ALORA: Affine low-rank approximation

Alan Ayala Xavier Claeys Laura Grigori

Inria Paris
Pierre et Marie Curie University
alan.ayala-obregon@inria.fr

SIAM Annual Meeting
Pittsburgh, July 14, 2017
Classical low-rank algorithms can generate large errors of approximation.
Introduction and motivation

- Classical low-rank algorithms can generate large errors of approximation.

- The SVD approximation can be constructed iteratively as (affine) subspace fitting of a set of columns.
Classical low-rank algorithms can generate large errors of approximation.

The SVD approximation can be constructed iteratively as (affine) subspace fitting of a set of columns.

Matrix (hierarchical) structure must be exploited to increase precision with small cost.
Introduction and motivation

- Classical low-rank algorithms can generate large errors of approximation.

- The SVD approximation can be constructed iteratively as (affine) subspace fitting of a set of columns.

- Matrix (hierarchical) structure must be exploited to increase precision with small cost.

- Black-box fast solvers can efficiently replace classical solvers for PDE’s and integral equations.
Truncated SVD

Given $A \in \mathbb{R}^{m \times n}$, $m \geq n$, there exists orthogonal matrices $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ such that

$$A = U\Sigma V^T = [u_1 \cdots u_m] \begin{bmatrix} \sigma_1 & \cdots & \sigma_k \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sigma_n \end{bmatrix} [v_1 \cdots v_n]^T.$$

where $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n \geq 0$ are the singular values and u_j and v_j are the left and right singular vectors associated to σ_j.

Truncated SVD

Given $A \in \mathbb{R}^{m \times n}, m \geq n$, there exist orthogonal matrices $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ such that

$$A = U \Sigma V^T = [u_1 \cdots u_m] \begin{bmatrix} \sigma_1 & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \sigma_n \\ 0 & \cdot & \cdot \end{bmatrix} [v_1 \cdots v_n]^T.$$

where $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n \geq 0$ are the singular values and u_j and v_j are the left and right singular vectors associated to σ_j. Cost: $O(mn^2)$.

Truncated SVD

Given $A \in \mathbb{R}^{m \times n}$, $m \geq n$, there exists orthogonal matrices $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ such that

$$A = U \Sigma V^T = \begin{bmatrix} u_1 & \cdots & u_m \end{bmatrix} \begin{bmatrix} \sigma_1 & & \\ & \ddots & \\ & & \sigma_n \end{bmatrix} \begin{bmatrix} v_1 & \cdots & v_n \end{bmatrix}^T.$$

where $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n \geq 0$ are the singular values and u_j and v_j are the left and right singular vectors associated to σ_j. Cost: $O(mn^2)$.

The truncated SVD decomposition is defined as

$$\mathcal{T}_k(A) := U_k \Sigma_k V_k^T,$$

where $U_k := [u_1 \cdots u_k]$, $\Sigma_k := \text{diag}(\sigma_1, \ldots, \sigma_k)$ and $V_k := [v_1 \cdots v_k]$.
Error of TSVD approximation

For the spectral and Frobenius norms it holds

\[\| T_k(A) - A \|_2 = \sigma_{k+1}, \quad \| T_k(A) - A \|_F = \sqrt{\sigma_{k+1}^2 + \cdots + \sigma_n^2}. \]
Error of TSVD approximation

For the spectral and Frobenius norms it holds

\[\| \mathcal{T}_k(A) - A \|_2 = \sigma_{k+1}, \quad \| \mathcal{T}_k(A) - A \|_F = \sqrt{\sigma_{k+1}^2 + \cdots + \sigma_n^2}. \]

Theorem (Eckart and Young)

Let \(A \in \mathbb{R}^{m \times n} \), then

\[\| \mathcal{T}_k(A) - A \| = \min \{ \| A - B \| : B \in \mathbb{R}^{m \times n} \text{ has at most rank } k \} \] (2)

holds for any unitarily invariant norm.
Error of TSVD approximation

For the spectral and Frobenius norms it holds

\[\| \mathcal{T}_k(A) - A \|_2 = \sigma_{k+1}, \quad \| \mathcal{T}_k(A) - A \|_F = \sqrt{\sigma_{k+1}^2 + \cdots + \sigma_n^2}. \]

Theorem (Eckart and Young)

Let \(A \in \mathbb{R}^{m \times n} \), then

\[\| \mathcal{T}_k(A) - A \| = \min \{ \| A - B \| : B \in \mathbb{R}^{m \times n} \text{ has at most rank } k \} \]

holds for any unitarily invariant norm.

Remark

- Problem (2) has a unique solution when the Frobenius norm is used, provided all \(\sigma_j \) are different.
Error of TSVD approximation

For the spectral and Frobenius norms it holds

\[\| T_k(A) - A \|_2 = \sigma_{k+1}, \quad \| T_k(A) - A \|_F = \sqrt{\sigma_{k+1}^2 + \cdots + \sigma_n^2}. \]

Theorem (Eckart and Young)

Let \(A \in \mathbb{R}^{m \times n} \), then

\[\| T_k(A) - A \| = \min\{\| A - B \| : B \in \mathbb{R}^{m \times n} \text{ has at most rank } k\} \quad (2) \]

holds for any unitarily invariant norm.

