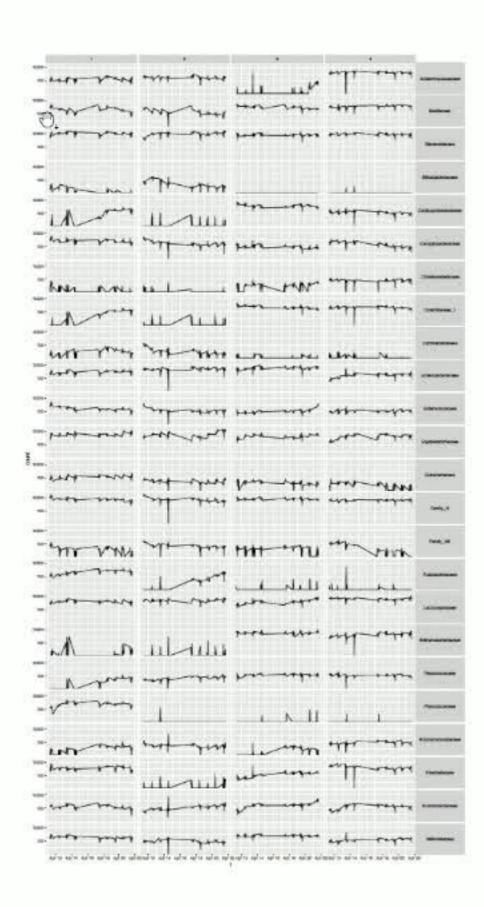
K. McGoff (UNC Ch) | A. Nobel (UNC CH)

