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Abstract

A model for describing the behavior of Ising models very near T, is introduced.
The description is based upon dividing the Ising model into cells which are micro-
scopically large but much smaller than the coherence length and then using the
total magnetization within each cell as a collective variable. The resulting calcu-

lation serves as a partial justification for Widom’s conjecture about the homogene-
ity of the free energy and at the same time gives his result sv' =y’ + 2p.



How was critical phenomena solved?

Ben Widom discovered Leo Kadanoff explained Ken Wilson dé‘)éloped

“data collapse” (1963) data collapse, with the RG based on

scaling concepts (1966) iﬁ%ﬂi"(?g;%)sca""g

e Common features

— Strong fluctuations
— Power law correlations

* (Can we solve turbulence by following critical phenomena?
* Does turbulence exhibit critical phenomena at its onset?
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Transitional turbulence: puffs

* Reynolds’ originally pipe turbulence
(1883) reports on the transition

Univ. of Manchester

“Flashes” of turbulence:




“EXPLORING%
IS BORINI,

THREE-YEAR OLD
EVER



Ecological collapse and the phase
transition to turbulence

Hong-Yan Shih, Tsung-Lin Hsieh, Nigel Goldenfeld
Grudgirahy Partially supported by NSF-DMR-1044901

Nature Physics, March 2016: Advance Online Publication 15 Nov 2015



Clay Mathematics Institute

Dedicated to increasing and disseminating mathematical knowledge

HOME ABOUT CMI PROGRAMS NEWS & EVENTS AWARDS

SCHOLARS

PUBLICATIONS

Millennium Problems

In order to celebrate mathematics in the new millennium, The Clay
Mathematics Institute of Cambridge, Massachusetts (CMI) has named seven
Prize Problems. The Scientific Advisory Board of CMI selected these problems,
focusing on important classic questions that have resisted solution over the
years. The Board of Directors of CMI designated a $7 million prize fund for the
solution to these problems, with $1 million allocated to each. During the
Millennium Meeting held on May 24, 2000 at the Collége de France, Timothy
Gowers presented a lecture entitled The Importance of Mathematics, aimed for
the general public, while John Tate and Michael Atiyah spoke on the problems.
The CMI invited specialists to formulate each problem.

* Birch and Swinnerton-Dyer
Conjecture

* Hodge Conijecture

* Navier-Stokes Equations
» P vs NP

» Poincaré Conjecture

* Riemann Hypothesis
* Yang-Mills Theo

* Rules

* Millennium Meeting Videos

Navier-Stokes Equation

Waves follow our boat as we meander across the lake, and turbulent air
currents follow our flight in @ modern jet. Mathematicians and physicists
believe that an explanation for and the prediction of both the breeze and the
turbulence can be found through an understanding of solutions to the Navier-
Stokes equations. Although these equations were written down in the 19th
Century, our understanding of them remains minimal. The challenge is to
make substantial progress toward a mathematical theory which will unlock the
secrets hidden in the Navier-Stokes equations.

* The Millennium Problems

» Official Problem Description —
Charles Fefferman

» Lecture by Luis Cafarelli (video)
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* The Millennium Problems

Navier-Stokes Equation
.................................................................................................................................................................................................................................... » Official Problem De§cription -

Waves follow our boat as we meander across the lake, and turbulent air Charles Fefferman
currents follow our flight in @ modern jet. Mathematicians and physicists » Lecture by Luis Cafarelli (video)

believe that an explanation for and the prediction of both the breeze and the
turbulence can be found through an understanding of solutions to the Navier-
Stokes equations. Although these equations were written down in the 18th
Century, our understanding of them remains minimal. The challenge is to
make substantial progress toward a mathematical theory which will unlock the

secrets hidden in the Navier-Stokes equations.

A fundamental problem in analysis is to decide whether such smooth, physically
reasonable solutions exist for the Navier—Stokes equations. To give reasonable lee-
way to solvers while retaining the heart of the problem, we ask for a proof of one
of the following four statements.

(A) Existence and smoothness of Navier-Stokes solutions on B*. Takev >
0 and n = 3. Let u®(z) be any smooth, divergence-free vector field satisfying (4).
Take f(x,t) to be identically zero. Then there exist smooth functions p(z, t), w(x, 1)
on B x [0, 00) that satisfy (1), (2), (3), (6), (7).

(B) Existence and smoothness of Navier-Stokes solutions in B*/Z*. Take
v >0 and n = 3. Let u”(z) be any smooth, divergence-free vector field satisfying
(8); we take f(z,t) to be identically zero. Then there exist smooth functions p(x. t),
wy(z,t) on B* x [0,00) that satisfy (1), (2), (3), (10), (11).

(C) Breakdown of Navier—Stokes solutions on B*, Take » > 0 and n = 3.
Then there exist a smooth, diversence-free vector field «°(z) on B and a smooth
f(x,t) on B x [0, 00), satisfying (4), (5), for which there exist no solutions (p, u)
of (1), (2), (3), (6), (7) on B x [0,00).

(D) Breakdown of Navier-Stokes Solutions on B*/Z*. Take v > 0 and
n = 3. Then there exist a smooth, divergence-free vector field v°(z) on B* and a
smooth f(r,t) on B* x [0,00), satisfying (8), (9), for which there exist no solutions
(p.u) of (1), (2), (3), (10), (11) on B® x [0,00).




Deterministic classical mechanics of many particles in a box =» statistical mechanics

15




Deterministic classical mechanics of infinite number of particles in a box
= Navier-Stokes equations for a fluid

=» statistical mechanics
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) = —Vp + uV4u

Deterministic classical mechanics of infinite number of particles in a box
= Navier-Stokes equations for a fluid

=» statistical mechanics
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Turbulence is stochastic and wildly fluctuating

Soap film experiment

M. A. Rutgers, X-l. Wu, and W. I. Goldburg.
"The Onset of 2-D Grid Generated Turbulence in Flowing Soap Films,"
Phys. Fluids 8, S7, (Sep. 1996).



Turbulence generates structure at many scales

Soap film experiment

M. A. Rutgers, X-l. Wu, and W. I. Goldburg.
"The Onset of 2-D Grid Generated Turbulence in Flowing Soap Films,"
Phys. Fluids 8, S7, (Sep. 1996).



Scale invariance in turbulence

e Eddies spin off other

| eddies in a Hamiltonian

process.

— Does not involve friction!

— Hypothesis due to
Richardson, Kolmogorov, ...

Implication: viscosity will

not enter into the

equations




Scale invariance in turbulence

- * Compute E(k), turbulent
. kinetic energy in wave
number range k to k+dk

— E(k) depends on k
— E(k) will depend on the rate at
which energy is transferred
between scales: €
* Dimensional analysis:

— E(k) ~ €2/3 k573

A.N. Kolmogorov



The energy spectrum

Integral scale E(k) = V2 d(u,2)/
dk

f—5/3 .
Inertial range

issipation

0.1 1 10 100 1000 10* 10°



Turbulent cascades

3D forward cascade

2D inverse cascade

Energy flows to small scales

Energy flows to large scales




Turbulent cascades

3D forward cascade

E(k) o e2/3k=5/3

2D inverse cascade

E(k) o 2/3=5/3




Turbulent cascades

2D forward cascade 2D inverse cascade

\Vorticity flows to small scales | | Energy flows to large scales




Turbulent cascades

2D forward cascade

E(k) oc N2/3 =3

2D inverse cascade

E(k) o 2/3=5/3




Turbulent cascades
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2D inverse cascade

E(k) o 2/3=5/3




Atmospheric turbulence

Wavenumber (radians m-")
] 0—4 1 O']

T

R —

POTENTIAL
TEMPERATURE
(*K? m rad")

k-5/3

Spectral Density m3 s
1

10! |
L P 1 1 1 |
10° Wavelength (km) 10+

G. D. Nastrom and K. S. Gage, “A Climatology of Atmospheric
Wavenumber Spectra of Wind and Temperature Observed by Commercial
Aircraft”, Jour. Atmos. Sci. vol 42, 1985 p953



Turbulent cascades

is a statistical mechanical non-equilbrium
steady state

Turbulence

Fluctuation-dissipation theorem for non-equilibrium
steady states predicts that macroscopic flow properties
such as friction depend on the energy cacade

2D forward cascade 2D inverse cascade

E(k) oc \2/3k =3 E(k) o €2/3k=5/3



Pipe flow

A
R
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VR I . T
Re= —  Roughness = —  [Friction Factor, I = —
1% ) . pV=
Re = Reynolds number v = viscosity/density = kinematic

viscosity




Pipe flow

I o T
Roughness = —  Friction Factor,f = 7
_ NE

s number vV = v'iscosity/density = kinematic




Critical behaviour in
fully-developed
turbulence?

Re ~ infinity

Q. Is there universal scaling behaviour in fully-developed
turbulence?



Critical behaviour in
fully-developed
turbulence?

Re ~ infinity

Q. Is there universal scaling behaviour in fully-developed
turbulence?

A. Yes! And regime of influence extends to finite Re
and dominates the macroscopic flow behaviour



Critical behaviour in
fully-developed
turbulence?

You are here

Re ~ infinity

Q. Is there universal scaling behaviour in fully-developed
turbulence?

A. Yes! And regime of influence extends to finite Re
and dominates the macroscopic flow behaviour



Critical behaviour at
laminar-turbulence

transition
Phase diagram of pipe flow

Splitting puffs

i
Single puff spontaneously ldeca','s

metastable spatiotemporal expanding
puffs intermittency slugs
| | |

laminar

| | |
Re 1775 2100 2500

Avila et al., Science 333, 132 (2011)

Critical behaviour in
fully-developed
turbulence?

Re ~ infinity

Q. Is there universal scaling behaviour in fully-developed

turbulence?