Remark

- Problem (2) has a unique solution when the Frobenius norm is used, provided all \(\sigma_j \) are different.
- If the spectral norm is used, the solutions are not unique since, e.g. for any \(0 \leq \theta \leq 1 \), \(B = T_k(A) - \theta \sigma_{k+1} U_k V_k^T \) is a solution, [Gu, M., 2014].
Householder reflections

Definition (Householder reflector)

It is a linear transformation that describes a reflection about an hyperplane containing the origin and orthogonal to \(u \),

\[
\mathcal{H}_u := I - \frac{2}{\|v\|^2} vv^T,
\]

where \(v = u - \|u\|e \) is the Householder vector and \(e = (1, 0, \cdots, 0)^T \).
Householder reflections

Definition (Householder reflector)

It is a linear transformation that describes a reflection about an hyperplane containing the origin and orthogonal to \(u \),

\[
\mathcal{H}_u := I - \frac{2}{\|v\|^2}vv^T,
\]

(3)

where \(v = u - \|u\|e \) is the Householder vector and \(e = (1, 0, \cdots, 0)^T \).

Since \(\mathcal{H}_u(u) = \|u\|e \), a complete pivoted QR factorization can be constructed via Householder reflections, this is

\[
A\Pi = \underbrace{Q_1 \cdots Q_n}_Q R = QR,
\]

(4)

where \(\Pi \) is a permutation, \(Q_1 = \mathcal{H}_1 \) and for \(j = \{2 \cdots n\} \)

\[
Q_j = \begin{bmatrix}
I_j & 0 \\
0 & \mathcal{H}_j
\end{bmatrix}
\]

\(I_j \): Identity matrix of size \((j - 1) \times (j - 1)\).
Error of QR approximation

For a rank-k QR approximation only consider the first k reflections as follows

$$A = QR \Pi^T = m \begin{bmatrix} k & r - k \\ Q_{11} & Q_{12} \end{bmatrix} \begin{bmatrix} k \\ r - k \end{bmatrix} \begin{bmatrix} R_{11} & R_{12} \\ 0 & R_{22} \end{bmatrix} \Pi^T$$

$$= Q_{11} \begin{bmatrix} R_{11} & R_{12} \end{bmatrix} \Pi^T + Q_{12} \begin{bmatrix} 0 & R_{22} \end{bmatrix} \Pi^T.$$

where $Q = Q_1 \cdots Q_k$, and

$$\|A - A_k\| = \|Q_{12}[0 \ R_{22}]\Pi^T\| = \|[0 \ R_{22}]\| = \|R_{22}\|. \quad (5)$$
Error of QR approximation

For a rank-\(k \) QR approximation only consider the first \(k \) reflections as follows

\[
A = QR\Pi^T = m \begin{bmatrix} Q_{11} & Q_{12} \end{bmatrix} \begin{bmatrix} k & r-k \end{bmatrix} \begin{bmatrix} k & n-k \\ R_{11} & R_{12} & 0 & R_{22} \end{bmatrix} \Pi^T
\]

\[
= Q_{11} \begin{bmatrix} R_{11} & R_{12} \end{bmatrix} \Pi^T + Q_{12} \begin{bmatrix} 0 & R_{22} \end{bmatrix} \Pi^T.
\]

where \(Q = Q_1 \cdots Q_k \), and

\[
\|A - A_k\| = \|Q_{12} \begin{bmatrix} 0 & R_{22} \end{bmatrix} \Pi^T\| = \|[0 & R_{22}]\| = \|R_{22}\|. \tag{5}
\]

- Computing \(A_k \) is typically faster than computing the TSVD.
Error of QR approximation

For a rank-\(k\) QR approximation only consider the first \(k\) reflections as follows

\[
A = QR\Pi^T = \begin{bmatrix} Q_{11} & Q_{12} \end{bmatrix} \begin{bmatrix} R_{11} & R_{12} \\ 0 & R_{22} \end{bmatrix} \Pi^T
\]

\[
= Q_{11} \begin{bmatrix} R_{11} & R_{12} \end{bmatrix} \Pi^T + Q_{12} \begin{bmatrix} 0 & R_{22} \end{bmatrix} \Pi^T.
\]

where \(Q = Q_1 \cdots Q_k\), and

\[
\|A - A_k\| = \|Q_{12}[0 \quad R_{22}]\Pi^T\| = \|[0 \quad R_{22}]\| = \|R_{22}\|. \tag{5}
\]

- Computing \(A_k\) is typically faster than computing the TSVD.
- The choice of \(\Pi\) is of great importance to control the error.
Error of QR approximation

For a rank-\(k\) QR approximation only consider the first \(k\) reflections as follows

\[
A = QR\Pi^T = m \begin{bmatrix} Q_{11} & Q_{12} \end{bmatrix} \begin{bmatrix} R_{11} & R_{12} \\ 0 & R_{22} \end{bmatrix} \Pi^T
\]

\[
= \underbrace{Q_{11} \begin{bmatrix} R_{11} & R_{12} \end{bmatrix} \Pi^T}_{=: A_k} + \underbrace{Q_{12} \begin{bmatrix} 0 & R_{22} \end{bmatrix} \Pi^T}_{"\text{residual"}}.
\]

where \(Q = Q_1 \cdots Q_k\), and

\[
\|A - A_k\| = \|Q_{12} \begin{bmatrix} 0 & R_{22} \end{bmatrix} \Pi^T\| = \|\begin{bmatrix} 0 & R_{22} \end{bmatrix}\| = \|R_{22}\|. \tag{5}
\]