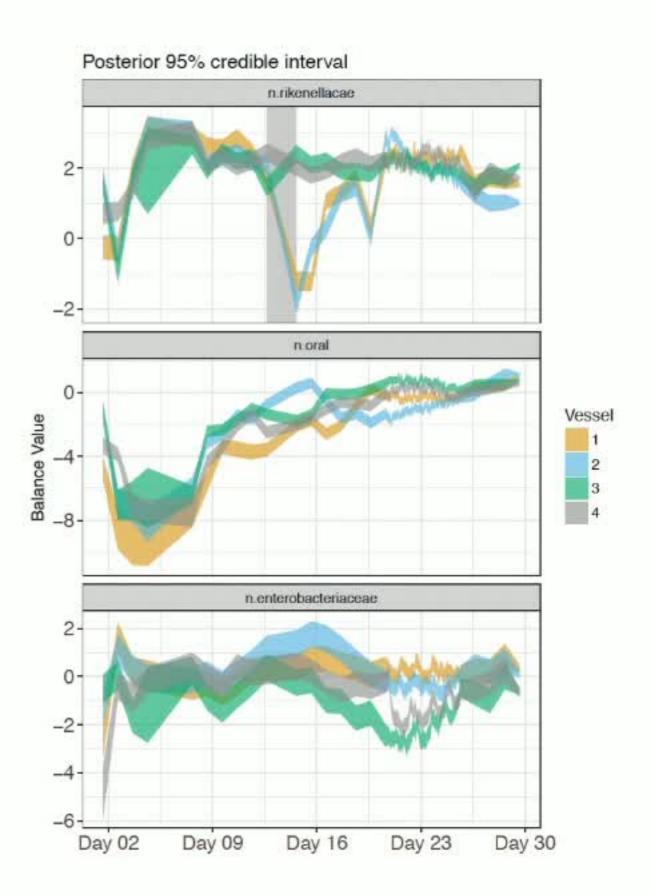


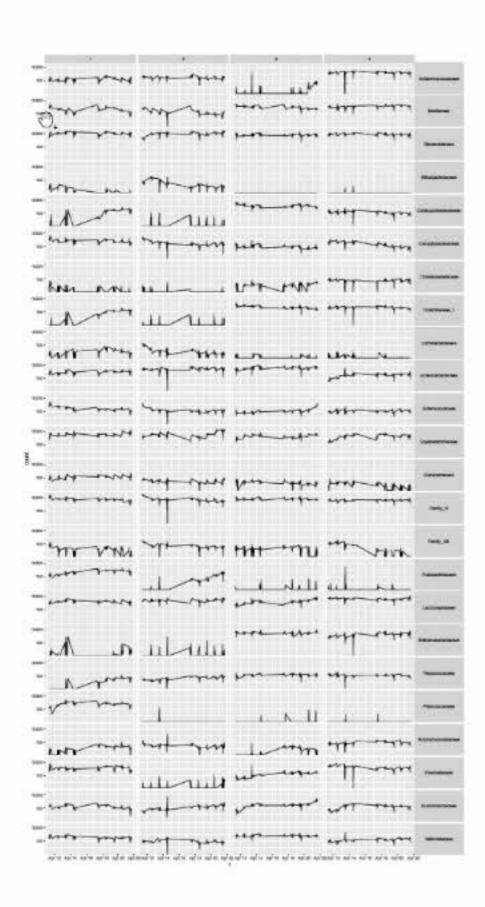


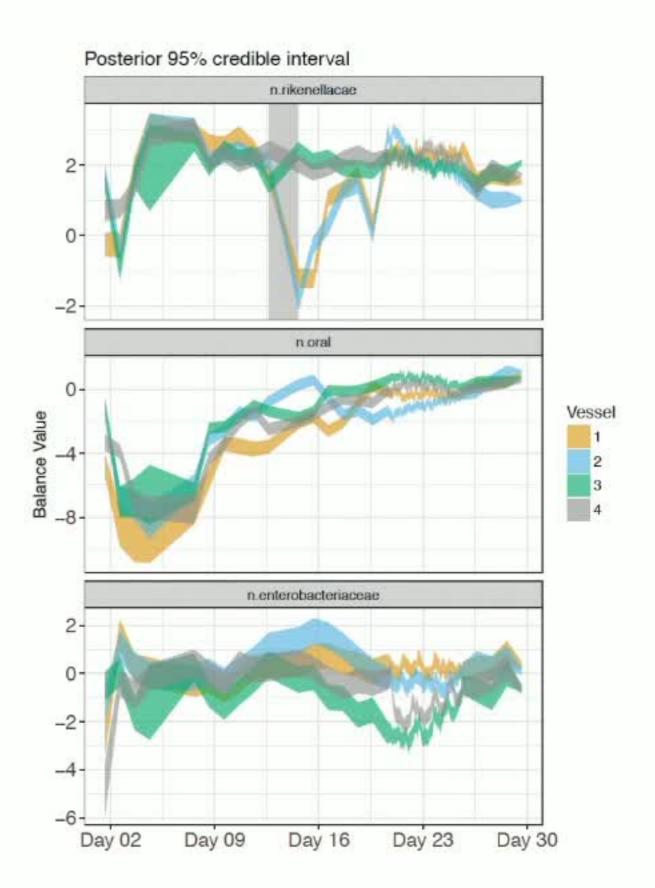


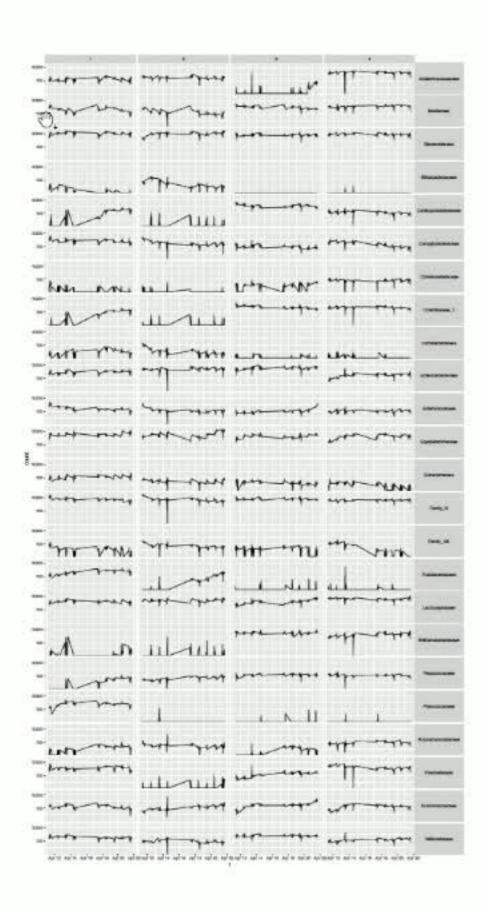


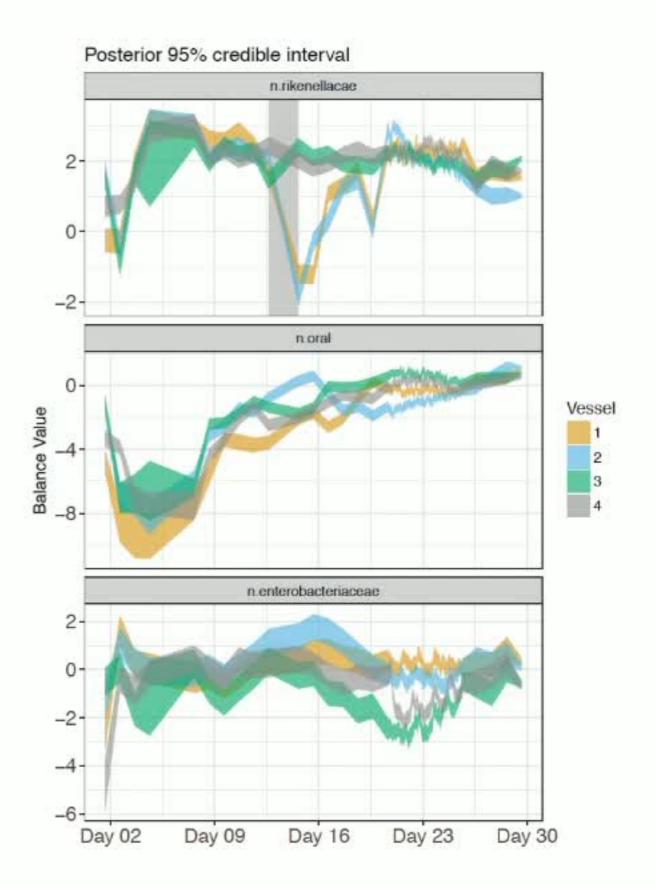












Posterior consistency

0.

Does $\lim_{n\to\infty} \Pi_n(\theta \mid y_1^n)$ concentrate around an open neighborhood of θ^* ?

Classical setting

Consider

 \mathcal{Y} : a complete metric space endowed with its Borel σ -algebra;

 $\{Y_n\}_{n\geq 0}$: observations as a \mathcal{Y} -valued process;

 $(\Theta, \{p_{\theta} : \theta \in \Theta\})$: a parameter space and a collection of Borel probability densities on \mathcal{Y} (with respect to a common measure);

 $\pi(\theta)$: the prior, a Borel probability distribution on Θ .

Classical setting

Consider

 \mathcal{Y} : a complete metric space endowed with its Borel σ -algebra;

 $\{Y_n\}_{n>0}$: observations as a \mathcal{Y} -valued process;

 $(\Theta, \{p_{\theta} : \theta \in \Theta\})$: a parameter space and a collection of Borel probability densities on \mathcal{Y} (with respect to a common measure);

 $\pi(\theta)$: the prior, a Borel probability distribution on Θ .

Posterior consistency

0.

We say that (θ_0, π) is consistent if for all open neighborhoods U of θ_0 ,

$$\Pi_n(\Theta \setminus U \mid Y_0^{n-1}) \to 0, \quad P_{\theta_0}^{\infty} - a.s.$$

Theorem (Doob, 1949)

For π -almost every θ in Θ , the pair (θ, π) is consistent.

What about for *every* θ in Θ ?

Schwartz conditions

Theorem (Schwartz, 1965)

Let $\theta_0 \in \Theta$. Suppose that

- 1. for each neighborhood U of θ_0 , there exist constants $\beta > 0$ and C > 0 and measurable functions $\varphi_n : \mathcal{Y}^n \to [0, 1]$ such that
 - a) $\mathbb{E}_{\theta_0}[\varphi_n(Y_0^{n-1})] \leq Ce^{-\beta n}$, and
 - b) $\sup_{\theta \notin U} \mathbb{E}_{\theta}[1 \varphi_n(Y_0^{n-1})] \leq Ce^{-\beta n}$.
- 2. for each $\epsilon > 0$,

$$\pi\bigg(heta: \mathbb{E}_{ heta_0}[-\log(p_{ heta}/p_{ heta_0})] < \epsilon\bigg) > 0.$$

Then (θ_0, π) is consistent.

More recent work

0.

1990's: Inconsistency results for nonparametric models (⊖ is infinite dimensional) by Diaconis and Freedman.

2000-2010: Extensive results for nonparametric models, Ghosal and van der Vaart [2017]

2000-2019: Rates of convergence

Dependence

We would like to consider posterior consistency for stationary processes.

Suppose that $\{Y_n\}_{n>0}$ is stationary (not necessarily i.i.d.).

 Θ parametrizes a collection of stationary stochastic processes, serving as models of $\{Y_n\}_n$.

Given a prior distribution π , we'll define a posterior distribution $\Pi_n(\cdot \mid Y_0^{n-1})$.

Question: What happens to $\Pi_n(\cdot \mid Y_0^{n-1})$ as n tends to infinity?

Hidden Markov Models

Markov model:

$$x_{t+1} = f(x_t; \theta)$$
, state process

Hidden Markov model:

$$x_{t+1} = f(x_t; \theta_1)$$
 hidden state process $y_{t+1} = g(x_{t+1}; \theta_2)$ observation process.

General questions

Given access to the observations Y_0^t , we might want to ask

what is the "true state" of the bioreactor at time t? (filtering)

what are we likely to observe at time t + 1? (prediction)

what are the rules governing the evolution of the system? (model selection / parameter estimation)

We'll focus on the last type of question.

Stochastic versus deterministic systems

0.