A. Yes! And regime of influence extends to finite Re
and dominates the macroscopic flow behaviour



Critical behaviour in

Critical behaviour at
laminar-turbulence

fully-developed

transition turbulence?
Phase diagram of pipe flow

g ] )
Single puff spontaneous \,'ldeca',fs Splitting puffs

laminar metastable spatiotemporal expanding

puffs intermittency slugs
| | | —
Re 1775 2100 2500
Avila et al., Science 333, 192 (2011)
Re ~ infinity

Q. Is there universal scaling behaviour in fully-developed
turbulence?

A. Yes! And regime of influence extends to finite Re
and dominates the macroscopic flow behaviour



laminar

metastable
puffs

spatiotemporal expanding

intermittency slugs
|

Re

1775

v

|
2100 2500

Avila et al., Science 333, 192 (2011)

Critical behaviour at
laminar-turbulence
transition



Q. What is the universality class of
the transition to turbulence?



Q. What is the universality class of
the transition to turbulence?

A. Transitional turbulence is controlled by
predator-prey interactions
implying rigorously the
universality class of
directed percolation



Transitional turbulence: puffs

* Reynolds’ originally pipe turbulence
(1883) reports on the transition

Univ. of Manchester

“Flashes” of turbulence:

40









Precision measurement of turbulent transition

Q: will a puff survive to the end of the pipe?

;l'o reservoir LDA

Disturbance
D=10 mm

L=690D

Many repetitions =2 survival probability P(Re, t)

Hof et al., PRL 101, 214501 (2008)

23



Fluid in a pipe near onset of turbulence

Turbulent puff lifetime

\
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Avila et al., Science 333, 192 (2011) Song et al., J. Stat. Mech. 2014(2), P020010



Predator-prey ecosystem in a pipe near extinction

Prey lifetime

--------------------------------
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Predator-prey vs. transitional turbulence

107}
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Predator-prey vs. transitional turbulence

Prey lifetime Turbulent puff lifetime
1
R Toeron [V”e::‘.:;u;:f:t"“;*\& VRN
i (,,t p -\JV’/ X T t= ] o Hof et al. (2008) "‘\,‘ :
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population split events
Avila et al., Science 333, 192 (2011)

Song et al., J. Stat. Mech. 2014(2), P020010 3



Flow in a pipe

Fluid flow can be in 2 regimes:

— Laminar

— Turbulent

>

Wm

('d R 5 _C Y
<th R T

A« TAATLAAL ST I P 1

Phase of the flow is characterized by the dimensionless

Reynolds number:

Re=VpD/u=VD/v

and /= mean velocity, LP= density, /)= pipe diameter,

M= dynamic viscosity, V= kinematic viscosity

48



Transitional turbulence: puffs

* Reynolds’ originally pipe turbulence
(1883) reports on the transition

Univ. of Manchester

“Flashes” of turbulence:

49



Transitional turbulence: puffs

* Reynolds’ originally pipe turbulence
(1883) reports on the transition

Univ. of Manchester

Re | ——
small  — —

50

http://homepages.warwick.ac.uk/~masax/Research/pipe_models/pipe_models.html#sdfootnote8sym



Laminar-Turbulent Transition

« Laminar state: steady (small Re) Re = Reynolds number = UL /v
« Turbulent state: fluctuating (large Re)

23

http://homepages.warwick.ac.uk/~masax/Research/pipe_models/pipe_models.html#sdfootnote8sym  Tsinober, An informal conceptual introduction to turbulence (2009)



Precision measurement of turbulent transition

Q: will a puff survive to the end of the pipe?

;l'o reservoir LDA

Disturbance
D=10 mm

L=690D

Many repetitions =2 survival probability P(Re, t)

Hof et al., PRL 101, 214501 (2008)

23



Laminar-Turbulent Transition

« Laminar state: steady (small Re) Re = Reynolds number = UL /v
» Turbulent state: fluctuating (large Re) B Re”
. ‘g . . — Sma
« Laminar-turbulent transition in_pipe flows: 1
;1"0 reservoir LDA e ——— |
1 Disturbance a—w;_____—f%
| L D=10 mm pre— ==—§
large

Hof et al., PRL 101, 214501 (2008) L= 690D

23

http://homepages.warwick.ac.uk/~masax/Research/pipe_models/pipe_models.html#sdfootnote8sym  Tsinober, An informal conceptual introduction to turbulence (2009)



Laminar-Turbulent Transition

« Laminar state: steady (small Re) Re = Reynolds number = UL /v
- Turbulent state: fluctuating (large Re) — Re”
 Laminar-turbulent transition in pipe flows: — — "

‘TO reservoir LDA

Disturbance

[ D=10 mm

Hof et al., PRL 101, 214501 (2008)

L= 690D
laminar metastable
Re flows | puffs | | S
I1650 I2050 I2500
turbulence (a) L\ P —
intensity oL
1
mean shear —r
0 b . ' X —
\ 4
puff lifetime © ~ exp(exp(Re))

http://homepages.warwick.ac.uk/~masax/Research/pipe_models/pipe_models.html#sdfootnote8sym  Tsinober, An informal conceptual introduction to turbulence (2009)
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Laminar-Turbulent Transition

« Laminar state: steady (small Re) Re = Reynolds number = UL /v
» Turbulent state: fluctuating (large Re) — Re”
. ign . . — SMa
« Laminar-turbulent transition in pipe flows: — ——
‘TO reservoir LDA ———
1 Disturbance f
L D=10 mm :;W"'*:ﬁé
large

Hof et al., PRL 101, 214501 (2008)

L= 690D
laminar metastable splitting puffs/
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I1650 lpnso 1 12500
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1 1
mean shear —r 1 I W
ok, . o dok S B, -
d pipe axis
puff lifetime © ~ exp(exp(Re))

http://homepages.warwick.ac.uk/~masax/Research/pipe_models/pipe_models.html#sdfootnote8sym  Tsinober, An informal conceptual introduction to turbulence (2009)



Laminar-Turbulent Transition

« Laminar state: steady (small Re) Re = Reynolds number = UL /v

« Turbulent state: fluctuating (large Re) — Re”
* Laminar-turbulent transition in pioe flows: = >me

=— |

d‘

"TO reservoir LDA

Disturbance

[ ! D=10 mm

Hof et al., PRL 101, 214501 (2008)

- large

L= 690D
laminar metastable splitting puffs/ expanding
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'1650 boso 1 2500 1

(a) L\ 12 ) (SPlit) . 12 R expanding — ]
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1 1 1
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http://homepages.warwick.ac.uk/~masax/Research/pipe_models/pipe_models.html#sdfootnote8sym  Tsinober, An informal conceptual introduction to turbulence (2009)



Directed percolation and the laminar-
turbulent transition

* Y.Pomeau (1986) first suggested the universality class of
DP:

— Turbulent regions can spontaneously relaminarize (go into an
absorbing state).

— They can also contaminate their neighbourhood with
turbulence.

e Qur work:

— What quantitative aspects of the transitional turbulence
phenomenology can be described by such a minimal model?

— Can we derive such a statistical mechanics, minimal model from
fluid dynamics flow equations?

57



Main messages

* Transition to turbulence is in the universality
class of directed percolation

— Generic absorbing state argument

— Puff lifetime as a function of Re

— Extreme value statistics and finite-size scaling
— Slug spreading rate as a function of Re

 How to derive universality class from
hydrodynamics

— Transitional turbulence maps into predator-prey
dynamics

— Statistical field theory of ecology of turbulence
— Observational signatures

58



Phase diagram of pipe flow

Regions of turbulence
Single puff that can 5

with clear growth rate.

spontaneously
decay l l
laminar equilibrium spatiotemporal expanding
puffs intermittency slugs
i 1 | >
A
Re 1775 2100 2500
Extensive puffs that
But: laminar state is linearly stable. can interact and split.

Regions of turbulence
with intermittent
laminar patches.

Meseguer and Trefethen (J. Comp. Phys (2003)
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Phase diagram of pipe flow

v

metastable spatiotemporal expanding

puffs intermittency slugs

Re 1775 2100 2500

Avila et al., Science 333, 192 (2011)

laminar

v



Phase diagram of pipe flow
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Avila et al., Science 333, 192 (2011)



Phase diagram of plpe ﬂow

Smgle puff spontaneousl cays Splitting puffs
laminar metastable atiotemporal expanding
puf'fs ntermittency slugs
| S
Re |
1775 2100 2500
Survival probability P(Re, t)=eT— t—tl0 /(Re) Avila et al., Science 333, 192 (2011)

Hof et al., PRL 101, 214501 (2008)

= 4
Q Re | 1
o a 1740| 1
o C# v 1820] 4
* e ]860| 3

4 |* 1880] 7

o _1900] ]

P SPRUN AU SR NS S S ST SR S ST ST S ST SR W'
1070 1000 2000 300(; 4000 5000 6000
Avila et al., (2009)



2T
\ [

Phase diagram of pipe ﬂow

Smgle puff spontaneousl cays Splitting puffs
laminar metastable atiotemporal expanding
puffs ntermittency slugs
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Re |
1775 2100 2500

Survival probability P(Re, t)=eT— t—tl0 /(Re) Avila et al., Science 333, 192 (2011)
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Phase diagram of pipe ﬂow

Smgle puff spontaneousl cays Splitting puffs
laminar metastable atiotemporal expanding
puf'fs ntermittency slugs
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Phase diagram of plpe ﬂow
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Phase diagram of plpe ﬂow
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Phase diagram of plpe ﬂow

Smgle puff spontaneously\l/decays

litting puf'fs

laminar

metastable ﬂpatiotemporaN expanding

Super-exponential scaling: :/:o ~exp(expre)
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MODEL FOR METASTABLE TURBULENT
PUFFS

laminar metastable ‘spatiotemporal expanding
puffs intermittency slugs

1775 2100 2500



v

laminar

equilibrium \spatiotemporal expanding

puffs intermittency slugs

v

Re
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Van Doorne and Westerweel

(Phil. Trans. R. Soc. A 2009)
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Metastable puff

 Hot wire measurements:

Re=2310 Pipe lengths
0.5m
-~ W
T, I m
. —~
E 2m
“—
S g N 3im
oo
Z = \[ 4m
77,
'F;‘ a N Sm
S =
£= M 6 m
‘-.‘3d § N /' m
= N |
= 8 m
—~—
T T v T v 1 b
0 | 2 3 -

time (s) Nishi et al. (JFM 2008)



Metastable puff

* Lifetime of puff decay was measured conclusively by Hof et al.
(PRL 101, 214501 2008).