- Computing \(A_k\) is typically faster than computing the TSVD.
- The choice of \(\Pi\) is of great importance to control the error.
- Note that \(\sigma_k(A) = \sigma_k(R)\).
Choosing the pivot using the maximal volume criteria

Theorem (Goreinov and Tyrtyshnikov, 2001)

Let us consider

\[
R = \begin{bmatrix}
R_{11} & R_{12} \\
R_{21} & R_{22}
\end{bmatrix}
\]

where \(R_{11} \in \mathbb{R}^{k \times k} \) has maximal volume (i.e., maximum determinant in absolute value) among all \(k \times k \) submatrices of \(R \). Then

\[
\| R_{22} - R_{21} R_{11}^{-1} R_{12} \|_{\text{max}} \leq (k + 1) \sigma_{k+1}(R).
\]

where \(\| M \|_{\text{max}} := \max_{i,j} | M(i, j) | \).
Choosing the pivot using the maximal volume criteria

Theorem (Goreinov and Tyryshnikov, 2001)

Let us consider

\[R = \begin{bmatrix} R_{11} & R_{12} \\ R_{21} & R_{22} \end{bmatrix} \]

where \(R_{11} \in \mathbb{R}^{k \times k} \) has maximal volume (i.e., maximum determinant in absolute value) among all \(k \times k \) submatrices of \(R \). Then

\[\| R_{22} - R_{21} R_{11}^{-1} R_{12} \|_{\text{max}} \leq (k + 1) \sigma_{k+1}(R). \]

where \(\| M \|_{\text{max}} := \max_{i,j} |M(i, j)| \).

Good news: Since for a low-rank QR factorization we have \(R_{21} = 0 \), then

\[\| R_{22} \|_{\text{max}} \leq (k + 1) \sigma_{k+1}(A). \]
Choosing the pivot using the maximal volume criteria

Theorem (Goreinov and Tyrtyshnikov, 2001)

Let us consider

$$R = \begin{bmatrix} R_{11} & R_{12} \\ R_{21} & R_{22} \end{bmatrix}$$

where $R_{11} \in \mathbb{R}^{k \times k}$ has maximal volume (i.e., maximum determinant in absolute value) among all $k \times k$ submatrices of R. Then

$$\| R_{22} - R_{21} R_{11}^{-1} R_{12} \|_{\text{max}} \leq (k + 1)\sigma_{k+1}(R).$$

where $\| M \|_{\text{max}} := \max_{i,j} |M(i,j)|$.

Good news: Since for a low-rank QR factorization we have $R_{21} = 0$, then

$$\| R_{22} \|_{\text{max}} \leq (k + 1)\sigma_{k+1}(A).$$

Bad news: Finding a submatrix of maximum volume has been proven to be NP-hard, Civril and Magdon-Ismail (2011).
Choosing the pivot using the classical column pivoting QRCP

QRCP takes as pivot the column of largest norm at each step, the error is bounded as

\[\| R_{22} \|_2 \leq 2^k \sqrt{n - k} \sigma_{k+1}(A). \] (6)

In general, \(\| R_{22} \|_2 \leq g(k, n) \sigma_{k+1}(A) \).
Choosing the pivot using the classical column pivoting QRCP

QRCP takes as pivot the column of largest norm at each step, the error is bounded as

\[\| R_{22} \|_2 \leq 2^k \sqrt{n - k} \sigma_{k+1}(A). \] (6)

In general, \[\| R_{22} \|_2 \leq g(k, n) \sigma_{k+1}(A), \]