Should the process $(X_t)_t$ be stochastic or deterministic?

- ▶ If the conditional distribution of X_{t+1} given X_t has positive variance, then we'll say the process $(X_t)_t$ is stochastic.
- ▶ Otherwise, we'll say the process $(X_t)_t$ is deterministic.

In ecology both types of systems are commonly used.

Setting for deterministic dynamics

- Suppose that for each θ in Θ (parameter space), we have $(X, \mathcal{X}, T_{\theta}, \mu_{\theta})$, where
 - X is a complete separable metric space with Borel σ-algebra X
 - $ightharpoonup T_{\theta}: X \to X \text{ is a measurable map,}$
 - ▶ μ_{θ} is a probability measure on (X, X) is T_{θ} -invariant if $\mu_{\theta}(T_{\theta}^{-1}A) = \mu_{\theta}(A)$, $\forall A \in X$
 - the measure preserving system $(X, \mathcal{X}, T_{\theta}, \mu_{\theta})$ is ergodic if $T_{\theta}^{-1}A = A$ implies $\mu(A) = \{0, 1\}$.

Family of systems $(X, \mathcal{X}, T_{\theta}, \mu_{\theta})_{\theta \in \Theta} \equiv (T_{\theta}, \mu_{\theta})_{\theta \in \Theta}$.

Dynamic linear models

$$x_{t+1} = A_{t+1}x_t$$

$$y_t = B_tx_t + v_t,$$

Here:

```
y_t is an observation in \mathbb{R}^p;

x_t is a hidden state in \mathbb{R}^q;

A_t is a p \times p state transition matrix;

B_t is a q \times p observation matrix;

v_t is a zero-mean vector in \mathbb{R}^q.
```

Preliminaries

Observation system $(\mathcal{Y}, \mathcal{T}, \nu)$ with $\mathcal{T}: \mathcal{Y} \to \mathcal{Y}$

Tracking systems:

Compact metrizable space $\mathcal{X} := X \times \Theta$ with map $S : \mathcal{X} \to \mathcal{X}$.

$$S: \Theta \times X \rightarrow X$$
, $S_{\theta}: X \rightarrow X$.

Loss or regret: $\ell: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}_+$. Cost of

$$\ell_n(x,y;\theta) := \ell_n(x_0^{n-1},y_0^{n-1}) = \sum_{k=0}^{n-1} \ell(x_k,y_k),$$

$$x_0^{n-1} = (x, S_\theta x, \dots, S_\theta^{n-1} x)$$
 and $y_0^{n-1} = (y, Ty, \dots, T^{n-1} y)$.

- (1) Decision theoretic perspective of Bayesian inference, coherent inference with respect to a utility.
- (2) If ℓ_n is the negative log likelihood then recover standard posterior.
- (3) Robust to misspecification, robust statistics.

- (1) Decision theoretic perspective of Bayesian inference, coherent inference with respect to a utility.
- (2) If ℓ_n is the negative log likelihood then recover standard posterior.
- (3) Robust to misspecification, robust statistics.

- (1) Decision theoretic perspective of Bayesian inference, coherent inference with respect to a utility.
- (2) If ℓ_n is the negative log likelihood then recover standard posterior.
- (3) Robust to misspecification, robust statistics.
- (4) Calibration/violation of likelihood principle $\Pi_n(A \mid y) = \frac{\int_A \exp\left(-\psi \ell_n(x,y;\theta)\right) d\pi(x)}{Z_n(y)}.$

Gibbs measures

Given \mathcal{X} , the map S, a potential function f, and a measure μ_0

$$G_n(x; \mu_0, f) = \frac{\exp(\sum_{k=1}^n f(S^k x))}{\int_{\mathcal{X}} \exp(\sum_{k=1}^n f(S^k x)) d\mu_0}.$$

The Gibbs measure is the limit point of the sequence $G_n(x; \mu_0, f)$ and the Gibbs measure is denoted as $\mu_0(f)$.

- (1) Decision theoretic perspective of Bayesian inference, coherent inference with respect to a utility.
- (2) If ℓ_n is the negative log likelihood then recover standard posterior.
- (3) Robust to misspecification, robust statistics.
- (4) Calibration/violation of likelihood principle $\Pi_n(A \mid y) = \frac{\int_A \exp\left(-\psi \ell_n(x,y;\theta)\right) d\pi(x)}{Z_n(y)}.$

Gibbs measures

Given \mathcal{X} , the map S, a potential function f, and a measure μ_0

$$G_n(x; \mu_0, f) = \frac{\exp(\sum_{k=1}^n f(S^k x))}{\int_{\mathcal{X}} \exp(\sum_{k=1}^n f(S^k x)) d\mu_0}.$$

The Gibbs measure is the limit point of the sequence $G_n(x; \mu_0, f)$ and the Gibbs measure is denoted as $\mu_0(f)$.

 Decision theoretic perspective of Bayesian inference, coherent inference with respect to a utility.

Given observations y and a prior π on \mathcal{X} .

The Gibbs posterior is

$$\Pi_{n}(A \mid y) = \frac{\int_{A} \exp(-\ell_{n}(x, y; \theta)) d\pi(x)}{Z_{n}(y)}, \quad A \subset \Theta \times X$$

$$Z_{n}(y) = \int_{\mathcal{X}} \exp(-\ell_{n}(x, y; \theta)) d\pi(x).$$

Two questions

- (1) Is $\lim_{n\to\infty} \Pi_n(\cdot \mid y)$ unique.
- (2) Does $\lim_{n\to\infty} \Pi_n(\cdot \mid y)$ concentrate around T.

- Decision theoretic perspective of Bayesian inference, coherent inference with respect to a utility.
- (2) If ℓ_n is the negative log likelihood then recover standard posterior.
- (3) Robust to misspecification, robust statistics.
- (4) Calibration/violation of likelihood principle $\Pi_n(A \mid y) = \frac{\int_A \exp\left(-\psi \ell_n(x,y;\theta)\right) d\pi(x)}{Z_n(y)}.$

Gibbs measures

Given \mathcal{X} , the map S, a potential function f, and a measure μ_0

$$G_n(x; \mu_0, f) = \frac{\exp(\sum_{k=1}^n f(S^k x))}{\int_{\mathcal{X}} \exp(\sum_{k=1}^n f(S^k x)) d\mu_0}.$$

The Gibbs measure is the limit point of the sequence $G_n(x; \mu_0, f)$ and the Gibbs measure is denoted as $\mu_0(f)$.

Recall the Gibbs posterior

$$\Pi_{n}(x \mid y) = \frac{\exp(-\sum_{k=1}^{n} \ell(S^{k}x, T^{k}y))}{\int_{\mathcal{X}} \exp(-\sum_{k=1}^{n} \ell(S^{k}x, T^{k}y)) d\pi(x)}.$$

Gibbs measures

Given \mathcal{X} , the map S, a potential function f, and a measure μ_0

$$G_n(x; \mu_0, f) = \frac{\exp(\sum_{k=1}^n f(S^k x))}{\int_{\mathcal{X}} \exp(\sum_{k=1}^n f(S^k x)) d\mu_0}.$$

The Gibbs measure is the limit point of the sequence $G_n(x; \mu_0, f)$ and the Gibbs measure is denoted as $\mu_0(f)$.