0 reservoir LDA

* Their experimental setup:

Disturbance
l D=10 mm

-

L= 690D
Hof et al. (PRL 2008)

 They measured the survival probability (probability that a
puff is alive when it reaches the outlet of the pipe).
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Metastable puff

* S-shaped curves imply that survival probability has the form:
PRe, t)=el— t—¢tl0 /7(Re)

10‘8 ! Il Il Il Il 1 : ! Il !
1550 1600 1650 1700 1750 1800 1850 1900 1950 2000 2050

Reynolds number Re

1650 1700 1750 1800 1850 1900 1950 2000 2050
Reynolds number Re

Hof et al. (PRL 2008)
Super-exponential scaling: 7/7.0 ~exp(expRe)
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DP & the laminar-turbulent transition

* Turbulent regions can spontaneously relaminarize (go into
an absorbing state).

* They can also contaminate their neighbourhood with
turbulence. (Pomeau 1986)

%60 @ 000 8 8 8 8 Annihilation
O
® .X. w 24 Decoagulation
® ® time
O O O O O
@ 000 ‘P O&. .‘g Diffusion
v
>
space
dimension I o O\: Coagulation



Directed Percolation Transition

* A continuous phase transition occurs at plc.

P<P.
Hinrichsen (Adv. in Physics 2000)

* Phase transition characterized by universal exponents:
p~p—plc )L L ~(—plc)T—viLl &l ~@p—plc)T-VI
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Pomeau’s heuristic argument

Turbulent regions can spontaneously relaminarize (go into
an absorbing state).

They can also contaminate their neighbourhood with
turbulence. (Pomeau 1986)

o
Y

space
dimension

time




Directed percolation

* Bond percolation: Diagonal lattice with bonds open with
probability p.

M time

World lines of particlesg {
living in 1 dlmen5|on\ ©0 0 o

>

space dimension

 This would be called 1 + 1-dimensional DP.
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Directed percolation

* Bond percolation: Diagonal lattice with bonds open with

probability p.
@ @ 0 O @) Og s
° 80 o Annihilation

O O
!\2 Decoagulation
@0 @ 0{ d’ ‘\‘

space dimension

time
O O
O

<
~

Diffusion

Coagulation

3
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Directed Percolation Transition

* Order parameter is the size of the percolating cluster.

* A continuous phase transition occurs at ]7\[6.

e

“

P<P.
Hinrichsen (Adv. in Physics 2000)

* Phase transition characterized by universal exponents:
p~p—plc )L L ~(—plc)T—viLl &l ~@p—plc)T-VI

78



Modeling the laminar-turbulent
transition

* Turbulent regions can spontaneously relaminarize (go into
an absorbing state).

* They can also contaminate their neighbourhood with
turbulence. (Pomeau 1986)
Kb.

O O O
® ® time
O O O‘f
pP<p.
@ 0 00
v
>

space
dimension

7,

X

P>P.

Hinrichsen (Adv. in Physics 2000)



DP in 3 + 1 dimensions in pipe

Sipos and Goldenfeld, PRE 84, 035304(R) (22(1)1)



Turbulent transients: Puffs

 Here we consider decay not of a single seed but an initial puff

. Bemj_"iﬁ)lf' DP cluster decays as a mer?ff\ﬂclgss process.

M. Sipos and NG, PRE 84, 035304(R) (2011)



Turbulent transients: Puffs




P(t,Re)

Turbulent transients: Puffs

 We can measure the survival probability of active DP
regions, like Hof et al. did in pipe experiments:
PRe, t)=eT— t—tl0 /7(Re)

1.0 F T T T T v T v L 1.0
sl 0.8
0.6 L 0 - 0.6
oo =
ool S 0.4}
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0.2} ‘ A L=933D - .
* L=1900D |
. »° & = L=3450D 0.0 '
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Hof et al. (PRL 2008)

P
1+1 DP

Sipos and Goldenfeld, PRE 84, 035304(R) (2011)



Metastable puff

* S-shaped curves imply that survival probability has the form:

-
o
1
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o
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Super-exponential scaling: 7/7.0 ~exp(expRe)



decay rate 1/t

Turbulent transients: Puffs

* The lifetime 7 fits a super-exponential scaling

* 7/7J0 ~exp(expRe)

1 T v g YT YR Y Ty YTy Y Ty

01 O
a
0.01}
107 ,
107 1
10°F
10° | : [ ,
,f TE 0.62 0.64 0.66
107 | : )
. " jes0 v 0 1450 1900 1960 20 D 10'8 [ | | | | | | | ]
"1550 1600 1650 1700 1750 1800 1850 1900 1950 2000 2050 0.580.590.600.610.620.630.640.650.66
Reynolds number Re P
—_— M. Sipos and NG,
Hof et al. (PRL 2008) PRE 84, 035304(R) (2011)
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Super-exponential scaling and
extreme statistics

* Consider identical and independently distributed random

variables A4 Z whose distribution decays sufficiently fast at
infinity

(Central limit theorem).

Their maximum X{72 ckcmax X7 is distributed according
to the Fisher-Tippett type | distribution:

________________________________________ threshold threshold

Xim<x =eX]§(

Energy

space space o
Goldenfeld, Gioia, Guttenberg (2010)



Super-exponential scaling and
extreme statistics

* Active state persists until the ‘a*‘ TP
most long-lived percolating ' AR ST Y i
“strands” decay. 4 )

— extreme value statistics

* Why do we not observe the
power law divergence of
lifetime of DP near transition?

* C(Close to transition, transverse
correlation length diverges, so
initial seeds are not
independent

— Crossover to single seed behaviour

— Asymptotically will see the power
law behavior in principle Sl ~(p—plc)T—vil




MODEL FOR EXPANDING TURBULENT

SLUGS
e — S
laminar metastable spatiotemporal expanding
puffs intermittency slugs
| |
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Turbulent slugs

* Turbulent slugs have well-defined fronts with well-defined

expansion
Re=8230 Pipe lengths
0.5m
B
—
T o I m
-f' | -
3 g S - Back of slug flow 2m
S| ~
e O R
c & \ f/ 3m
=& [ =
5% | - 4m
D« \‘ “\
S S \ \\\ 5
— GL‘ | . h - n]
= "= m\‘
2= 6 m
5E W oresmend - a
:J l:.’ . ‘\\ "' m
g [T B
= |Front of . 8§ m
slug flow W

L)

0

Nishi et al. (JFM 2008)
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Growing fronts in DP

 Above ]7\[6', percolating clusters grow with front velocity:

G~ELL JEU ~(p—ple )TV -

In 1+1 DP:

time

1+1 0.637
2+1 0.561
3+1 0.524

Hinrichsen (Adv. in Physics 2000)
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Growing fronts in DP

When p—pic is small:

p—plc /plc ~ 0.05

91



Growing fronts in DP

When p—pic is large:

p—plc /pdc ~ 3
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Crossover In pipe geometry

L =(p—plc)T-vil

* When p—pIC is * When p—pIC is

large small

fll<p - 3+1DP gll>p - 1+1DP
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G

Growing fronts in DP

* In3+1DP, 6’~(p—p¢c)70 524

Val ) NAN NPy

- -
* AO 524

. x  x =), )24
0.637

1+1

2+1

3+1

0.637

0.561

0.524
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Growing fronts in DP

* In3+1DP, G~ (p—pdc )70.524

Cmaiann Ca ol YN 277 DR
' ' 241 0.561
0.05 +
02} il 3+1 0.524
0.00
[©
- )
Green line indicates » > I(ifn ttuse ple frc?tm the
forwhich gur =12  p°|[+ « y=0.524 terature since it
P v o ve0.637 depends on the size of
x ;f —U. D
0.0 ‘{f/x; L — the system.

1 1 |
0.260.270.280.290.300.310.320.33
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* In1+1DP, G~ (p—pdc )70.637

0.2

0.0

Experimental measurements of slug
fronts

* In3+1DP, G~ (p—pic )70.524

I I I 1 7 1
/7
0.05 | y +
- 7 -
+*
0.00
+ + ~=0.637
1 1 1 1

0.260.270.280.290.300.310.320.33

P

1+1  0.637
2+1  0.561
Preliminary 341 0.524
data: * '
N 1+1 DP exponent .
a 04 - C
S o '\
o1y ;v{“ 3+1 DP exponent
ol YL , , , -

Re
Hof et al. (Unpublished, 2010) -



Summary: Transitional Turbulence as DP
« Transitional turbulence ~ Directed percolation (Pomeau, 1986)

* Directed percolation (DP) | o absorbing site .
— percolating probability p at each site ® active site
— absorbing state — laminar flows
— active state — turbulent slugs e
* Critical transmon threshold p.: s C
ﬁ:
~ |p = pel”
correlation Iength v
- EL ~ [p —pel
o B p Npc’
P<p. p=p. PP growth rate G ~&./§ ~ (p — po)" ™™
. . Hof et al., PRL 101, 214501 (2008) De Lozar et al. arXiv:1001.2481 (2010
* Turbulence vs. (3+1) DP in pipe:
splitting puffs/ § N(D
metastable spatiotemporal expanding %
Re puffs | intermittency | slugs =
., '2050 12500 v S
:..’ 1 T
I |\ L2
ﬁ Pc la 0:
P | i‘ | = -k o
metastable criticI:aIity expanding S > 0.0l D
clusters clusters Sipos and Goldenfeld, PRE 84, 035304(R) (2011)
24

Hinrichsen, Adv. Phys. 49, 815 (2000)

Henkel, Non-Equilibrium Phase Transitions vol.1 (2008)



MODEL FOR SPATIOTEMPORAL
INTERMITTENCY
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MODEL FOR SPATIOTEMPORAL
INTERMITTENCY

Very complex behavior and we need to understand precisely what happens
at the transition, and where the DP universality class comes from.

metastable / spatiotemporal expanding

laminar ) :
puffs intermittency slugs

v

Re

| ~_

1775 2100 2500
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How to model transitional turbulence?