<table>
<thead>
<tr>
<th>Method</th>
<th>Reference</th>
<th>(g(k,n))</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pivoted QR</td>
<td>[Golub, 1965]</td>
<td>(\sqrt{(n - k)2^k})</td>
<td>(O(mnk))</td>
</tr>
<tr>
<td>High RRQR</td>
<td>[Foster, 1986]</td>
<td>(\sqrt{n(n - k)2^{n-k}})</td>
<td>(O(mn^2))</td>
</tr>
<tr>
<td>High RRQR</td>
<td>[Chan, 1987]</td>
<td>(\sqrt{n(n - k)2^{n-k}})</td>
<td>(O(mn^2))</td>
</tr>
<tr>
<td>RRQR</td>
<td>[Hong and Pan, 1992]</td>
<td>(\sqrt{k(n - k) + k})</td>
<td>-</td>
</tr>
<tr>
<td>Low RRQR</td>
<td>[Chan and Hansen, 1994]</td>
<td>(\sqrt{(k + 1)n2^{k+1}})</td>
<td>(O(mn^2))</td>
</tr>
<tr>
<td>Hybrid-I RRQR</td>
<td>[Chandr. and Ipsen, 1994]</td>
<td>(\sqrt{(k + 1)(n - k)})</td>
<td>-</td>
</tr>
<tr>
<td>Hybrid-II RRQR</td>
<td></td>
<td>(\sqrt{(k + 1)(n - k)})</td>
<td>-</td>
</tr>
<tr>
<td>Hybrid-III RRQR</td>
<td></td>
<td>(\sqrt{(k + 1)(n - k)})</td>
<td>-</td>
</tr>
<tr>
<td>Algorithm 3</td>
<td>[Gu and Eisenstat, 1996]</td>
<td>(\sqrt{k(n - k) + 1})</td>
<td>-</td>
</tr>
<tr>
<td>Algorithm 4</td>
<td></td>
<td>(\sqrt{f^2k(n - k) + 1})</td>
<td>(O(kmn \log_f(n)))</td>
</tr>
<tr>
<td>DGEQPY</td>
<td>[Bischof and Orti, 1998]</td>
<td>(O((k + 1)^2(n - k)))</td>
<td>-</td>
</tr>
<tr>
<td>DGEQPX</td>
<td></td>
<td>(O((k+1)(n - k)))</td>
<td>-</td>
</tr>
<tr>
<td>SPQR</td>
<td>[Stewart, 1999]</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PT Algorithm 1</td>
<td>[Pan and Tang, 1999]</td>
<td>(O((k + 1)(n - k)))</td>
<td>-</td>
</tr>
<tr>
<td>PT Algorithm 2</td>
<td></td>
<td>(O((k + 1)^2(n - k)))</td>
<td>-</td>
</tr>
<tr>
<td>PT Algorithm 3</td>
<td></td>
<td>(O((k + 1)^2(n - k)))</td>
<td>-</td>
</tr>
<tr>
<td>Pan Algorithm 2</td>
<td>[Pan, 2000]</td>
<td>(O(\sqrt{k(n - k) + 1}))</td>
<td>-</td>
</tr>
</tbody>
</table>

Figure: Different algorithms for low-rank QR approximation, Mahoney et al. (2010).
Low rank approximation using subspace iteration

The following algorithm is the basic subspace iteration method,

\textbf{Algorithm 1} \hspace{1em} [A_k] = \text{SubspaceIter}(A,\Omega,k,q)

- \textbf{Requires:} $\Omega \in \mathbb{R}^{n \times l}$, with $l \geq k$.
- \textbf{Returns:} rank-k approximation of A.

1: Perform $Y = (A A^T)^q A \Omega$.
2: Compute (economic) QR decomposition $Y = QR$.
3: Form $B = Q^T A$.
4: Set $A_k := Q T_k(B)$.

Note that setting $k = l = 1$ then Algorithm 1 is the classical power method.

If Ω is a random Gaussian matrix, then setting $l = 2k$ and $q = 0$, we get the expected error \cite{Halko, N. et al, 2014} $\|A - A_k\|_2 \leq (2 + 4\sqrt{2} \min\{m,n\} k^{-1}) \sigma_{k+1}$.

Alan Ayala (H)
ALORA
July 14, 2017
Low rank approximation using subspace iteration

The following algorithm is the basic subspace iteration method,

Algorithm 2 \([A_k] = \text{SubspaceIter}(A, \Omega, k, q)\)

Requires: \(\Omega \in \mathbb{R}^{n \times l}\), with \(l \geq k\).

Returns: rank-\(k\) approximation of \(A\).

1. Perform \(Y = (AA^T)^q A\Omega\).
2. Compute (economic) QR decomposition \(Y = QR\).
3. Form \(B = Q^T A\).
4. Set \(A_k := Q_T k(B)\).

- Note that setting \(k = l = 1\) then Algorithm 1 is the classical *power method*.
Low rank approximation using subspace iteration

The following algorithm is the basic subspace iteration method,

Algorithm 3 \([A_k] = \text{SubspaceIter}(A, \Omega, k, q)\)

\textbf{Requires:} \(\Omega \in \mathbb{R}^{n \times l}\), with \(l \geq k\).
\textbf{Returns:} rank-\(k\) approximation of \(A\).

1: Perform \(Y = (AA^T)^q A\Omega\).
2: Compute (economic) QR decomposition \(Y = QR\).
3: Form \(B = Q^T A\).
4: Set \(A_k := QT_k(B)\).

- Note that setting \(k = l = 1\) then Algorithm 1 is the classical \textit{power method}.
- If \(\Omega\) is a random Gaussian matrix, then setting \(l = 2k\) and \(q = 0\), we get the expected error [Halko, N. et al, 2014]

\[
\mathbb{E}\|A - A_k\|_2 \leq \left(2 + 4\sqrt{\frac{2\min\{m, n\}}{k - 1}}\right)\sigma_{k+1}.
\]
Error of subspace iteration approximation
Error of subspace iteration approximation

To find the error of approximation, consider the SVD of $A = U \Sigma V^T$ and the partition

$$\hat{\Omega} := V^T \Omega = \begin{bmatrix} \hat{\Omega}_1 \\ \hat{\Omega}_2 \end{bmatrix}, \quad 0 \leq p \leq l - k.$$