Recall the Gibbs posterior

$$\Pi_n(x \mid y) = \frac{\exp(-\sum_{k=1}^n \ell(S^k x, T^k y))}{\int_{\mathcal{X}} \exp(-\sum_{k=1}^n \ell(S^k x, T^k y)) d\pi(x)}.$$

Sequence space model

Alphabet A is a finite set (|A| = N) and $\Sigma = A^{\mathbb{Z}}$.

Gibbs measures

Given \mathcal{X} , the map S, a potential function f, and a measure μ_0

$$G_n(x;\mu_0,f) = \frac{\exp(\sum_{k=1}^n f(S^k x))}{\int_{\mathcal{X}} \exp(\sum_{k=1}^n f(S^k x)) d\mu_0}.$$

The Gibbs measure is the limit point of the sequence $G_n(x; \mu_0, f)$ and the Gibbs measure is denoted as $\mu_0(f)$.

Recall the Gibbs posterior

$$\Pi_{n}(x \mid y) = \frac{\exp(-\sum_{k=1}^{n} \ell(S^{k}x, T^{k}y))}{\int_{\mathcal{X}} \exp(-\sum_{k=1}^{n} \ell(S^{k}x, T^{k}y)) d\pi(x)}.$$

Alphabet A is a finite set (|A| = N) and $\Sigma = A^{\mathbb{Z}}$.

Left shift operator $\sigma: \mathcal{A}^{\mathbb{Z}} \to \mathcal{A}^{\mathbb{Z}}$ with $(\sigma x)_i = x_{i+1}$.

Alphabet A is a finite set (|A| = N) and $\Sigma = A^{\mathbb{Z}}$.

Left shift operator $\sigma: \mathcal{A}^{\mathbb{Z}} \to \mathcal{A}^{\mathbb{Z}}$ with $(\sigma x)_i = x_{i+1}$.

Alphabet A is a finite set (|A| = N) and $\Sigma = A^{\mathbb{Z}}$.

Left shift operator $\sigma: \mathcal{A}^{\mathbb{Z}} \to \mathcal{A}^{\mathbb{Z}}$ with $(\sigma x)_i = x_{i+1}$.

The set obtained by forbidding a finite number of wods ${\mathcal F}$

$$\Sigma_{\mathcal{F}} = \{ x \in \mathcal{A}^{\mathbb{Z}} \mid x_{[i,j]} \neq u \forall i, j \in \mathbb{Z}, u \in \mathcal{F} \}$$

is a shift of finite type (SFT)

Alphabet A is a finite set (|A| = N) and $\Sigma = A^{\mathbb{Z}}$.

Left shift operator $\sigma: \mathcal{A}^{\mathbb{Z}} \to \mathcal{A}^{\mathbb{Z}}$ with $(\sigma x)_i = x_{i+1}$.

The set obtained by forbidding a finite number of wods \mathcal{F}

$$\Sigma_{\mathcal{F}} = \{ x \in \mathcal{A}^{\mathbb{Z}} \mid x_{[i,j]} \neq u \forall i, j \in \mathbb{Z}, u \in \mathcal{F} \}$$

is a shift of finite type (SFT)

The restriction of the shift maps encoded by matrix A

$$\Sigma_A = \{(a_i)_{i=-\infty}^{\infty} \in \Sigma_{\mathcal{F}}, \quad A_{a_i,a_{i+1}} = 1 \quad \forall i \in \mathbb{Z}\}$$

are called a topological Markov chain or a 1-step SFT. One can similarly define *m*-step SFT.

The restriction of the shift maps encoded by matrix A

$$\Sigma_A = \{(a_i)_{i=-\infty}^{\infty} \in \Sigma_{\mathcal{F}}, \quad A_{a_i,a_{i+1}} = 1 \quad \forall i \in \mathbb{Z}\}$$

are called a topological Markov chain or a 1-step SFT. One can similarly define *m*-step SFT.

The restriction of the shift maps encoded by matrix A

$$\Sigma_A = \{(a_i)_{i=-\infty}^{\infty} \in \Sigma_{\mathcal{F}}, \quad A_{a_i,a_{i+1}} = 1 \quad \forall i \in \mathbb{Z}\}$$

are called a topological Markov chain or a 1-step SFT. One can similarly define *m*-step SFT.

The restriction of the shift maps encoded by matrix A

$$\Sigma_A = \{(a_i)_{i=-\infty}^{\infty} \in \Sigma_{\mathcal{F}}, \quad A_{a_i,a_{i+1}} = 1 \quad \forall i \in \mathbb{Z}\}$$

are called a topological Markov chain or a 1-step SFT. One can similarly define *m*-step SFT.

For
$$x \in \Sigma_A$$
, let $x[i,j] = \{y \in \Sigma_A : x_i^j = y_i^j\}$.

The restriction of the shift maps encoded by matrix A

$$\Sigma_A = \{(a_i)_{i=-\infty}^{\infty} \in \Sigma_{\mathcal{F}}, \quad A_{a_i,a_{i+1}} = 1 \quad \forall i \in \mathbb{Z}\}$$

are called a topological Markov chain or a 1-step SFT. One can similarly define *m*-step SFT.

For
$$x \in \Sigma_A$$
, let $x[i,j] = \{y \in \Sigma_A : x_i^j = y_i^j\}$.

Gibbs measure

Definition

Let $f: \Sigma_{\mathcal{F}} \to \mathbb{R}$ be continuous. A measure μ on $\Sigma_{\mathcal{F}}$ has the Gibbs property for f if there exists K > 1 and $\mathcal{P} \in \mathbb{R}$ such that for all $x \in \mathcal{A}^{\mathbb{Z}}$ and $m \ge 1$,

$$K^{-1} \le \frac{\mu(x[0, m-1])}{\exp(-\mathcal{P}m + \sum_{k=0}^{m-1} f(\sigma^k(x)))} \le K.$$

Theorem (Bowen)

If $\Sigma_{\mathcal{F}}$ is a mixing SFT, and $f: \Sigma_{\mathcal{F}} \to \mathbb{R}$ is Hölder continuous, then there exists a unique Gibbs measure for f on $\Sigma_{\mathcal{F}}$.

Gibbs measure

Definition

Let $f: \Sigma_{\mathcal{F}} \to \mathbb{R}$ be continuous. A measure μ on $\Sigma_{\mathcal{F}}$ has the Gibbs property for f if there exists K > 1 and $\mathcal{P} \in \mathbb{R}$ such that for all $x \in \mathcal{A}^{\mathbb{Z}}$ and $m \ge 1$,

$$K^{-1} \le \frac{\mu(x[0,m-1])}{\exp(-\mathcal{P}m + \sum_{k=0}^{m-1} f(\sigma^k(x)))} \le K.$$

Theorem (Bowen)

If $\Sigma_{\mathcal{F}}$ is a mixing SFT, and $f: \Sigma_{\mathcal{F}} \to \mathbb{R}$ is Hölder continuous, then there exists a unique Gibbs measure for f on $\Sigma_{\mathcal{F}}$.