 Statistical description of phase transitions based on
effective (Landau) theory for:
— Order parameter

— Collective modes
— Hydrodynamic modes (long-wavelength, long-time)

* Effective theory functional form determined by
symmetry, conservation laws
— Direct derivation from microscopic theory usually not
possible

— Direct derivation from microscopic theory usually not
desirable, because technical assumptions restrict the
regime of validity of the effective theory



Logic of modeling phase transitions

Magnets

Electronic structure

|

Ising model

|

Landau theory

|

RG universality class



Logic of modeling phase transitions

Magnets Turbulence
Electronic structure Kinetic theory
Ising model Navier-Stokes eqn

Landau theory

|

RG universality class

N €— ) €—



Logic of modeling phase transitions

Magnets Turbulence
Electronic structure Kinetic theory
Ising model Navier-Stokes eqn

Landau theory >

|

RG universality class <€—>
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Identification of collective modes at
the laminar-turbulent transition

To avoid technical approximations,
we use DNS of Navier-Stokes



How to model transitional turbulence?

* Pipe flow consists of two regions, turbulence and
roughly laminar large scale flow



How to model transitional turbulence?

Pipe flow consists of two regions, turbulence and
roughly laminar large scale flow

The large scale flow is driven by the turbulent
fluctuations

The large scale flow suppresses the turbulent
fluctuations

Suggests: transitional turbulence = predator-prey
ecosystem



Observation of predator-prey oscillations
in numerical simulation of pipe flow

-< @»

Simulation based on the open source code by Ashley Willis: openpipeflow.org



Observation of predator-prey oscillations
in numerical simulation of pipe flow

-< @»
1

Simulation based on the open source code by Ashley Willis: openpipeflow.org



Observation of predator-prey oscillations
in numerical simulation of pipe flow
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Simulation based on the open source code by Ashley Willis: openpipeflow.org



Observation of predator-prey oscillations
in numerical simulation of pipe flow

-< @»
E(Y)

0.08F 1 0.2
. 0.5
o)) 10
o —
c 15 0]
L 0.01 o, :
-0.2
0.06r —0.5
—Zonal flow
— Turbulence ’ 0.4
500 . 1500 - e
Time 1
Re = 2600

Simulation based on the open source code by Ashley Willis: openpipeflow.org



Observation of predator-prey oscillations
in numerical simulation of pipe flow

-< @»
E(Y)

0.08F 1 770.2
0.5
> 10
o —_
c 15 0
L 001 <.
-0.2
0.06r —0.5
—Zonal flow :5; 4B
—Turbulence S 04
500 . 5 015 - o
Time -
Re = 2600 2 o1

0.5 0.6
Zonal flow energy (U2R3)

Simulation based on the open source coae by Asniey vvillis: openpipeflow.org



Reynolds stress

Streamlines




%‘u’sﬂep
WINNIE
THE POOH

Winnie The Pooh

AND THE BLUSTERY DAYé
Based on A.A. Milne’s Classic Tales =3



Characterizing predator- prey dynamlcs

* Oscillations phase
shifted by /2

e Zonal flow is
correlated with the
radial gradient of
the Reynolds stress
— |In space
— In time
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Characterizing predator-prey dynamics

* Oscillations phase
shifted by /2

gradient of Reynolds stress

\

time derivative ok azimuthal velocity

e Zonal flow is el _
correlated with the : \
. . LVANIAN
radial gradient of = N/
the Reynolds stress b
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What drives the zonal flow?
* [Interaction in two fluid model

7\
\~
— Turbulence, small-scale (k>0) Zonal flow

— Zonal flow, large-scale (k=0,m=0): induced by turbulence
and creates shear to suppress turbulence

1) Anisotropy of turbulence creates Reynolds stress which
generates the mean velocity in azimuthal direction

i (vg) = —0,((Vg - V) — p(vg)
2) Mean azimuthai velocity decreases the anisotropy of
turbulence and thus gUppress turbulence

x10

F ]
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02 04 06 08 0 500
r(R) T|me R/U ~

(U/R)
O

—_




What drives the zonal flow?

78
LG

* Interaction in two fluid model
— Turbulence, small-scale (k>0)

— Zonal flow, large-scale (k=0,m=0): induced by turbulence
and creates shear to suppress turbulence

Zonal flow

1) Anisotropy of turbulence creates Reynolds stress which
generates the mean velocity in azimuthal direction

0r (vg) = —0,((Vg - V,)) — pu(vy)

2) Mean azimuthal velocity decreases the anisotropy of
turbulence and thus suppr turb ence
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2 —9U, 1t I
LFVANE AN £ of"‘ | f\
2 / 2 \/
AN 1
-4

02 04 06 08 0 500
r(R) Tlme R/U -



What drives the zonal flow?
* [Interaction in two fluid model

7\
\~
— Turbulence, small-scale (k>0) Zonal flow

— Zonal flow, large-scale (k=0,m=0): induced by turbulence
and creates shear to suppress turbulence

1) Anisotropy of turbulence creates Reynolds stress which
generates the mean strain shear in azimuthal direction

i {ve) = —0,((Vg - V) — 1{vy)
2) Mean strain shear decreases the anisotropy of turbulence and
thus suppress turbulence

x 107"
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What drives the zonal flow?

78
LG

* Interaction in two fluid model
— Turbulence, small-scale (k>0)

— Zonal flow, large-scale (k=0,m=0): induced by turbulence
and creates shear to suppress turbulence

Zonal flow

1) Anisotropy of turbulence creates Reynolds stress which
generates the mean velocity in azimuthal direction

0r (vg) = —0,((Vg - V,)) — pu(vy)

2) Mean strain shear decreases the anisotropy of turbulence and
thus suppress turbulence

induce suppress suppress

turbulence T—) zonal rowT—) turbulence 1—) zonal flow 1

) |

induce




What drives the zonal flow?

78
LG

* Interaction in two fluid model
— Turbulence, small-scale (k>0)

— Zonal flow, large-scale (k=0,m=0): induced by turbulence
and creates shear to suppress turbulence

Zonal flow

1) Anisotropy of turbulence creates Reynolds stress which
generates the mean velocity in azimuthal direction

0r (vg) = —0,((Vg - V,)) — pu(vy)

2) Mean strain shear decreases the anisotropy of turbulence and
thus suppress turbulence

induce suppress suppress

prey T ——> predator T—) prey 1 —> predator 1

) |

induce




What drives the zonal flow?

78
LG

* Interaction in two fluid model
— Turbulence, small-scale (k>0)

— Zonal flow, large-scale (k=0,m=0): induced by turbulence
and creates shear to suppress turbulence

Zonal flow

1) Anisotropy of turbulence creates Reynolds stress which
generates the mean velocity in azimuthal direction

0r (Vo) = —0,((Vg - V) — p(vy)

2) Mean strain shear decreases the anisotropy of turbulence and
thus suppress turbulence

4 )

induce suppress suppress

turbulence T—) zonal rowT—) turbulence l—) zonal flow 1

t | |
\ induce )




What drives the zonal flow?

78
LG

* Interaction in two fluid model
— Turbulence, small-scale (k>0)

— Zonal flow, large-scale (k=0,m=0): induced by turbulence
and creates shear to suppress turbulence

Zonal flow

1) Anisotropy of turbulence creates Reynolds stress which
generates the mean velocity in azimuthal direction

0r (Vo) = —0,((Vg - V) — p(vy)

2) Mean strain shear decreases the anisotropy of turbulence and
thus suppress turbulence

4 )
induce suppress suppress
prey T ——> predator T—) prey l —> predator 1
1 |
induce
\_ .




Normal population cycles in a predator-prey system

Resource |—>
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——>| Predator

7t/2 phase shift between prey and predator population
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Ecology of turbulence

* Interaction in two fluid model m

— Turbulence, small-scale (k>0)

— Zonal flow, large-scale (k=0,m=0): induced by turbulence
and creates shear to suppress turbulence

— Anisotropy of turbulence creates Reynolds stress which
generates the mean strain shear in azimuthal direction

0 (vg) = —0,((Vg - V) — p(vg)

7\

\\'///

Zonal flow

— Mean strain shear decreases the anisotropy of turbulence
and thus suppress turbulence
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Ecology of turbulence

* Interaction in two fluid model m

— Turbulence, small-scale (k>0)

— Zonal flow, large-scale (k=0,m=0): induced by turbulence
and creates shear to suppress turbulence

— Anisotropy of turbulence creates Reynolds stress which
generates the mean strain shear in azimuthal direction

0 (vg) = —0,((Vg - V) — p(vg)
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\\'///

Zonal flow

— Mean strain shear decreases the anisotropy of turbulence
and thus suppress turbulence
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Ecology of turbulence

* Interaction in two fluid model m

— Turbulence, small-scale (k>0)

— Zonal flow, large-scale (k=0,m=0): induced by turbulence
and creates shear to suppress turbulence

— Anisotropy of turbulence creates Reynolds stress which
generates the mean strain shear in azimuthal direction

0r (vg) = —0,((Vg - V,)) — p(vy)

7\

ng/

Zonal flow

— Mean strain shear decreases the anisotropy of turbulence
and thus suppress turbulence