If $\hat{\Omega}_1$ is full row rank, then the error is bounded as ([Gu, M., 2014])

$$\|A - A_k\|_2 \leq \sqrt{\sigma_{k+1}^2 + \omega^2 \|\hat{\Omega}_2\|_2^2 \|\hat{\Omega}_1^\dagger\|_2^2},$$

where $\omega = \sqrt{k} \sigma_{l-p+1} \left(\frac{\sigma_{l-p+1}}{\sigma_k} \right)^2$ and $\hat{\Omega}_1 \hat{\Omega}_1^\dagger = I$.
Error of subspace iteration approximation

To find the error of approximation, consider the SVD of $A = U\Sigma V^T$ and the partition

$$\hat{\Omega} := V^T \Omega = \begin{bmatrix} \hat{\Omega}_1 \\ \hat{\Omega}_2 \end{bmatrix}, \quad 0 \leq p \leq l - k.$$

If $\hat{\Omega}_1$ is full row rank, then the error is bounded as ([Gu, M., 2014])

$$\|A - A_k\|_2 \leq \sqrt{\sigma_{k+1}^2 + \omega^2 \|\hat{\Omega}_2\|_2^2 \|\hat{\Omega}_1^\dagger\|_2^2},$$

(7)

where $\omega = \sqrt{k}\sigma_{l-p+1} \left(\frac{\sigma_{l-p+1}}{\sigma_k}\right)^2$ and $\hat{\Omega}_1\hat{\Omega}_1^\dagger = I$.

Remark

If G is a $(l - p) \times l$ is a Gaussian matrix, then $\text{rank}(G) = l - p$ with probability 1.
How do the singular vectors converge?

We need to investigate the rate at which we are approaching to a best fitting subspace.
How do the singular vectors converge?

1. We need to investigate the rate at which we are approaching to a best fitting subspace.

2. How do we measure the distance between subspaces?
 - Consider $W_1, W_2 \in \mathbb{R}^{m \times k}$ with orthogonal columns.
 - Let let $S_1 := \text{ran}(W_1)$ and $S_2 := \text{ran}(W_2)$, then

 \[
 \text{dist}(S_1, S_2) := \|W_1 W_1^T - W_2 W_2^T\|_2.
 \]
How do the singular vectors converge?

1. We need to investigate the rate at which we are approaching to a best fitting subspace.

2. How do we measure the distance between subspaces?
 - Consider $W_1, W_2 \in \mathbb{R}^{m \times k}$ with orthogonal columns.
 - Let let $S_1 := \text{ran}(W_1)$ and $S_2 := \text{ran}(W_2)$, then
 \[
 \text{dist}(S_1, S_2) := \|W_1 W_1^T - W_2 W_2^T\|_2.
 \]

Theorem (Ayala et al., 2017)

Using the notation from Algorithm 1, Let $S_u = \text{ran}([u_1 \cdots u_l])$ and $S_q = \text{ran}(Q)$, considering $\hat{\Omega}_1$ nonsingular and $p = 0$, then

\[
\text{dist}(S_u, S_q) \leq \left(\frac{\sigma_{l+1}}{\sigma_l}\right)^{2q+1} \|\hat{\Omega}_2\|_2 \|\hat{\Omega}_1^{-1}\|_2,
\]

provided $\sigma_{l+1} > \sigma_l$.

Finding a good Householder vector

When choosing the pivot as one of the columns of A the questions that arise are: How close the error is with respect to the truncated SVD?, Which choice of pivot is the optimal?.

Figure: Householder reflection: p_j and d_j denote the projections of a_j along and orthogonal to u respectively.
Finding a good Householder vector

When choosing the pivot as one of the columns of \(A \) the questions that arise are: How close the error is with respect to the truncated SVD?, Which choice of pivot is the optimal?.

Given \(A = [a_1 \ a_2 \ \cdots \ a_n] \), let \(u \in \mathbb{R}^m \) be any unitary vector, then

\[
H_u A = [h_{a_1} \ h_{a_2} \ \cdots \ h_{a_n}].
\]

Figure: Householder reflection: \(p_j \) and \(d_j \) denote the projections of \(a_j \) along and orthogonal to \(u \) respectively.
Error for a rank-one approximation with arbitrary Householder vector.

\[H_u A = \begin{bmatrix} \|a_1\|_2 \cos(\varphi_1) & \|a_2\|_2 \cos(\varphi_2) & \cdots & \|a_n\|_2 \cos(\varphi_n) \\ r_1 & r_2 & \cdots & r_n \end{bmatrix}, \] (8)

where \(r_j \in \mathbb{R}^{m-1} \).
Error for a rank-one approximation with arbitrary Householder vector.

\[
\mathcal{H}_u A = \begin{bmatrix}
\|a_1\|_2 \cos(\varphi_1) & \|a_2\|_2 \cos(\varphi_2) & \cdots & \|a_n\|_2 \cos(\varphi_n) \\
 r_1 & r_2 & \cdots & r_n
\end{bmatrix},
\]

(8)

where \(r_j \in \mathbb{R}^{m-1} \). The rank-one matrix

\[
A_1 = \frac{u}{\|u\|_2} (\|a_1\|_2 \cos(\varphi_1), \cdots, \|a_n\|_2 \cos(\varphi_n))
\]

