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Microbial ecology
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Posterior consistency

Does limnp_.o INn(0 | yy') concentrate around an open
neighborhood of #* ?



Classical setting

" Consider

Y . a complete metric space endowed with its Borel
c-algebra;

{ Yn}n>0: Observations as a Y-valued process;

(©, {py: 6 € ©}): a parameter space and a collection of
Borel probability densities on ) (with respect to a common
measure);

m(0): the prior, a Borel probability distribution on ©.
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Posterior consistency

We say that (¢, 7) is consistent if for all open neighborhoods U
of tp,
Na(©\U| Yy ') =0, Py -—as.

Theorem (Doob, 1949)
For m-almost every 6 in ©, the pair (¢, 7) is consistent.

What about for every 0 in ©7



Schwartz conditions

o. Theorem (Schwartz, 1965)

Let 6y € ©. Suppose that

1. for each neighborhood U of 6, there exist constants 5 > 0
and C > 0 and measurable functions ¢, : Y" — [0, 1] such
that

a) Eg,[pn(YT )] < Ce=#", and
b) SUPHEU E{}“ S Lf-:)ﬂ( Y[;I_1 )] E: Ce_ﬁ”.

2. foreach € > 0,

w(a - Eg, [ log(pe/Pa, )] < f) > 0.

Then (g, ) IS consistent.



More recent work

1990’s: Inconsistency results for nonparametric models (©
IS infinite dimensional) by Diaconis and Freedman.

2000-2010: Extensive results for nonparametric models,
Ghosal and van der Vaart [2017]

2000-2019: Rates of convergence



Dependence

~ We would like to consider posterior consistency for stationary
processes.

Suppose that { Y5} >0 is stationary (not necessarily i.i.d.).

© parametrizes a collection of stationary stochastic
processes, serving as models of { Y }n.

Given a prior distribution 7, we’ll define a posterior
distribution M, (- | Y7 ).

Question: What happens to M,(- | Y ') as n tends to infinity?



Hidden Markov Models

2 Markov model:

Xy 1 = f(X¢; /), state process

Hidden Markov model:

X1 =  f(xt;04) hidden state process
Vir1 = 0(Xe1;02)  observation process.



General questions

" Given access to the observations Y5, we might want to ask

what is the “true state” of the bioreactor at time t? (filtering)

what are we likely to observe at time t + 17 (prediction)

what are the rules governing the evolution of the system?
(model selection / parameter estimation)

We'll focus on the last type of question.



Stochastic versus deterministic systems

Should the process (X;); be stochastic or deterministic?

» |f the conditional distribution of X;, 1 given X; has positive
variance, then we’ll say the process (X;); is stochastic.

» Otherwise, we'll say the process (X:): is deterministic.

In ecology both types of systems are commonly used.



Setting for deterministic dynamics

% Suppose that for each 0 in © (parameter space), we have
(X: X, [y, H-'H): where

» X is a complete separable metric space with Borel
o-algebra X

> To: X — Xis a measurable map,

» /1y IS a probability measure on (X, X') is Ty-invariant if
1g(TTA) = pg(A), VAcC X

» the measure preserving system (X, X', Ty, 1p) is ergodic if
T, 'A= Aimplies u(A) = {0,1}.

Family of systems (X. X, Ty, 110)oco = (T, 110 )oeco-



Dynamic linear models

Xty1 = ArpX
yt = Bixt+ w,

Here:
yt IS an observation in RP;
Xt 1S a hidden state in RY;
At IS a p x p state transition matrix;
B: Is a @ x p observation matrix;
V¢ IS @ zero-mean vector in RY.



Preliminaries

Observation system (Y, T,v)with T : Y — Y

Tracking systems:
Compact metrizable space X .= X x © withmap S: A — X.

S:Ox X=X, §: X=X

Loss orregret: (: X x YV — R... Cost of



Gibbs posterior

(1) Decision theoretic perspective of Bayesian inference,
coherent inference with respect to a utility.

(2) If £, 1s the negative log likelihood then recover standard
posterior.

(3) Robust to misspecification, robust statistics.
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Gibbs posterior

(1) Decision theoretic perspective of Bayesian inference,
coherent inference with respect to a utility.

(2) If £, 1s the negative log likelihood then recover standard
posterior.