Laminar
flow

Nutrient
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Turbulenc

e
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flow
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Predator-Prey Dynamics in Tokomaks

In tokamak (toroidal chamber with axial magnetic field): = .
. . 4
— turbulent plasma (small-scale drift waves along the ring

— zonal flows:
 E, x B turbulence-induced flow on small circles

 cause radial shear to damp turbulent plasma

« decrease due to dissipation

plasma

4-//
>

\_/—7

poloidal

zonal flow

plasma current  toroidal magnetic field

Self-organized dynamics in Ecology:
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Predator-Prey Dynamics in Tokomaks

* In tokamak (toroidal chamber with axial magnetic field): p'aﬂi S 5 e
— turbulent plasma (prey) f (
— zonal flows (predator):
» E, x B turbulence-induced flow on small circles
 cause radial shear to damp turbulent plasma plasma current  toroidal magnetic field
« decrease due to dissipation

Self-organized dynamics in Magneto-hydrodynamics:

induce suppress suppress

turbulence T—) zonal rowT—) turbulence l—) zonal flow l

t |

induce
HIBP#1 Estrada et al. EPL (2012)
observation points O s e B I — URSRIRELL e
E E /g [ #23473,1=170-170.4 ms
Q g q_e 12 7]
o= 10 o _
© S5 @M 10 —
c Q S
(@) @ N sl ]
N —h [
2 c L
e ST 1
L o TR e RN R
0 = 107 10° 10° 10"
1685 169.0 1695 170.0 1705 1710 O .
5 turbulence fluctuation

time
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Ecology model for turbulence

Laminar |—> TEE — Zonal

flow o flow

Nutrient (E) | >| Prey(B) |~ | Predator (A)

B+ E ' B + B mean-field rate equation:
p dA
d g dp
A—F B—F dB
B5 A

—dBB —mB

10
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flow o flow
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Ecology model for turbulence

Laminar |—> TEE — Zonal

flow o flow

Nutrient (E) | >| Prey(B) |~ | Predator (A)

B+ E ' B + B mean-field rate equation:
p A
A+BL A+ A Cfi_t — DAB —d,A
d dp
A—F B—EFE B
a;—t = b(l1-—A—B)B—pAB
—dgpB

10




Q. What is the universality class of
the transition to turbulence?

Tentative answer: directed
percolation ... but why?



Strategy: transitional turbulence to directed
percolation

o Directed ? (Classical)

4----

Percolation Turbulence

.ﬁ~:’} =X
(Wikimedia Com.mons) .
Reggeon field theory
(Janssen, 1981)

Field Theory .\ vn A2 Two-glulid
mode

(Wikimedia Commons)

Predator-Prey

d. -3
(Pearson Education, Inc., 2009)

Extinction transition
(Mobilia et al., 2007)




Introduction to stochastic
predator-prey systems
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Normal population cycles in a predator-prey
system

Resource

_

Prey

—_—

Predator

7t/2 phase shift between prey and predator population

(X109
150+

Capture headcount
gy o

a O O

1 1

[
[e]

n
o a

https://interstices.info/jcms/n_49876/des-especes-en-nombre

e—e Snowshoe hare

o—a Lynx

© CSLS/The University of Tokyo

Persistent oscillations

+
Fluctuations



Cartoon picture for normal cycles (it/2 phase
shift)

Resource ——>f Prey ——> Predator

Prey consumes
resource and grows

Population

Y

Time



Cartoon picture for normal cycles (it/2 phase
shift)

Resource ——>f Prey ——> Predator

Prey consumes
resource and grows

Predator eats prey
and grows

Y

Time



Cartoon picture for normal cycles (it/2 phase
shift)

Resource ——>f Prey ——> Predator

A
Prey decreases due to :

\
predation by predator

>
—

Population

Time



Cartoon picture for normal cycles (it/2 phase
shift)

Resource ——>f Prey ——> Predator

Population
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Time



Cartoon picture for normal cycles (it/2 phase
shift)

Resource ——>f Prey ——> Predator

(4)

Prey increases because of
lower predation pressure

Population




Cartoon picture for normal cycles (it/2 phase
shift)

Resource ——>f Prey ——> Predator

Population




Cartoon picture for normal cycles (it/2 phase
shift)

Resource ——>f Prey ——> Predator

Population

Time



Cartoon picture for normal cycles (it/2 phase

Resource

Population

shift)

Prey —

Predator

Predator can only start to grow after
prey grows and before prey declines

A

\

Phase shift is a
quarter period

0=mn/2

Y

Time




Questions

1. The turbulence of ecology

A. What is the role of intrinsic noise in spatially-
extended ecosystems with predator-prey
interactions?

B. What happens when ecological and evolutionary
timescales are comparable?

2. The ecology of turbulence

C. What is the universality class of the transition from
laminar fluid flow to turbulence?
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Answers
1. The turbulence of ecology

A. Demographic stochasticity can generate quasi-
patterns in ecosystems

B. Rapid evolution can emerge from demographic
stochasticity

2. The ecology of turbulence

C. Transitional turbulence is controlled by predator-
prey interactions and is in the universality class of
directed percolation
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Lotka-Volterra equations for predator-prey dynamics

« Lotka-Volterra egn: conventional model for population dynamics
« L-V for prey-predator system:
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Lotka-Volterra equations for predator-prey dynamics

« Lotka-Volterra egn: conventional model for population dynamics

« L-V for prey-predator system:
— Reproduction of prey proportional to prey density — exponential growth

— Limited food resource — consider carrying capacity of prey, K,
— Predator hunts prey — predation proportional to prey & predator densities
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Lotka-Volterra equations for predator-prey dynamics

« Lotka-Volterra egn: conventional model for population dynamics

« L-V for prey-predator system:
— Reproduction of prey proportional to prey density — exponential growth

— Limited food resource — consider carrying capacity of prey, K,
— Predator hunts prey — predation proportional to prey & predator densities

— Death of predator proportional to predator density

du U

— = bu(l — — DUV
dt ( ]&'.u) !
dv 1

= puv — dv
dt !

u: prey v:predator b: prey metabolic rate
K,: prey carrying capacity
p: predation rate d: predator death rate



Lotka-Volterra equations for predator-prey dynamics

Lotka-Volterra eqn: conventional model for population dynamics

L-V for prey-predator system:
— Reproduction of prey proportional to prey density — exponential growth
— Limited food resource — consider carrying capacity of prey, K,
— Predator hunts prey — predation proportional to prey & predator densities
— Death of predator proportional to predator density

du " 2 o — prey
_— = l)ll(l — — ) — puv 2 0.12F — predator
(/f [X u (3] el
-c L
dv = |
= puv — dv IS
t g .16
S oust
. Qo
u: prey v:predator b: prey metabolic rate O o14f
K,: prey carrying capacity o : |
p: predation rate d: predator death rate e = o

Time
Predicts /2 phase shift between prey and predator
Problems: No oscillations — Contrary to experiments!



Satiation model

« Add Michaelis-Menten kinetics to rewrite predation term

- Satiation effects as the additional mechanism; introduce
additional parameter K, : half saturation constant

du U U
— =bu(l — —) - p—

dt ( K u) ! K.+ u
dv U

— =|p— — dv
dt ! K+ u

u: prey v:predator b: prey metabolic rate
K,: prey carrying capacity p: predation rate
d: predator death rate K_: half satiation constant



Satiation model

« Add Michaelis-Menten kinetics to rewrite predation term

- Satiation effects as the additional mechanism; introduce
additional parameter K, : half saturation constant

- — prey
@ — bu(l — u ], uo 0=m/2 — predator
— u‘( - ) ]) - 0.20
dt K, K,+u
dv uv

— dv

— =D -
dt ! K.+ u

Population density

u: prey v:predator b: prey metabolic rate

=

d: predator death rate K_: half satiation constant Time




Satiation model

« Add Michaelis-Menten kinetics to rewrite predation term

- Satiation effects as the additional mechanism; introduce
additional parameter K, : half saturation constant

— prey
du — bull U , uv 0=m/2 — predator
— =bu(l — —) —{p— -
dt K, K.+ u £ J
dv wo 1 é |
— = p— — dv ° @
dt K, +u o

s e

o g

>

o 0.14
u: prey v:predator b: prey metabolic rate g
K,: prey carrying capacity p: predation rate 0 200 200 0 200 1000
d: predator death rate K_: half satiation constant Time

* Predicts: (1) n/2 phase shift (2) undamped oscillations



Satiation model

« Add Michaelis-Menten kinetics to rewrite predation term

- Satiation effects as the additional mechanism; introduce
additional parameter K, : half saturation constant

— prey

du u U .
IR bll“(l — ) —{p— . B 0=m/2 predator
dt K, K. +u £ J
dv U ] é 1
— =P — av c or
dt K, +u o

s e

o 3

2 o
u: prey v: predator b: prey metabolic rate g 4
K,: prey carrying capacity p: predation rate o 500 pre o = it
d: predator death rate K_: half satiation constant Time

* Predicts: (1) n/2 phase shift (2) undamped oscillations

* Problems:
— No fluctuations — Contrary to experiments!



du
dt

= bu(l —

Satiation model

Add Michaelis-Menten kinetics to rewrite predation term

Satiation effects as the additional mechanism; introduce
additional parameter K, : half saturation constant

u

)_

K,

dv

= p—
dt ! K.+ u

v
— dv

P

wo
K. +u

u: prey v:predator b: prey metabolic rate
K,: prey carrying capacity p: predation rate

d: predator death rate K_: half satiation constant

0=m/2

0.16

—
A

Population density

- prey
— predator

0

Time

Predicts: (1) n/2 phase shift (2) undamped oscillations

Problems:

— No fluctuations — Contrary to experiments!

— Parameters can be rather sensitive to achieve
coexistence without high likelihood of extinction

— Not generic!