 $f: \Sigma_{\mathcal{F}} \to \mathbb{R}$ is called a potential, and $\mathcal{P} = \mathcal{P}(f)$ is its pressure.

The model class

We consider families of dependent processes as follows.

Let Θ be a compact metric space.

The model class

We consider families of dependent processes as follows.

Let Θ be a compact metric space.

Let $\{f_{\theta} : \theta \in \Theta\}$ be a continuously parametrized family of Hölder continuous potential functions.

Let $\{\mu_{\theta} : \theta \in \Theta\}$ be the corresponding family of Gibbs measures.

Markov chains of all orders are included in these model classes.

Observation densities

We consider a general observational model as follows.

Let λ be a Borel measure on \mathcal{Y}

Let $g: \Theta \times \mathcal{X} \times \mathcal{Y} \to [0, \infty)$ be a measurable function such that for all $\theta \in \Theta$ and $x \in \mathcal{X}$,

$$\int g(\theta, x, y) \, \lambda(dy) = 1.$$

Observation densities

We consider a general observational model as follows.

Let λ be a Borel measure on \mathcal{Y}

Let $g: \Theta \times \mathcal{X} \times \mathcal{Y} \to [0, \infty)$ be a measurable function such that for all $\theta \in \Theta$ and $x \in \mathcal{X}$,

$$\int g(\theta, x, y) \, \lambda(dy) = 1.$$

- We write $g_{\theta}(\cdot \mid x)$ instead of $g(\theta, x, \cdot)$, and we interpret it as a conditional density on \mathcal{Y} given θ and x.
- We require several integrability and regularity conditions on g.

Given $\theta \in \Theta$, the marginal likelihood of y_0^{n-1} is

$$p_{\theta}(y_0^{n-1}) = \int \prod_{k=0}^{n-1} g_{\theta}(y_k \mid \sigma^k(x)) \, \mu_{\theta}(dx).$$

Equivalently, we have

$$X_0 \sim \mu_{ heta}$$
 $X_{n+1} = \sigma(X_n)$
 $Y_n \sim g_{ heta}(y \mid X_n)\lambda(dy).$

Let \mathbb{P}_{θ}^{Y} denote the distribution of the process $\{Y_n\}_{n\geq 0}$ under θ .

Given $\theta \in \Theta$, the marginal likelihood of y_0^{n-1} is

$$p_{\theta}(y_0^{n-1}) = \int \prod_{k=0}^{n-1} g_{\theta}(y_k \mid \sigma^k(x)) \, \mu_{\theta}(dx).$$

Equivalently, we have

$$X_0 \sim \mu_{ heta}$$
 $X_{n+1} = \sigma(X_n)$
 $Y_n \sim g_{ heta}(y \mid X_n)\lambda(dy).$

Let \mathbb{P}_{θ}^{Y} denote the distribution of the process $\{Y_n\}_{n\geq 0}$ under θ .

Given $\theta \in \Theta$, the marginal likelihood of y_0^{n-1} is

$$p_{\theta}(y_0^{n-1}) = \int \prod_{k=0}^{n-1} g_{\theta}(y_k \mid \sigma^k(x)) \mu_{\theta}(dx).$$

Equivalently, we have

$$X_0 \sim \mu_{ heta}$$

 $X_{n+1} = \sigma(X_n)$
 $Y_n \sim g_{\theta}(y \mid X_n)\lambda(dy).$

Let \mathbb{P}_{θ}^{Y} denote the distribution of the process $\{Y_{n}\}_{n\geq 0}$ under θ .

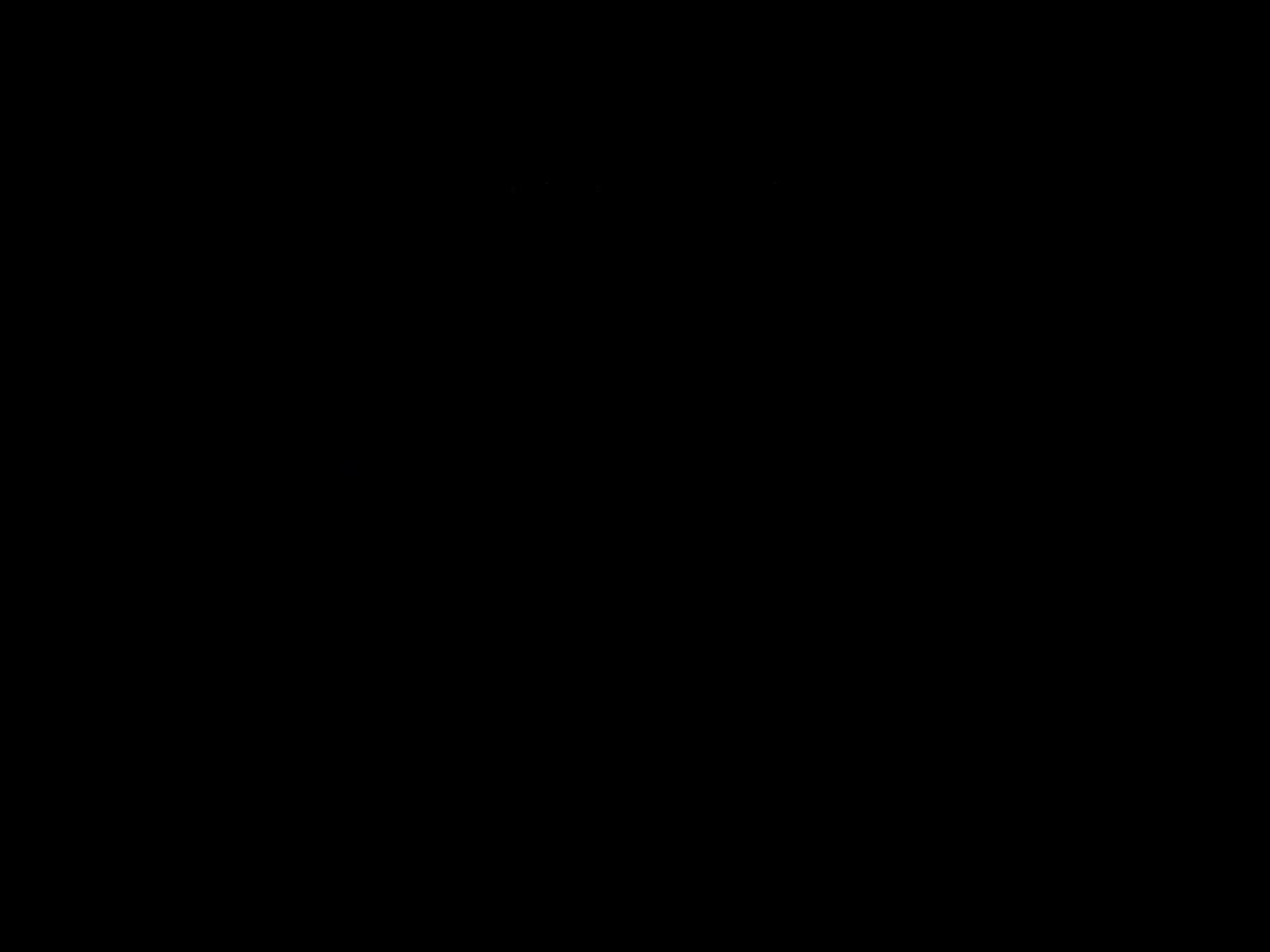
Given $\theta \in \Theta$, the marginal likelihood of y_0^{n-1} is

$$p_{\theta}(y_0^{n-1}) = \int \prod_{k=0}^{n-1} g_{\theta}(y_k \mid \sigma^k(x)) \, \mu_{\theta}(dx).$$