(3) Robust to misspecification, robust statistics.
(4) Calibration/violation of likelihood principle

[aexp| —1ln(x,y;0)) dm(x)
Ma(Aly) == ( Z:) ]




Gibbs measures

Given X', the map S, a potential function f, and a measure

exp(ZE:1 f(Skk’))

Gin(X: po, 1) = [y exp(Dok_q f(S*X))duo

The Gibbs measure is the limit point of the sequence
Gn(X; o, f) and the Gibbs measure is denoted as o(f).
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Gibbs measures

Given X, the map S, a potential function f, and a measure 1

exp(ZE:1 f(Skk’))

g, b)) = '
Gn(X.HU, ) -I:JE’ EXD(ZE:1 f(skx))d,u.g

The Gibbs measure is the limit point of the sequence
Gn(X; 1o, f) and the Gibbs measure is denoted as o(f).
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Gibbs posterior

Given observations y and a prior 7 on X’.

he Gibbs posterior is

o(Aly) — Jaexp(—{n(x,y;0)) l'Slf’ﬂf()f)ﬁ Ac©xX

| Zn(¥)
Zly) = /Xexp(ﬁn(xﬁy;é'))dﬁ(x).

Two questions

(1) Is limp_oo Mp(- | y) unique.
(2) Does limpo Mp(- | y) concentrate around T.



Gibbs posterior

(1) Decision theoretic perspective of Bayesian inference,
coherent inference with respect to a utility.

(2) If £, 1s the negative log likelihood then recover standard
posterior.

(3) Robust to misspecification, robust statistics.



Gibbs measures

Given X', the map S, a potential function f, and a measure

exp(ZE:1 f(SkX))

e, ) = '
Gn(X.HD ) .[J{ EXP(ZE:1 f(é:k)())dp’.g

The Gibbs measure is the limit point of the sequence
Gn(X; 1o, f) and the Gibbs measure is denoted as o(f).

Recall the Gibbs posterior

B exp(—> p_ ((S¥x, Tky))
X 1Y) = T oS0 (5%, TFy)) dn(x)




Gibbs measures

Given X', the map S, a potential function f, and a measure

exp(ZE:1 f(SkX))

Gin(X: po, 1) = [y exp(Dok_q f(S*X))duo

The Gibbs measure is the limit point of the sequence
Gn(X; 1o, f) and the Gibbs measure is denoted as po(f).

Recall the Gibbs posterior

B exp(— 3 04 £(S*x, T*y))
X 1Y) = T oS0 (5%, TFy)) dn(x)




Sequence space model

Alphabet A is a finite set (|A| = N) and ¥ = A”.



Gibbs measures

Given X', the map S, a potential function f, and a measure

exp(ZE:1 f(Skx))

Gin(X; o, T) = Jx exp(Xk—q F(S*X))dpo

The Gibbs measure is the limit point of the sequence
Gn(X; 1o, f) and the Gibbs measure is denoted as o(f).

Recall the Gibbs posterior

B exp(—> p_ ((S¥x, T”y))
(X 1Y) = T Sn 65X, T59)) dn(x)
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The restriction of the shift maps encoded by matrix A
dAa=1{(@)2_ €Lr, Aza,=1 Viel}

are called a topological Markov chain or a 1-step SFT.
One can similarly define m-step SFT.
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Sequence space model

The restriction of the shift maps encoded by matrix A
ZA = {(ar‘)z—x = ZF'- Aaa'.-ar'H =1 Vie Z}

are called a topological Markov chain or a 1-step SFT.
One can similarly define m-step SFT.

2 4 is mixing if and only if there exists n > 1 such that A”
contains all positive entries.

Forx e L letx[i,j]={yeZs: x{ = y{}.
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Gibbs measure

Definition
Let f: 2 — R be continuous. A measure x on 2 = has the
Gibbs property for f if there exists K > 1 and P € R such that

forall x € A% and m > 1,
u(x]0, m — 1])

Kq = m—1
exp(—Pm + 3 -4 f(o¥(x)))

9.¢

Theorem (Bowen)

If > ~isamixing SFT, and f : X — R is Hblder continuous,
then there exists a unique Gibbs measure for f on X 7.



Gibbs measure

Definition

Let f: 2 — R be continuous. A measure x on 2 = has the
Gibbs property for f if there exists K > 1 and P € R such that
forall x € A#and m> 1,

u(x[0,m — 1)

K- < —
exp(—=Pm+ 3",y f(¥(x)))

= R

Theorem (Bowen)

If > ~isamixing SFT, and f : X — R is Hblder continuous,
then there exists a unique Gibbs measure for f on X 7.

f:2r — R is called a potential, and P = P(f) is its pressure.