Population density

L

unphysical




Population level vs. individual level

Deterministic population-level model:
« Differential equations(Lotka-Volterra) for densities:

Population
densities

— Converges to stable states(contrary to experiments!) N
— Additional mechanism (Michaelis-Menten terms)

— No fluctuations(contrary to experiments!)

— Not generic!

Population
densities
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Population
densities
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— Additional mechanism (Michaelis-Menten terms)
— No fluctuations(contrary to experiments!)

— Not generic!

Population
densities
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Stochastic individual-level model (Newman & McKane PRL 2005):

« Based on individual processes of species (e.g. reproduce process: A—2A)
* Fluctuations in the number of population — demographic stochasticity




Population level vs. individual level

Deterministic population-level model:
« Differential equations(Lotka-Volterra) for densities:

Population
densities

— Converges to stable states(contrary to experiments!) N
— Additional mechanism (Michaelis-Menten terms)
— No fluctuations(contrary to experiments!)

— Not generic!

Population
densities

400 600

= t

Stochastic individual-level model (Newman & McKane PRL 2005):

« Based on individual processes of species (e.g. reproduce process: A—2A)
* Fluctuations in the number of population — demographic stochasticity
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Population level vs. individual level

Deterministic population-level model:

« Differential equations(Lotka-Volterra) for densities:
— Converges to stable states(contrary to experiments!) | AUURUURIUN
— Additional mechanism (Michaelis-Menten terms)
— No fluctuations(contrary to experiments!)
— Not generic!

Population
densities

Population
densities

T s s B

Stochastic individual-level model (Newman & McKane PRL 2005):

« Based on individual processes of species (e.g. reproduce process: A—2A)
* Fluctuations in the number of population — demographic stochasticity

. g3
- ® ¢ Statistical 3
™ : ; | e ®
‘® . Mechanlgs o — S 5y
c® S +
°
®* 1 oo R e e e e ==
| internal demographic |
: noise I

* No additional mechanism
 Quasicycles emerge from intrinsic demographic stochasticity




Population level vs. individual level

Deterministic population-level model:

« Differential equations(Lotka-Volterra) for densities:
— Converges to stable states(contrary to experiments!) | AUURUURIUN
— Additional mechanism (Michaelis-Menten terms)
— No fluctuations(contrary to experiments!)
— Not generic!

Population
densities

Population
densities

T s s B

Stochastic individual-level model (Newman & McKane PRL 2005):

« Based on individual processes of species (e.g. reproduce process: A—2A)
* Fluctuations in the number of population — demographic stochasticity

- ® ¢ Statistical 3
™ : ; | e ®
‘® . Mechan;gs S o — S
c ® 2 +
[-J
®  r e e e em e e e o e m = m
. - | internal demographic |
Quasicycles | noise !

* No additional mechanism
 Quasicycles emerge from intrinsic demographic stochasticity




Models for predator-prey ecosystem

* Deterministic models

Lotka-Volterra equations Satiation model (Holling type Il function)
0=m/2

C
(@] [
e o
© =
S ©
o 35
& )

o = - ~ T o

Time 0 200 400 500 800 1000
Time

No persistent oscillations No fluctuations



Models for predator-prey ecosystem

* Deterministic models

Lotka-Volterra equations

Population

L
000

I
Time

200 400 600 800

No persistent oscillations

Satiation model (Holling type Il function)
0=mn/2

0.19
0.18
0.17
0.16

0.15

Population

0.14

0 200 400 600 800 1000

Time

No fluctuations

« Stochastic individual level model
fluctuations in number — demographic stochasticity that induces quasi-cycles

‘@, | A+B—A+A

McKane & Newman. PRL 94, 218102 (2005).

0= /2

Persistent oscillations
+

Fluctuations




Models for predator-prey ecosystem

* Deterministic models

Lotka-Volterra equations

Satiation model (Holling type Il function)

0=m/2
Quasicycles Time
No pers ] ] ] Ins
emerge from intrinsic
. stochastia d€mographic stochasticity
es quasi-cycles

fluctuations

o .A‘ A—= 0
‘@, | A+B—A+A

McKane & Newman. PRL 94, 218102 (2005).

Population

Persistent oscillations
+

Fluctuations




Individual-level stochastic model of predator-
prey dynamics

¢ - ' —
A—l> E Predators f 22? ji !f‘. m h‘”i A f\\ /\'w A :
ULYA N vAY J\JH{ SRTANRRL

php ST IR

BE-BB wr——— = °
ABZAA M
f qv%[d\ n

0.2

AB=SAE ok

J t
0.14
0 200 400 600 800 1000 1200
A.J. McKane and T. Newman. Predator-Prey Cycles from Resonant
mplifi f Demograph hastici h

222222 (2005) 166



Master equation for predator-prey model

Basic individual processes in predator (A) and prey
(B) system:

Death DB, d—B> E; A; -d—A—> E;
Bith I3, + E, ﬁ B; + B, Ai+ By o Ai + 4
ij ij

O P(m,n) = stuff(P(m,n), P(m £ 1,n + 1), etc...)




Master equation for individual-level

model
O P(m,n) =di(—nP(m,n)+ (n+1)P(m,n+1))

+e(=n*P(m,n) + (n+1)°P(m,n+1))

+ by (=nP(m.n) + (n — D)P(m,n — 1))

+ pi(—mnP(m,n)+ (n+ 1)mP(m,n+1))
+po(=mnP(m,n)+ (m—1)(n+1)P(m—1,n+1))
+ do(—mP(m,n) + (m+1)P(m+1,n))

m=predators n=prey
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Master equation as a quantum field
theory

* |ndividuals in a population are quantized, so use
annihilation and creation operators to count them and

describe their interactions

— When adding a new individual to the system, there is only
one to chose

— When removing an individual from the system there are
many to chose

e Result: even classical identical particles obey
commutation relations familiar from quantum field
theory

Doi 1976; Grassberger & Scheunert 1980; Cardy & Sugar 1980; Mikhalov 1981; Goldenfeld 1982, 1984; Peliti 1985 1¢q



Individual-level stochastic model of predator-
prey dynamics

Aﬂ) [ Predators

o P(m,n) =d(—nP(m,n)+ (n+ 1)P(m,n + 1))

Bé) E Prey

b
BE_)BB + pr(=mnP(m,n)+ (n+ 1)mP(m,n+ 1))
AB AA + pa(=mnP(m,n) + (m—1)(n+ 1)P(m — 1,n + 1))

+ dy(=mP(m.n)+ (m+1)P(m+1,n))
ABSAE

+o(=n*Plm,n) + (n+1)7Plm,n+1))

+ bi(—nP(m,n)+ (n—1)P(m.,n — 1))
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Master equation as a quantum field

theory alm,ny =mlm — 1,n)

 |Individualsin a

population are alm,n) =|m+1,n)

quantized, so use 0.6] = 1
annihilation and creation |

operators to count them blm.n) =njm.n —1)
and describe their R

) ) blm,n) = |m,n+ 1)
interactions

* Time evolution given by W} =1

Liouville equation

H = by(bb— b2b) + dy (b — b) + %(W )
w> — ZP(m,n)\mm) +%(Aa8b—&ab)+%(da8b—d2ab)
O w> — _H(avéa b, b)|¢> +do(Ga — a)

Doi 1976; Grassberger & Scheunert 1980; Cardy & Sugar 1980; Mikhalov 1981; Goldenfeld 1982, 1984; Peliti 1985 1,




Resonance from demographic noise

 Expand the number of predators and prey
about average values in \/N/  expansion

n/N = f| +x/JN
m/N = f, + y/\JN

e Resulting equation is a linear stochastic
equation in x, y with Langevin noise and
power spectrum, sharply peaked about an
internally-generated natural frequency

a + Bw’

Plw) = [(w* — Q3)* + T w?]
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Population

Quasi-cycles

0= 1/2




Extinction/decay statistics for
stochastic predator-prey systems



Derivation of predator-prey

equations
—_— Predator/Zonal flow ~~~~nn Prey/Turbulence
Zonal flow-turbulence Predator-prey

B+EXSB+B
"‘< >*‘ B+BS B+ E
j> < A+ BS A1 A
: A+BY A+ E

B 5 A

AN g B p



Ecology model for turbulence

Laminar |—> TEE — Zonal

flow o flow

Nutrient (E) || Prey(B) |~ | Predator (A)

B+ E ' B + B mean-field rate equation:
p dA
d g dp
A—F B—F dB
B5 A

—dBB —mB

10




Survival probability near extinction

* Decay of population is a
memoryless process
— Extract lifetime in both decay
and splitting modes
* Log-linear plot of lifetime
shows curvature

— superexponential dependence
on prey birth rate

o

E | x 7 t=8250
of [ mt=13000
VVYit=1

‘\ b=-0028 °b=0032 1

\ ‘\_ -[eb=0.036 eb=004 [

[ Heb=0.044 ®b=0046
b

50 100 150 200 25
I,

YL

AA I. . X
88882 ¥xyxanx, ]
0.02 0.03 0.04 0.05

0.02 0.03 004 005 006 007
b

177



Pipe flow turbulence

Decaying smgle o ng puffs

laminar metastable atiotemporal expanding
puffs termlttency slugs
| S~ | >
Re 1775 2050 2500

Predator pre

nutrient/ ~ mMetastable traveling expanding
only population fronts population
0. 0

8

¢ T
i Jrig O
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Predator-prey vs. transitional turbulence

107}
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Prey lifetime
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Survival probability near extinction
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Metastable turbulent puff

* S-shaped curves imply that survival probability has the form:
PRe, t)=el— t—¢tl0 /7(Re)
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Universality class of the transition



Strategy: transitional turbulence to directed
percolation

o Directed ? (Classical)

4----

Percolation Turbulence

(Wikimedia Com.mons) .
Reggeon field theory
(Janssen, 1981)

Field Theory .\ vn A2 Two-glulid
mode

(Wikimedia Commons)

Predator-Prey

A (Pearson Education, Inc., 2009)

Extinction transition
(Mobilia et al., 2007)




Ecology model for turbulence

Laminar
flow

Turbulenc

e

Zonal
flow

Nutrient (E)

Prey (B)

Predator (A)

10



Universality class of predator-prey system
near extinction

Basic individual processes in predator (A) and prey

(B) system:
Death B; d—B) E; A; d—A> E; B; ﬂ) A;
Bith I3, + E, ﬁ B; + B, Ai+ By o Ai + 4
i ij
Diffusion B; + Ej —<2>—> E; + Bj A; + Ej _<‘D_>> E; + *_1_]
ij @]

Carrying p B; s B, + E;
capacity (i7)



Universality class of predator-prey system
near extinction

Near the transition to prey extinction, the prey (B)
population is very small and no predator (A) can
survive; A ~ 0.