Equivalently, we have

$$X_0 \sim \mu_{ heta}$$
 $X_{n+1} = \sigma(X_n)$
 $Y_n \sim g_{ heta}(y \mid X_n)\lambda(dy).$

Let \mathbb{P}_{θ}^{Y} denote the distribution of the process $\{Y_n\}_{n\geq 0}$ under θ .



Bayesian inference

Given observations Y_0^{n-1} , the posterior

$$\Pi_n(E \mid Y_0^{n-1}) = \frac{\int_E p_\theta(Y_0^{n-1}) \, \pi(d\theta)}{\int_{\Theta} p_\theta(\hat{Y}_0^{n-1}) \, \pi(d\theta)}, \quad E \subset \Theta.$$

$$\text{For }\theta\in\Theta\text{, let }[\theta]=\big\{\theta'\in\Theta:\mathbb{P}_{\theta}^{Y}=\mathbb{P}_{\theta'}^{Y}\big\}.$$

$$\text{For }\theta\in\Theta\text{, let }[\theta]=\big\{\theta'\in\Theta:\mathbb{P}_{\theta}^{Y}=\mathbb{P}_{\theta'}^{Y}\big\}.$$

For
$$\theta \in \Theta$$
, let $[\theta] = \{\theta' \in \Theta : \mathbb{P}_{\theta}^{Y} = \mathbb{P}_{\theta'}^{Y}\}.$

Theorem (McGoff-M-Nobel)

Suppose π is fully supported on Θ , and let $\theta_0 \in \Theta$. Then for any neighborhood U of $[\theta_0]$,

$$\Pi_n(\Theta \setminus U \mid Y_0^{n-1}) \to 0, \quad \mathbb{P}_{\theta_0}^Y - a.s.$$

For
$$\theta \in \Theta$$
, let $[\theta] = \{ \theta' \in \Theta : \mathbb{P}_{\theta}^Y = \mathbb{P}_{\theta'}^Y \}$.

Theorem (McGoff-M-Nobel)

Suppose π is fully supported on Θ , and let $\theta_0 \in \Theta$. Then for any neighborhood U of $[\theta_0]$,

$$\Pi_n(\Theta \setminus U \mid Y_0^{n-1}) \to 0, \quad \mathbb{P}_{\theta_0}^Y - a.s.$$

We consider

⊖ as before;

 \mathcal{X} and $\{\mu_{\theta} : \theta \in \Theta\}$ as before;

 $\ell:\Theta\times\mathcal{X}\times\mathcal{X}\to[0,\infty)$ a continuous loss function;

 $\{Y_n\}_{n\geq 0}$ an arbitrary stationary ergodic process.

$$y_0^{n-1} := (y_0, \dots, y_{n-1}) \in \mathcal{Y}^n.$$

$$\ell(\theta, x; y_0^{n-1}) = \sum_{k=0}^{n-1} \ell(\theta, \sigma^k(x), y_k).$$

We consider

⊖ as before;

 \mathcal{X} and $\{\mu_{\theta} : \theta \in \Theta\}$ as before;

 $\ell:\Theta\times\mathcal{X}\times\mathcal{X}\to[0,\infty)$ a continuous loss function;

 $\{Y_n\}_{n\geq 0}$ an arbitrary stationary ergodic process.

$$y_0^{n-1} := (y_0, \dots, y_{n-1}) \in \mathcal{Y}^n.$$

$$\ell(\theta, x; y_0^{n-1}) = \sum_{k=0}^{n-1} \ell(\theta, \sigma^k(x), y_k).$$

For
$$\theta \in \Theta$$
, let $[\theta] = \{\theta' \in \Theta : \mathbb{P}_{\theta}^{Y} = \mathbb{P}_{\theta'}^{Y}\}.$

Theorem (McGoff-M-Nobel)

Suppose π is fully supported on Θ , and let $\theta_0 \in \Theta$. Then for any neighborhood U of $[\theta_0]$,

$$\Pi_n(\Theta \setminus U \mid Y_0^{n-1}) \to 0, \quad \mathbb{P}_{\theta_0}^Y - a.s.$$

We consider

 Θ as before;

 \mathcal{X} and $\{\mu_{\theta}: \theta \in \Theta\}$ as before;

 $\ell:\Theta\times\mathcal{X}\times\mathcal{X}\to[0,\infty)$ a continuous loss function;

 $\{Y_n\}_{n>0}$ an arbitrary stationary ergodic process.

$$y_0^{n-1} := (y_0, \dots, y_{n-1}) \in \mathcal{Y}^n.$$

$$\ell(\theta, x; y_0^{n-1}) = \sum_{k=0}^{n-1} \ell(\theta, \sigma^k(x), y_k).$$

We consider

Θ as before;

 \mathcal{X} and $\{\mu_{\theta} : \theta \in \Theta\}$ as before;

 $\ell:\Theta\times\mathcal{X}\times\mathcal{X}\to[0,\infty)$ a continuous loss function;

 $\{Y_n\}_{n\geq 0}$ an arbitrary stationary ergodic process.

$$y_0^{n-1} := (y_0, \ldots, y_{n-1}) \in \mathcal{Y}^n.$$

$$\ell(\theta, x; y_0^{n-1}) = \sum_{k=0}^{n-1} \ell(\theta, \sigma^k(x), y_k).$$

We consider

Θ as before;

 \mathcal{X} and $\{\mu_{\theta} : \theta \in \Theta\}$ as before;

 $\ell:\Theta\times\mathcal{X}\times\mathcal{X}\to[0,\infty)$ a continuous loss function;

 $\{Y_n\}_{n\geq 0}$ an arbitrary stationary ergodic process.

$$y_0^{n-1} := (y_0, \ldots, y_{n-1}) \in \mathcal{Y}^n.$$

$$\ell(\theta, x; y_0^{n-1}) = \sum_{k=0}^{n-1} \ell(\theta, \sigma^k(x), y_k).$$

Gibbs posterior distribution

Prior π and same $\{\mu_{\theta} : \theta \in \Theta\}$ as before.