The model class

We consider families of dependent processes as follows.

Let © be a compact metric space.



The model class

We consider families of dependent processes as follows.
Let © be a compact metric space.

Let {fy : § € ©} be a continuously parametrized family of
HoOlder continuous potential functions.

Let {1 : 0 € ©} be the corresponding family of Gibbs
measures.

Markov chains of all orders are included in these model
classes.






Observation densities

We consider a general observational model as follows.
Let \ be a Borel measure on VY

Letg: © x X x Y — [0,00) be a measurable function such
that forall # € © and x € &,

/g((), X,y)A(dy) =1.



Observation densities

We consider a general observational model as follows.
Let \ be a Borel measure on Y

Letg: © x X x Y — [0,00) be a measurable function such
that forall® € © and x € &,

/g({), X,y)A(dy) =1.

» We write go(- | x) instead of g(0. x, -), and we interpret it as
a conditional density on ) given # and x.

» We require several integrability and regularity conditions on
g.



Hidden Gibbs processes

Given 0 € ©, the marginal likelihood of y~ " is

n—1
po (¥ ') = /Hgﬂ(}’k | (X)) no(0x).

" k=0

Equivalently, we have

Xo ~ [t
Xniq1 = o(Xp)
Yn~ go(y | Xn)A(dy).

Let P} denote the distribution of the process { Y} n>o
under 0.
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Hidden Gibbs processes

Given 0 € ©, the marginal likelihood of yJ ' is

n—1
o5 ") = [ TL ol | #*06)) ol

" k=0

Equivalently, we have

Xo ~ Jtg
Xn1 = a(Xn)
Yn ~ go(y | Xn)A(dy).

Let P} denote the distribution of the process { Y }n>0
under 0.



Hidden Gibbs processes

Given 0 € ©, the marginal likelihood of y" ' is

o (¥ ) /H 90 (Vi | (X)) po(ax).

k=0 m,

Equivalently, we have

Xo ~ [t
Xniq1 = o(Xp)
Yn~ go(y | Xn)A(dy).

Let P} denote the distribution of the process { Y} n>o
under 0.






Bayesian inference

Given observations Y, the posterior

_ Jepe(Yg ') 7(d0)
JoPo(Yg ") =(d6)

[TaAE | %) , Ecoe.
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Posterior consistency

Forde ©,let[f] ={¢c© P} =P)}.

0

Theorem (McGoff-M-Nobel)

Suppose 7 is fully supported on ©, and let 6o € ©. Then for any
neighborhood U of [fy],

Ma(@\U| Y§~') =0, Py —as.
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X and {jp : § € ©} as before;
(:0 xX xX —[0,00) a continuous loss function;
{ Yn}n>0 @n arbitrary stationary ergodic process.
vo ' = Yo+ Y1) €N
The loss incurred by parameter () and initial condition x

n—1

80,597 ) = Z 08, %(x), yk).-

k—0
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0
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More general setting

We consider
© as before;
X and {jy : 0 € ©} as before;
l:0 x X x X — [0,00) a continuous loss function;
{ Yn}n>0 a@n arbitrary stationary ergodic process.
Yo ! i=(Yoy---s¥n-1) € I".
The loss incurred by parameter 6 and initial condition x

n—1
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k=0









Gibbs posterior distribution

Prior m and same {4 : 0 € ©} as before.
P{} on© x XIS

Py(Ax B) = /A 1o(B) (d0).

he Gibbs posterior is

[aexp(—L(0, x; vy~ 1)) Po(db. dx)
Ma(A | yo") = 2 ( (Z(Dn_1)> ACOXX
n\ Yo

where Z,(yJ~") is a normalization constant.




Questions

1. Does the following limit exist with P"-probability 1,

_ n—1
lim = log Zn(Yy ).

and if so, what is it?



Gibbs posterior distribution

Prior m and same {4 : 0 € ©} as before.
P{} one x XIS

Py(A x B) fA 1o(B) ().

he Gibbs posterior is

Jaexp (0, x; y7~ 1)) Po(d0, dx)
Ma(A|yd™ ") = ( Z(y”“1)> ACOXX
n\Yo

where Z,(yJ~") is a normalization constant.