Death Bz d—B) EZ :l% Ez B’LX_LL

Birth B, + EJ L) B; + Bj A + BJX:lz T ‘—1]
(i7) (i7)

Diffusion B; + E; TD_>> E; + B; A; + EjXEi + A
ij @]

Carrying p B; —~ s B, + E;
capacity (i7)



Universality class of predator-prey system
near extinction

Near the transition to prey extinction, the prey (B)
population is very small and no predator (A) can
survive; A ~ 0.

d
Death B, —» E,

Birth B, + E; ﬁ B; + B,
i

Diffusion ; + Ej —(-D—>> E; + Bj
i]

camying p. L B, =4 B; + E;
capacity (i)



Universality class of predator-prey system
near extinction

Near the transition to prey extinction, the prey (B)
population is very small and no predator (A) can
survive; A~ 0.

t O O N
Death B, ﬂ3_> E; 41 g O O g Annihilation
Birth D; + E; ﬁ B; + B; !\2 24 Decoagulation
i}

Diffusion B; + Ej % E; + B;
1]

s

@)
.’g Diffusion

O\: Coagulation

Carryipg B; + B]_ N B. + EJ-
capacity (i)
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Universality class of predator-prey system
near extinction

Near the transition to prey extinction, the prey (B)
population is very small and no predator (A) can
survive; A~ 0.

t o O N
Death DB; d—B> E; t+1 g O O Annihilation
Birth B; + £ ﬁ B; + B; !\2 24 Decoagulation
ij

Predator-prey = Directed percolation

Diffusion B; + E; (:’—J>> E; + B, N :15 Diffusion

Carrying B, + Bj -<—3>—> B; + E]- Itg O&: Coagulation

capacity



Master equation for predator-prey model

Basic individual processes in predator (A) and prey
(B) system:

Death DB, d—B> E; A; -d—A—> E;
Bith I3, + E, ﬁ B; + B, Ai+ By o Ai + 4
ij ij

O P(m,n) = stuff(P(m,n), P(m £ 1,n + 1), etc...)




Master equation as a quantum field
theory

* |ndividuals in a population are quantized, so use
annihilation and creation operators to count them and

describe their interactions

— When adding a new individual to the system, there is only
one to chose

— When removing an individual from the system there are
many to chose

e Result: even classical identical particles obey
commutation relations familiar from quantum field
theory

Doi 1976; Grassberger & Scheunert 1980; Cardy & Sugar 1980; Mikhalov 1981; Goldenfeld 1982, 1984; Peliti 1985 194



Master equation as a quantum field

theory alm,ny =mlm — 1,n)

 |Individualsin a

population are alm,n) =|m+1,n)

quantized, so use 0.6] = 1
annihilation and creation |

operators to count them blm.n) =njm.n —1)
and describe their R

) ) blm,n) = |m,n+ 1)
interactions

e Time evolution given by W} =1

Liouville equation
¢> — ZP(m,n)\mm)
at w> — _ﬁ(aa &’a ba B) |w>

H = by(bb— b2b) + dy (b — b) + %(W )

Priain o P
+v( abb aab)+v(aabb a“ab)

+ dy(aa — a)

Doi 1976; Grassberger & Scheunert 1980; Cardy & Sugar 1980; Mikhalov 1981; Goldenfeld 1982, 1984; Peliti 1985 44,




Field theory for predator-prey model

e Near extinction model A= with rate p,

. A+B— A+A withrate ¥,
reduces to simpler system “T°7ATA W
B— B+B with rate .

* Express as Hamiltonian

H.\.=— Z[Ju(l — aj)a; + cr(bj — l)b;f b: + }t"(crj — b:')a:' a; b;]
* Map into a coherent state path integral

. 5 | 9 )
Sla, b; a, b] = /dd-rfdr |}?(5T — DAV")G + b (Gr — DBV“)b

+p(a—1)a— O'(E?— I}Bbf?_“gg’b + l’(E’— I}EM':)2 — }b(ﬁ—f))ﬁa b:|

* Phase diagram

Predator-population =0 Predator-population >0

>

‘ See Tauber (2012) Predation rate




Extinction in predator-prey systems

* This field theory can be reduced to

A_)V’ ’ ~ 1 N 0 2 7 72 g)
A+B— A+A Sx)lw,llllzf(l‘,tf(lf /2 E-‘-DA(I.A_V-) U —uy (Y — Y)Y+t
B— B+ B

Action of Reggeon field theory and universality
class of directed percolation (Mobilia et al
(2007)

« Summary: ecological model of transitional
turbulence predicts the DP universality
class



Extinction in predator-prey systems

 This field theory can be reduced to

A_)M ~ ~ a o) -~ 7 -~ 9)
A+B— A+A SxIw.w:/d"xfdr [w <5+DA<I-A—V~))w—uww—wwwww-}
B— B+ B

* Reggeon field theory < Extinction transition in
predator-prey model (Mobilia et al (2007)

« Reggeon field theory < DP universality class:
non-equilibrium critical dynamics with
absorbing state

« Summary: ecological model of transitional
turbulence predicts the DP universality
class



Puff splitting in ecology model

Driven by emerging traveling waves
of populations



Puff splitting in predator-prey systems

v

metastable spatiotemporal expanding

puffs intermittency slugs
| | |

laminar

v

Re

| | |
1775 2100 2500

prey birth rate

>

[ |
e Stability of predator-prey mean field theory has a
transition between stable node and spiral

— Near transition, no oscillations
— Away from the transitions, oscillations begin
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Pipe flow turbulene

v

v %
laminar metastable spatiotemporal expanding
puffs intermittency slugs
| | | ,
Re 1775 2050 2500

Predator-prey model

linear stability of
mean-field
solutions

v

nutrient metastable traveling expanding
only population fronts population
| N
prey birth rate | 1\ |

I _ T
— pla

11



Puff splitting in predator-prey systems

o
e
0.32 8
0.28
10.24
~
10.20 Q
10.16 QE’
=
40.12

0.08

0.04

0.00

O cLAd
-200 -150 -100 -50 0 50 100 150

Puff-splitting in predator-prey ecosystem Puff-splitting in pipe turbulence

In a pipe geometry Avila et al., Science (2011)
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Pipe flow turbulence

Decaying single puff \L l, Splitting puffs
laminar metastable spa‘notgmporal expanding
puffs intermittency slugs
| .
| | | >
Re 1775 2050 2500

Predator-prey model

nutrient

only
|

v

metastable traveling expanding
population fronts population

prey |
birth

b
"

0.05 0.08
” i T



Pipe flow turbulene

Decaying smgle P

laminar metastable spatiotemporal expanding
puffs ntermittency slugs
| S~c~— | | >
R 1775 2050 2500

Predator prey model

nutrient metastable
only population

>

traveling expanding
fronts population

| b
"

prey
birth
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Pipe flow turbulence

Decaying smgle o ng puffs

laminar metastable atiotemporal expanding
puffs termlttency slugs
| S~ | >
Re 1775 2050 2500

Predator pre

nutrient/ ~ mMetastable traveling expanding
only population fronts population
0. 0

8

¢ T
i Jrig O

11




Pipe flow turbulence

Decaying singl%\ /I;—Sp.h.mg puffs

/ metastable ?gnaﬁn’rpmnnml\ expanding

lan( l

| Measure the extinction time and

Re the time between split events in
predator-prey system.

nutrient/ ~ mMetastable traveling expanding
only population fronts population
prey
0. 0

birth 8

” i Y

v

v

v
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Predator-prey vs. transitional turbulence
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Predator-prey vs. transitional turbulence

Prey lifetime Turbulent puff lifetime
1
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P(b,t°)
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Summary: universality class of transitional

turbulence
(Boffetta and Ecke 2012)
N . .
Directed | (Classical) %
Percolation Turbulence 4
(Wikimedia Common Reggeon field theory Direct Numeri®dgl Simulations
(Janssen, 1981) of Navier-Stokes
Field Theory <. vx 2 Two-fluid
model

(Wikimedia Commonst
Extinction transition
(Mobilia et al., 2007) Predator-Prey /

(Pearson Education, Inc., 2009)
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But Nigel, is this
the transition
to turbulence or
a transition

to turbulence?




Predator-prey oscillations in convection

S0 the heag Grows outwarg.
until the outwarg pushing hot
fluid is pushed back and under
by the colder fluid.

A plume is an example of
an emergent object

209



Predator-prey oscillations in convection

A

S
P e

Thermal
s boundary
layer

Plume

210

L.P. Kadanoff, Physics Today (2001).