 P_0 on $\Theta \times \mathcal{X}$ is

$$P_0(A \times B) = \int_A \mu_\theta(B) \, \pi(d\theta).$$

The Gibbs posterior is

$$\Pi_n(A \mid y_0^{n-1}) = \frac{\int_A \exp\left(-\ell\left(\theta, x; y_0^{n-1}\right)\right) P_0(d\theta, dx)}{Z_n(y_0^{n-1})}, A \subset \Theta \times \mathcal{X}$$

where $Z_n(y_0^{n-1})$ is a normalization constant.

Questions

1. Does the following limit exist with \mathbb{P}^{Y} -probability 1,

$$\lim_{n} \frac{1}{n} \log Z_n(Y_0^{n-1}),$$

and if so, what is it?

Gibbs posterior distribution

Prior π and same $\{\mu_{\theta} : \theta \in \Theta\}$ as before.

 P_0 on $\Theta \times \mathcal{X}$ is

$$P_0(A \times B) = \int_A \mu_\theta(B) \, \pi(d\theta).$$

The Gibbs posterior is

$$\Pi_n(A \mid y_0^{n-1}) = \frac{\int_A \exp\left(-\ell\left(\theta, x; y_0^{n-1}\right)\right) P_0(d\theta, dx)}{Z_n(y_0^{n-1})}, A \subset \Theta \times \mathcal{X}$$

where $Z_n(y_0^{n-1})$ is a normalization constant.

Questions

1. Does the following limit exist with \mathbb{P}^{Y} -probability 1,

$$\lim_{n} \frac{1}{n} \log Z_n(Y_0^{n-1}),$$

and if so, what is it?

 What can be said about the convergence of the posterior distributions {Π_n}_n?

Definition (Joining)

Let (X, A, μ, T) and (Y, B, ν, S) be two dynamical systems. A joining of T and S is a probability measure λ on $X \times Y$, with marginals μ and ν respectively, and invariant to the product map $T \times S$.

Questions

1. Does the following limit exist with \mathbb{P}^{Y} -probability 1,

$$\lim_{n} \frac{1}{n} \log Z_n(Y_0^{n-1}),$$

and if so, what is it?

 What can be said about the convergence of the posterior distributions {Π_n}_n?

Definition (Joining)

Let (X, A, μ, T) and (Y, B, ν, S) be two dynamical systems. A joining of T and S is a probability measure λ on $X \times Y$, with marginals μ and ν respectively, and invariant to the product map $T \times S$.

Definition (Joining)

Let (X, A, μ, T) and (Y, B, ν, S) be two dynamical systems. A joining of T and S is a probability measure λ on $X \times Y$, with marginals μ and ν respectively, and invariant to the product map $T \times S$.

Definition (Joining)

Let (X, A, μ, T) and (Y, B, ν, S) be two dynamical systems. A joining of T and S is a probability measure λ on $X \times Y$, with marginals μ and ν respectively, and invariant to the product map $T \times S$.

Definition (Coupling)

A coupling of two random variable X and X' taking values in (E, \mathcal{E}) is any pair of random variables (Y, Y') taking values in $(E \times E, \mathcal{E} \times \mathcal{E})$ whose marginals have the same distribution as X and X', $X \stackrel{D}{=} Y$ and $X' \stackrel{D}{=} Y'$.

Definition (Joining)

Let (X, A, μ, T) and (Y, B, ν, S) be two dynamical systems. A joining of T and S is a probability measure λ on $X \times Y$, with marginals μ and ν respectively, and invariant to the product map $T \times S$.

Definition (Coupling)

A coupling of two random variable X and X' taking values in (E, \mathcal{E}) is any pair of random variables (Y, Y') taking values in $(E \times E, \mathcal{E} \times \mathcal{E})$ whose marginals have the same distribution as X and X', $X \stackrel{D}{=} Y$ and $X' \stackrel{D}{=} Y'$.

Definition (Joining)

Let (X, A, μ, T) and (Y, B, ν, S) be two dynamical systems. A joining of T and S is a probability measure λ on $X \times Y$, with marginals μ and ν respectively, and invariant to the product map $T \times S$.

Definition (Coupling)

A coupling of two random variable X and X' taking values in (E, \mathcal{E}) is any pair of random variables (Y, Y') taking values in $(E \times E, \mathcal{E} \times \mathcal{E})$ whose marginals have the same distribution as X and X', $X \stackrel{D}{=} Y$ and $X' \stackrel{D}{=} Y'$.

A stationary \mathcal{X} -valued process $\{X_n\}_{n\geq 0}$ is in $\mathcal{P}(\mathcal{X}, \sigma)$ if

$$X_{n+1} = \sigma(X_n), \quad \forall n, \text{ wp 1}.$$

A joining of (\mathcal{X}, σ) with $\{Y_n\}_{n\geq 0}$ is a stationary bi-variate process $(\mathbf{U}, \mathbf{V}) = \{(U_n, V_n)\}_{n\geq 0}$ on $\mathcal{X} \times \mathcal{Y}$ such that

 $\mathbf{U} = \{U_n\}_{n\geq 0}$ is in $\mathcal{P}(\mathcal{X}, \sigma)$, and

 $\mathbf{V} = \{V_n\}_{n\geq 0}$ is equal to $\{Y_n\}_{n\geq 0}$ in distribution.

The set of joinings of (\mathcal{X}, σ) with $\{Y_n\}_{n\geq 0}$ is denoted by \mathcal{J} .

Convergence theorem

Theorem (McGoff-M-Nobel)

Suppose π is fully supported and ℓ satisfies appropriate regularity and integrability conditions. Then there exists a lower semicontinuous function $\phi: \Theta \to \mathbb{R}$ such that with probability 1,

$$\lim_{n} -\frac{1}{n} \log Z_{n}(y) = \inf_{\theta \in \Theta} \phi(\theta).$$

The above is the rate function in the large deviation sense.

Variational formulation of $Z_n(y)$ – average cost

Limiting average cost

$$\lim_{n\to\infty}\frac{1}{n}\int_{\mathcal{X}}\ell_n(x,y)\,d\lambda_y(x)=\int\ell\,d\lambda.$$

Theorem (McGoff-M.-Nobel)

Suppose a Glbbs prior, then for ν almost every y,

$$\lim_{n\to\infty} -\frac{1}{n}\log Z_n(y) = \inf_{\lambda\in\mathcal{J}} \left\{ \int \ell\,d\lambda + F(\lambda,\mu_{\theta}) \right\},\,$$

and the infimum in the above expression is attained.

Theorem (McGoff-M.-Nobel)

Suppose a Glbbs prior, then for ν almost every y,

$$\lim_{n\to\infty} -\frac{1}{n}\log Z_n(y) = \inf_{\lambda\in\mathcal{J}} \left\{ \int \ell\,d\lambda + F(\lambda,\mu_\theta) \right\},\,$$

and the infimum in the above expression is attained.