(9)

approximates \(A \) with an error given by the norm of the residual matrix \(E := [r_1 \cdots r_n] \). By the Pythagorean theorem \(\|r_j\|_2 = \|a_j\|_2 \sin(\varphi_j) \), then

\[
\|A - A_1\|_F^2 = \|E\|_F^2 = \sum_{j=1}^{n} \|r_j\|_2^2 = \sum_{j=1}^{n} \|a_j\|_2^2 \sin^2(\varphi_j).
\]

(10)
Error for a rank-one approximation with arbitrary Householder vector.

\[\mathcal{H}_u A = \begin{bmatrix} \|a_1\|_2 \cos(\varphi_1) & \|a_2\|_2 \cos(\varphi_2) & \cdots & \|a_n\|_2 \cos(\varphi_n) \\ r_1 & r_2 & \cdots & r_n \end{bmatrix}, \]

(8)

where \(r_j \in \mathbb{R}^{m-1} \). The rank-one matrix

\[A_1 = \frac{u}{\|u\|_2} (\|a_1\|_2 \cos(\varphi_1), \cdots, \|a_n\|_2 \cos(\varphi_n)) \]

(9)

approximates \(A \) with an error given by the norm of the residual matrix \(E := [r_1 \cdots r_n] \). By the Pythagorean theorem \(\|r_j\|_2 = \|a_j\|_2 \sin(\varphi_j) \), then

\[\|A - A_1\|_F^2 = \|E\|_F^2 = \sum_{j=1}^n \|r_j\|_2^2 = \sum_{j=1}^n \|a_j\|_2^2 \sin^2(\varphi_j). \]

(10)

Since \(d_j = a_j - p_j \), then

\[\|E\|_F^2 = \sum_{j=1}^n \|d_j\|_2^2. \]

(11)
Error for a rank-one approximation with arbitrary Householder vector.

\[\mathcal{H}_u A = \begin{bmatrix} \|a_1\|_2 \cos(\varphi_1) & \|a_2\|_2 \cos(\varphi_2) & \cdots & \|a_n\|_2 \cos(\varphi_n) \\ r_1 & r_2 & \cdots & r_n \end{bmatrix} , \]

(8)

where \(r_j \in \mathbb{R}^{m-1} \). The rank-one matrix

\[A_1 = \frac{u}{\|u\|_2} (\|a_1\|_2 \cos(\varphi_1), \cdots, \|a_n\|_2 \cos(\varphi_n)) \]

(9)

approximates \(A \) with an error given by the norm of the residual matrix \(E := [r_1 \cdots r_n] \). By the Pythagorean theorem \(\|r_j\|_2 = \|a_j\|_2 \sin(\varphi_j) \), then

\[\|A - A_1\|_F^2 = \|E\|_F^2 = \sum_{j=1}^{n} \|r_j\|_2^2 = \sum_{j=1}^{n} \|a_j\|_2^2 \sin^2(\varphi_j). \]

(10)

Since \(d_j = a_j - p_j \), then

\[\|E\|_F^2 = \sum_{j=1}^{n} \|d_j\|_2^2. \]

(11)

Which choice of \(u \) minimizes this error?
Solving the optimization problem

We seek the hyperline in the m dimensional space that minimizes the sum of squared orthogonal distances from the points a_j’s to itself. This is the *total least-square problem*.

Define the matrix $Y := \begin{bmatrix} a_1 & \cdots & a_n \end{bmatrix}$.

(12)

The best fitting line of the points \{a_j’s\} is given by

$L := \{ g + u\tau | \tau \in \mathbb{R} \}$.

(13)

where $g := (1/n) \sum_{j=1}^{n} a_j$ and $u = u_1(Y)$. [Schneider et al., 2003].

If we impose the condition that the line passes through the origin, then the solution would be

$\tilde{L} := \{ \tilde{u}\tau | \tau \in \mathbb{R} \}$.

(14)

where $\tilde{u} = u_1(A)$.

Solving the optimization problem

We seek the hyperline in the m dimensional space that minimizes the sum of squared orthogonal distances from the points a_j’s to itself. This is the total least-square problem.

Define the matrix

$$Y := [a_1 - g \cdots a_n - g].$$ (12)

- The best fitting line of the points $\{a_j\}$ is given by

$$\mathcal{L} := \{ g + u\tau \mid \tau \in \mathbb{R} \}. \quad (13)$$

where $g := (1/n) \sum_{j=1}^{n} a_j$ and $u = u_1(Y)$, [Schneider et al., 2003].
Solving the optimization problem

We seek the hyperline in the m dimensional space that minimizes the sum of squared orthogonal distances from the points a_j’s to itself. This is the total least-square problem.

Define the matrix

$$Y := [a_1 - g \cdots a_n - g].$$

(12)

- The best fitting line of the points $\{a_j\}$ is given by

$$\mathcal{L} := \{ g + u \tau \mid \tau \in \mathbb{R} \}.$$

(13)

where $g := (1/n) \sum_{j=1}^{n} a_j$ and $u = u_1(Y)$, [Schneider et al., 2003].