Questions

1. Does the following limit exist with P¥-probability 1,

log Zn( Y1),

T
lim —
n n
and if so, what is it?

2. What can be said about the convergence of the posterior
distributions {IM,},?
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Let (X, A,u, T)and (Y. B, v,S) be two dynamical systems. A
joining of T and S is a probability measure A on X x Y, with
marginals ; and v respectively, and invariant to the product
map T x S.
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Joinings

Definition (Joining)

Let (X.A,p, T)and (Y, B, v, S) be two dynamical systems. A
joining of T and S is a probability measure A on X x Y, with
marginals ;. and v respectively, and invariant to the product
map T x S.

Definition (Coupling)
A coupling of two random variable X and X’ taking values in

(E. ) is any pair of random variables (Y, Y’) taking values in
(E x E. & x &) whose marginals have the same distribution as

Xand X. X2vand X' 2 v



Joinings

A stationary X'-valued process { Xy} >0 is in P(X, o) if

Xpi1 = o(Xn), V¥n, wp 1.

A joining of (X, o) with { Yy} >0 is a stationary bi-variate
process (U.V) = {(Un. Vi) }n>0 0N & x Y such that

U={U,}r>0isin P(X,0o), and
V={V,},>0Is equal to { ¥4 },>0 In distribution.

The set of joinings of (X'. o) with { Y, } >0 IS denoted by 7.






Convergence theorem

Theorem (McGoff-M-Nobel)

Suppose  is fully supported and ¢ satisfies appropriate
reqularity and integrability conditions. Then there exists a lower
semicontinuous function ¢ : © — R such that with probability 1,

] e
||2"| - log Z,(y) = Ejgg o(0).

The above Is the rate function in the large deviation sense.



Variational formulation of Z,(y) — average cost

Limiting average cost

lim ! / Cn(Xx,y) dAy(x) = /fﬁd,\.
W, o .

n—oo



Convergence

Theorem (McGoff-M.-Nobel)
Suppose a Glbbs prior, then for » almost every v,

lim = log Zn(y) = inf {/Pd)\ + F()\.{;gg)}q

n—oo N AT

and the infimum in the above expression is attained.
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Convergence

Theorem (McGoff-M.-Nobel)
Suppose a Glbbs prior, then for » almost every y,

. 1 .
nll}mm_ﬁ log Zn(y) = ;g}{‘/fd)\ -+ F(/\.,ug)}q

and the infimum in the above expression is attained.



Bayes as a variational problem

Suppose a Glbbs prior, then for » almost every y,

. 1 . y
nll}ﬂ"lm—ﬁ log Zn(y) = ;2}{] ta\+ F()\..,ug)}‘

A way to write Bayes rule

(0 x) = argmin{ [ 1(6.x)01u(6) + cha (. 7)

J 6






Convergence

Proposition (McGoff-M.-Nobel)
Suppose a Glbbs prior and consider the pressure

0+

— argminP.
0e©

Forall >0

P(d(Sg,, T) <e)—1asasn— oo.



Convergence

Proposition (McGoff-M.-Nobel)
Suppose a Glbbs prior and consider the pressure

AET |,
., = argminP.
0e©

Foralls >0

P(d(Sy,, T) <e) —»1a.sas n— oo.



|deas used in proofs

The main technical tools include:

(1) The thermodynamic formalism from dynamical systems (as
developed by Sinai, Ruelle, Bowen, and others);

(2) The theory of joinings, introduced by Furstenberg;

(3) Aspects of the “random" thermodynamic formalism of Kifer.
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first find the limiting variational problem, and then analyze this
problem to address consistency.
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Questions

Statistics questions.

What types of observations and models are amenable to
this analysis?

For which combinations of observations and models can
one establish posterior consistency?

Dynamics questions.

I_

L
C

ow far can the thermodynamic formalism be pushed?

nder what conditions is there a limiting variational
haracterization?

L

nder what conditions is there a unique equilibrium

joining



Open problems

(1) Rates of convergence for a family of dynamical systems F.
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Open problems

(1) Rates of convergence for a family of dynamical systems F.
(2) General conditions for learnability in dynamical systems.

(3) Extension to continuous time dynamics, differential
equations.

(4) Computational issues.

(5) Integration of ideas from statistical models of time series
and dynamical systems theory.
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