Theorem (McGoff-M.-Nobel)

Suppose a Glbbs prior, then for ν almost every y,

$$\lim_{n\to\infty} -\frac{1}{n}\log Z_n(y) = \inf_{\lambda\in\mathcal{J}} \left\{ \int \ell\,d\lambda + F(\lambda,\mu_\theta) \right\},\,$$

and the infimum in the above expression is attained.

Bayes as a variational problem

Suppose a Glbbs prior, then for ν almost every y,

$$\lim_{n\to\infty} -\frac{1}{n}\log Z_n(y) = \inf_{\lambda\in\mathcal{J}} \left\{ \int \ell\,d\lambda + F(\lambda,\mu_\theta) \right\},\,$$

A way to write Bayes rule

$$\Pi(\theta \mid \mathbf{x}) = \arg\min_{\mu} \left\{ \int_{\theta} \ell(\theta, \mathbf{x}) d\mu(\theta) + d_{\mathit{KL}}(\mu, \pi) \right\}$$

Proposition (McGoff-M.-Nobel)

Suppose a Glbbs prior and consider the pressure

$$\mathcal{P} = \inf_{\lambda \in \mathcal{J}} \left\{ \int \ell \, d\lambda + F(\lambda, \mu_{\theta}) \right\}$$
 $\theta_* = \arg \min_{\theta \in \Theta} \mathcal{P}.$

For all $\varepsilon > 0$

$$P(d(S_{\theta_*}, T) < \varepsilon) \rightarrow 1 \text{ a.s as } n \rightarrow \infty.$$

Proposition (McGoff-M.-Nobel)

Suppose a Glbbs prior and consider the pressure

$$\mathcal{P} = \inf_{\lambda \in \mathcal{J}} \left\{ \int \ell \, d\lambda + F(\lambda, \mu_{\theta}) \right\}$$
 $\theta_* = \arg \min_{\theta \in \Theta} \mathcal{P}.$

For all $\varepsilon > 0$

$$P(d(S_{\theta_*}, T) < \varepsilon) \rightarrow 1 \text{ a.s as } n \rightarrow \infty.$$

Ideas used in proofs

The main technical tools include:

- The thermodynamic formalism from dynamical systems (as developed by Sinai, Ruelle, Bowen, and others);
- (2) The theory of joinings, introduced by Furstenberg;
- (3) Aspects of the "random" thermodynamic formalism of Kifer.

Ideas used in proofs

The main technical tools include:

- The thermodynamic formalism from dynamical systems (as developed by Sinai, Ruelle, Bowen, and others);
- (2) The theory of joinings, introduced by Furstenberg;
- (3) Aspects of the "random" thermodynamic formalism of Kifer.

Ideas used in proofs

The main technical tools include:

- The thermodynamic formalism from dynamical systems (as developed by Sinai, Ruelle, Bowen, and others);
- (2) The theory of joinings, introduced by Furstenberg;
- (3) Aspects of the "random" thermodynamic formalism of Kifer.

Contributions

Reframes Gibbs posterior consistency as two-stage process: first find the limiting variational problem, and then analyze this problem to address consistency.

Contributions

Reframes Gibbs posterior consistency as two-stage process: first find the limiting variational problem, and then analyze this problem to address consistency.

Questions

Statistics questions.

What types of observations and models are amenable to this analysis?

For which combinations of observations and models can one establish posterior consistency?

Dynamics questions.

How far can the thermodynamic formalism be pushed?

Under what conditions is there a limiting variational characterization?

Under what conditions is there a unique equilibrium joining?

Open problems

(1) Rates of convergence for a family of dynamical systems \mathcal{F} .

Open problems

- (1) Rates of convergence for a family of dynamical systems \mathcal{F} .
- (2) General conditions for learnability in dynamical systems.

Open problems

- (1) Rates of convergence for a family of dynamical systems \mathcal{F} .
- (2) General conditions for learnability in dynamical systems.

Open problems

- (1) Rates of convergence for a family of dynamical systems \mathcal{F} .
- (2) General conditions for learnability in dynamical systems.

Open problems

- (1) Rates of convergence for a family of dynamical systems \mathcal{F} .
- (2) General conditions for learnability in dynamical systems.
- (3) Extension to continuous time dynamics, differential equations.

Thanks:

Konstantin Mischaikow, Ramon van Handel, Steve Lalley, Jonathan Mattingly, Karl Petersen, Ioanna Manolopoulou, Jim Berger, Natesh Pillai.

Open problems

- (1) Rates of convergence for a family of dynamical systems \mathcal{F} .
- (2) General conditions for learnability in dynamical systems.
- (3) Extension to continuous time dynamics, differential equations.
- (4) Computational issues.
- (5) Integration of ideas from statistical models of time series and dynamical systems theory.

Thanks:

Konstantin Mischaikow, Ramon van Handel, Steve Lalley, Jonathan Mattingly, Karl Petersen, Ioanna Manolopoulou, Jim Berger, Natesh Pillai.

- NSF DMS, CCF, CISE, DEB
- AFOSR
- DARPA
- ► NIH

Thanks:

Konstantin Mischaikow, Ramon van Handel, Steve Lalley, Jonathan Mattingly, Karl Petersen, Ioanna Manolopoulou, Jim Berger, Natesh Pillai.

- NSF DMS, CCF, CISE, DEB
- AFOSR
- DARPA
- ► NIH

Thanks:

Konstantin Mischaikow, Ramon van Handel, Steve Lalley, Jonathan Mattingly, Karl Petersen, Ioanna Manolopoulou, Jim Berger, Natesh Pillai.

- NSF DMS, CCF, CISE, DEB
- AFOSR
- DARPA
- ► NIH

Thanks:

Konstantin Mischaikow, Ramon van Handel, Steve Lalley, Jonathan Mattingly, Karl Petersen, Ioanna Manolopoulou, Jim Berger, Natesh Pillai.

- NSF DMS, CCF, CISE, DEB
- AFOSR
- DARPA
- ► NIH

Thanks:

Konstantin Mischaikow, Ramon van Handel, Steve Lalley, Jonathan Mattingly, Karl Petersen, Ioanna Manolopoulou, Jim Berger, Natesh Pillai.

- NSF DMS, CCF, CISE, DEB
- AFOSR
- DARPA
- ► NIH

Thanks:

Konstantin Mischaikow, Ramon van Handel, Steve Lalley, Jonathan Mattingly, Karl Petersen, Ioanna Manolopoulou, Jim Berger, Natesh Pillai.

- NSF DMS, CCF, CISE, DEB
- AFOSR
- DARPA
- ► NIH

Thanks:

Konstantin Mischaikow, Ramon van Handel, Steve Lalley, Jonathan Mattingly, Karl Petersen, Ioanna Manolopoulou, Jim Berger, Natesh Pillai.

- NSF DMS, CCF, CISE, DEB
- AFOSR
- DARPA
- ► NIH

Thanks:

Konstantin Mischaikow, Ramon van Handel, Steve Lalley, Jonathan Mattingly, Karl Petersen, Ioanna Manolopoulou, Jim Berger, Natesh Pillai.

- NSF DMS, CCF, CISE, DEB
- AFOSR
- DARPA
- ► NIH