- If we impose the condition that the line passes through the origin, then the solution would be

$$\tilde{\mathcal{L}} := \{ \tilde{u} \tau \mid \tau \in \mathbb{R} \}.$$

(14)

where $\tilde{u} = u_1(A)$.
Geometry analysis of pivoting

Setting the optimization problem

Best fitting (affine) subspace.

Figure: Solution of the total least-square problem (left) and its solution by imposing the condition to pass through the origin O (right).
Best fitting (affine) subspace.

\[\mathcal{L}(\tau) = g + u\tau \]

\[\tilde{\mathcal{L}}(\tau) = \tilde{u}\tau \]

Figure: Solution of the total least-square problem (left) and its solution by imposing the condition to pass through the origin \(O \) (right).

- To approximate \(u_1(Y) \) we can use the fact that it is the principal component of \(C = YY^T \), the covariance matrix.
- There exists work on PCA on trimming around affine subspaces [Croux et al., 2014].
Error approximation for ALORA

Consider \(c = [1, \cdots, 1]^T \in \mathbb{R}^m \). Let \(u = u_1(Y) = u_1(A - gc) \) and define

\[
B = A - T, \quad T = (g - \alpha u)c,
\]

where \(\alpha \in \mathbb{R} \).

- Considering \(g_B = (1/n) \sum_{j=1}^{n} b_j \), then clearly \(g_B = u \).
Error approximation for ALORA

Consider $c = [1, \cdots, 1]^T \in \mathbb{R}^m$. Let $u = u_1(Y) = u_1(A - gc)$ and define

$$B = A - T, \quad T = (g - \alpha u)c,$$

where $\alpha \in \mathbb{R}$.

- Considering $g_B = (1/n) \sum_{j=1}^{n} b_j$, then clearly $g_B = u$.
- Next, we prove that $u_1(B) = \frac{g_B}{\|g_B\|}$ and then the best fitting line of B is

$$\mathcal{L}^{(B)} := \left\{ \frac{g_B}{\|g_B\|} \tau \mid \tau \in \mathbb{R} \right\}.$$
Error approximation for ALORA

Consider \(c = [1, \cdots, 1]^T \in \mathbb{R}^m \). Let \(u = u_1(Y) = u_1(A - gc) \) and define

\[
B = A - T, \quad T = (g - \alpha u)c, \tag{15}
\]

where \(\alpha \in \mathbb{R} \).

- Considering \(g_B = (1/n) \sum_{j=1}^{n} b_j \), then clearly \(g_B = u \).
- Next, we prove that \(u_1(B) = \frac{g_B}{\|g_B\|} \) and then the best fitting line of \(B \) is

\[
\mathcal{L}^{(B)} := \left\{ \frac{g_B}{\|g_B\|} \tau \mid \tau \in \mathbb{R} \right\}.
\]

Lemma

Let \(r = \text{rank}(Y) \) \(\alpha \in \mathbb{R} \), then \(\text{rank}(B) = r \) and

\[
u_j(B) = u_j(Y) \quad \forall j \in \{1 \cdots r\}.
\]

\[
\sigma_1(B) = \sqrt{\sigma_1(Y)^2 + n\alpha^2} \quad \text{and} \quad v_1(B) = (\alpha c + \sigma_1(Y) v_1(Y)) / \sigma_1(B).
\]

\[
\sigma_j(B) = \sigma_j(Y) \quad \text{and} \quad v_j(B) = v_j(Y) \quad \forall j \in \{2 \cdots r\}.
\]
Lemma

Let B_k be a rank-k approximation of B such that

$$
\|B - B_k\|_2 \leq g(k, n)\sigma_{k+1}(B),
$$

where g is a function of k and n. Define $A_{k+1} = B_k + T$, then

$$
\|A - A_{k+1}\|_2 \leq g(k, n)\sigma_{k+1}(A).
$$
Lemma

Let B_k be a rank-k approximation of B such that

$$
\| B - B_k \|_2 \leq g(k, n)\sigma_{k+1}(B),
$$

where g is a function of k and n. Define $A_{k+1} = B_k + T$, then

$$
\| A - A_{k+1} \|_2 \leq g(k, n)\sigma_{k+1}(A).
$$

Corollary

$$
\sigma_{k+1}(B) \leq \sigma_{k+1}(A) \leq \sigma_k(B). \quad (16)
$$
Error approximation for ALORA

Lemma

Consider $A_l = B_{l-1} + T$, where B_{l-1} is a rank $l - 1$ approximation of B, then

$$\|A - A_l\|_2 \leq g(l, n, C) \sigma_{l+1}(A),$$

where $C = (A - g)(A - g)^T$ is the covariance matrix and

$$g(l, n, C) = \sqrt{\frac{r + s \sqrt{\frac{n-l}{l}}}{r - s \sqrt{\frac{l}{n-l}}}},$$

with $r = \frac{\text{tr}(C)}{n}$ and $s = \sqrt{\frac{\text{tr}(C^2)}{n} - r^2}$.

Proof.

Use Theorem 3.1 from [Merikosky et al., 1983] on matrix C.

Alan Ayala (H)
Lemma

Consider $A_l = B_{l-1} + T$, where B_{l-1} is a rank $l-1$ approximation of B, then

$$\|A - A_l\|_2 \leq g(l, n, C) \sigma_{l+1}(A),$$

where $C = (A - g)(A - g)^T$ is the covariance matrix and

$$g(l, n, C) = \sqrt{\frac{r + s\sqrt{n-l}}{r - s\sqrt{n-l}}}$$

with $r = \frac{\text{tr}(C)}{n}$ and $s = \sqrt{\frac{\text{tr}(C^2)}{n} - r^2}$.

Proof.

Use Theorem 3.1 from [Merikosky et al., 1983] on matrix C.\hfill \square
Affine low rank approximation (ALORA)

Algorithm 4 \([A_{k+1}] = \text{ALORA}(A,k) \)

Require: \(A = [a_1 \ a_2 \ \cdots \ a_n] \in \mathbb{R}^{m \times n} \).

Returns: rank \(k + 1 \) approximation of \(A \).

1: \(g = (1/n) \sum_{j=1}^{n} a_j, \ c = [1 \ \cdots \ 1] \in \mathbb{R}^{1 \times n} \).

2: \(u := \text{first singular vector of } Y \).

3: \(\alpha = g(1)/u(1) \).

4: \(T = (g - \alpha u)c \).

5: Compute \(B_k \): a rank-\(k \) approximation of \(B = Y + \alpha uc \).

6: \(A_{k+1} = T + B_k \)

Ensure: \(\|A - A_{k+1}\|_2 \leq \sigma_k(A) \)

Note that if the directions of the fitting lines are computed using a rank-revealing QR algorithm, then ALORA will produce a translated QR factorization.
Approximation error using ALORA with QRCP

- Using QRCP to approximate the direction of the best fitting line, then ALORA yields a QRCP factorization plus a rank-one translation matrix.

Figure: Low-rank approximation of a random matrix with slowly decreasing singular values (left), and the Kahan matrix (right), size $m = n = 256$.
ALORA with QRCP

- For matrices with slowly decreasing singular values, typically the first part of the spectrum is better approximated by ALORA.

Figure: Low-rank approximation of matrices GKS (left), and Baart1 (right), size $m = n = 256$.
Approximation error using ALORA with Subspace Iteration

- Using Subspace iteration (Alg. 1 with $p = 2$, $q = 1$), to approximate the direction of the best fitting line, then ALORA improves the convergence error.
- The error get smaller while increasing p or q in Alg. 1.

Figure: Low-rank approximation of matrices GKS (left), and Baart1 (right), size $m = n = 256$.
Approximation of singular values

- For QRCP (top) we plot $\frac{|R(i,i)|}{\sigma_i}$.
- For ALORA (bottom) we plot $\frac{|R^B(i,i)|}{\sigma_i}$.
Reduction with tournament pivoting

- Tournament pivoting scheme (CARRQR, [Demmel et al., 2015]) on a m-by-10 matrix using 3 processors.
Reduction with tournament pivoting

- Tournament pivoting scheme (CARRQR, [Demmel et al., 2015]) on a m-by-10 matrix using 3 processors.
- The number of messages (two) is independent of the number of columns and it is obviously optimal.
Numerical Experiments
Parallel implementation

Reduction with tournament pivoting

- Tournament pivoting scheme (CARRQR, [Demmel et al., 2015]) on a m-by-10 matrix using 3 processors.
- The number of messages (two) is independent of the number of columns and it is obviously optimal.
- We use this reduction to in general select approximative directions instead of pivot columns.

Alan Ayala (H)
ALORA
July 14, 2017 24 / 30
- PALORA: Parallel ALORA using QRCP.
- CALRQR: Low-rank version of CARRQR.
- PDGEKQP: A low-rank version of the ScaLapack routine PDGEQP.

Figure: Low-rank approximation of matrices GKS (left), and Phillips (right), size $m = n = 512$.
ALORA_IE: modified ALORA for integral equations

- We create a (hierarchical) partition of the domain.
- In such a way that the matrix corresponding to each subdomain has a best fitting line which direction can be approximated with its gravity center.
- Take advantage of the rapidly decreasing singular values.
- Construct a **linear cost** Householder reflection.

Example: Consider the inner Dirichlet problem $Au = f$

$$Au(x) = \frac{1}{4\pi} \int_{\Gamma} \frac{u(y)}{|x-y|} ds_y.$$

Defined over a 3D domain Γ.

1. Discretize the equation by the classical Boundary element method and get the linear system $Ax = b$.
Numerical Experiments

Modified ALORA for integral equations.
Numerical Experiments

Modified ALORA for integral equations.

Alan Ayala (H)

ALORA

July 14, 2017 28 / 30
Numerical Experiments

Modified ALORA for integral equations.
References

Demmel, J. W. and Grigori, L. and Gu, M. and Xiang, H.
Communication avoiding rank revealing QR factorization with column pivoting, 2015.

Gu, M.
Subspace Iteration Randomization and Singular Value Problems, 2014.

Ayala, A. and Claeys X. and Grigori, L.

Schneider, P. and Eberly, D.

Merikosky, J. and Styan, G. and Wolkowicz, H.

Halko, N. et al.