Predator-prey oscillations in convection

Pr=10 Ra=2x 10> Sustained shearing convection

Pr=1 Ra=2x108 Bursty shearing convection

Pr=10 Ra=2x 108

E, = Horizontal component of KE

IOSJ\I\N\!\J’\J\N\P\N\N
10°
10*
(a1aaadddaatas
102 K (K
0 0.25 0.50

t

E, = Vertical component of KE

D. Goluskin et al. JFM (2014)




Universal predator-prey behavior
in transitional turbulence

* Experimental observations

— L-H mode transition in fusion plasmas in tokamak

— 2D magnetized electroconvection
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Bardoczi et al. Phys. Rev E (2012)
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Estrada et al. EPL (2012)
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Transition to turbulence in Taylor-Couette flow

PHYSICAL REVIEW E 81, 025301(R) (2010)

Transient turbulence in Taylor-Couette flow

Daniel Borrero-Echeverry and Michael F. Schatz
Center for Nonlinear Science and School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430, USA

Randall Tagg
Department of Physics, University of Colorado, Denver, Colorado 80217-3364, USA
(Received 4 May 2009; revised manuscript received 2 December 2009; published 19 February 2010)

— T = exp'(—exp(c1Re-;c
- -1 =exp(—(03Re+c4))
......... = exp(—(Re/CS)Ce)

»)

FIG. 1. Photographs of turbulent patches in TCF at Re=7500 6}
with only the outer cylinder rotating. In this regime, turbulent 0
patches coexist with the laminar flow and evolve in space and time. 7500 Re 9300

For all Re studied, these patches decay away in a probabilistic
manner with a characteristic time scale 7 dependent on Re. The
photographs show a 25 c¢cm high region of the flow.
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Time (h/U x105)

Measurement of DP exponents

Couette experiments

Space

Lemoult et al., Nature Physics (2016)

a
/) !,880 mm [%L}

X ¢—

Figure 1| Apparatus and snapshot of turbulent spots. a, Schematic of the
apparatus. The aspect ratio of the channel is 2,352h x 2h x 360h, where the
depth 2h is 5mm. b, Turbulent spots are visualized near the middle
(x=3m) downstream location of the channel at Re=810. The turbulent
flows are injected by using a grid at the inlet (x=0) of the channel.
Visualization was assisted by means of micro-platelets and grazing angle
illumination. Scale bar, 100 mm.

Sano & Tamai, Nature Physics (2016)



DP in large aspect ratio Taylor-Couette

z a Experiments
s yJ;_.I : endlwa.llg b. 1 rotation 1 rotation 1 rotation 10f DP exponents (8 = 0.276)
] —— | g Best fit
L ] 2h ﬁ’—— Ks)
i To ET 0.8+
| 1 [}
J < c
z 2
2 t T 06
z e L 0.8
3 - 06
S1EEEL g 04y
%l E 04
3 ([
" 1 0oy I‘
" \ 0.2f 0.2
2* =Nl T 1074 1073 1072 1077
€
) . . . ) 0.0 ) A .
Figure §1. a Schemat.lc o_f exper}mental set up (not. to scale) see text for details. b Image of turbulent spots and the 375 380 385 390 395 400
conversion to a intensity time series (see text for details). Re
a b
100 ™ T t T - 101 — — — - — - —r -r
Dynamic scaling of
turbulent fraction
10° : L
N following a critical
= quench from
- -1
10 Re > Re_
. TF(t) =~ t~%f(et/V1)
1072 - : : : 102 —
108 10° 108 10°°

t

Lemoult et al., Nature Physics (2016)



Summary

Pipe flow consists of two regions, turbulence and
roughly large scale flow

— These behave as prey and predator in an ecosystem

We report first observation of predator-prey
oscillations in pipe turbulence

— Turbulence is the prey

— Zonal (azimuthal) flow is the predator

Predator-prey in a pipe gives

— lifetime and population splitting exhibit
superexponential behavior with reproduction rate

— The predator-prey transition is already known to be
directed percolation (Mobilia et al. 2007) and
reproduces observational phenomenology (Sipos &
NG 2011)
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Universal predator-prey behavior
in transitional turbulence

* Experimental observations

— L-H mode transition in fusion plasmas in tokamak

— 2D magnetized electroconvection
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Transition to turbulence in Taylor-Couette flow
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FIG. 1. Photographs of turbulent patches in TCF at Re=7500 6}
with only the outer cylinder rotating. In this regime, turbulent 0
patches coexist with the laminar flow and evolve in space and time. 7500 Re 9300

For all Re studied, these patches decay away in a probabilistic
manner with a characteristic time scale 7 dependent on Re. The
photographs show a 25 c¢cm high region of the flow.
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Summary

Pipe flow consists of two regions, turbulence and
roughly large scale flow

— These behave as prey and predator in an ecosystem

We report first observation of predator-prey
oscillations in pipe turbulence

— Turbulence is the prey

— Zonal (azimuthal) flow is the predator

Predator-prey in a pipe gives

— lifetime and population splitting exhibit
superexponential behavior with reproduction rate

— The predator-prey transition is already known to be
directed percolation (Mobilia et al. 2007) and
reproduces observational phenomenology (Sipos &
NG 2011)
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Conclusion

* Transition to pipe turbulence is in the universality class
of directed percolation, evidenced by:

— Puff lifetime as a function of Re
— Extreme value statistics and finite-size scaling
— Slug spreading rate as a function of Re

 How to derive universality class from hydrodynamics

— Small-scale turbulence activates large-scale zonal flow
which suppresses small-scale turbulence

— Effective theory (“Landau theory”) is stochastic predator-
prey ecosystem

— Exact mapping: fluctuating predator-prey = Reggeon field
theory = DP near extinction

* Observational signatures

— Predator-prey near extinction shows superexponential
lifetime scaling for decay and splitting of puffs 220






Turbulence is a life force. It is opportunity.
Let's love turbulence and use it for change.

Lucky Numbers 34, 15, 28, 4, 19, 20
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Ecological collapse and the emergence of
travelling waves at the onset of shear turbulence

Hong-Yan Shih, Tsung-Lin Hsieh and Nigel Goldenfeld*

The mechanisms and universality class underlying the
remarkable phenomena at the transition to turbulence remain
a puzzle 130 years after their discovery'. Near the onset to
turbulence in pipes’, plane Poiseuille flow? and Taylor-Couette
flow?, transient turbulent regions decay either directly* or
through splitting®2, with characteristic timescales that exhibit
a super-exponential dependence on Reynolds number®™.
The statistical behaviour is thought to be related to directed
percolation (DP; refs 6,11-13). Attempts to understand
transitional turbulence dynamically invoke periodic orbits and
streamwise vortices' ", the dynamics of long-lived chaotic
transients?®, and model equations based on analogies to

excitable media?'. Here we report direct numerical simulations
of transitional pipe flow, showing that a zonal flow emerges at
large scales, activated by anisotropic turbulent fluctuations;
in turn, the zonal flow suppresses the small-scale turbulence
leading to stochastic predator-prey dynamics. We show that
this ecological model of transitional turbulence, which is
asymptotically equivalent to DP at the transition??, reproduces
the lifetime statistics and phenomenology of pipe flow
experiments. Our work demonstrates that a fluid on the edge
of turbulence exhibits the same transitional scaling behaviour
as a predator-prey ecosystem on the edge of extinction, and
establishes a precise connection with the DP universality class.
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Wishing you many
more happy
birthdays, Jim!
And thanks for
putting us into a
happy, fruitful and
long-lived
metastable state!
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Super-exponential scaling and
extreme statistics

* Active state persists until the ‘a*‘ TP
most long-lived percolating ' AR ST Y i
“strands” decay. 4 )

— extreme value statistics

* Why do we not observe the
power law divergence of
lifetime of DP near transition?

* C(Close to transition, transverse
correlation length diverges, so
initial seeds are not
independent

— Crossover to single seed behaviour

— Asymptotically will see the power
law behavior in principle Sl ~(p—plc)T—vil




Ecology of turbulence

7\
* Interaction in two fluid model m Y

— Turbulence, small-scale (k>0)
— Zonal flow, large-scale (k=0,m=0)
— Anisotropy of turbulence creates Reynolds stress

— The radial gradient of Reynolds stress generates the large
scale fluctuations in azimuthal direction (zonal flow)

0r (vg) = —0,((Vg - V,)) — p(vy)

Zonal flow

— Zonal flow creates shear to turbulence and decreases the
anisotropy of turbulence and thus suppress turbulence

Laminar |—> TENE — Zonal

flow e flow

Nutrient > Prey —| Predator




Summary: Transitional Turbulence as DP
« Transitional turbulence ~ Directed percolation (Pomeau, 1986)

* Directed percolation (DP) | o absorbing site .
— percolating probability p at each site ® active site
— absorbing state — laminar flows
— active state — turbulent slugs e
* Critical transmon threshold p.: s C
ﬁ:
~ |p = pel”
correlation Iength v
- EL ~ [p —pel
o B p Npc’
P<p. p=p. PP growth rate G ~&./§ ~ (p — po)" ™™
. . Hof et al., PRL 101, 214501 (2008) De Lozar et al. arXiv:1001.2481 (2010
* Turbulence vs. (3+1) DP in pipe:
splitting puffs/ § N(D
metastable spatiotemporal expanding %
Re puffs | intermittency | slugs =
., '2050 12500 v S
:..’ 1 T
I |\ L2
ﬁ Pc la 0:
P | i‘ | = -k o
metastable criticI:aIity expanding S > 0.0l D
clusters clusters Sipos and Goldenfeld, PRE 84, 035304(R) (2011)
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Predator-Prey Dynamics in Tokomaks

In tokamak (toroidal chamber with axial magnetic field): = .
: Y
— turbulent plasma (small-scale drift waves along the ring

— zonal flows:
 E, x B turbulence-induced flow on small circles

 cause radial shear to damp turbulent plasma

« decrease due to dissipation

plasma

4-//
>

\_/—7

poloidal

zonal flow

plasma current  toroidal magnetic field

Self-organized dynamics in Ecology:

induce

suppress
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prey |
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predator T E—

prey | ——>

predator l

Capture headcount

induce

e—e Snowshoe hare
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https://interstices.info/jcms/n_49876/des-especes-en-nombre

magnetic field
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Predator-Prey Dynamics in Tokomaks

* In tokamak (toroidal chamber with axial magnetic field): p'aﬂi S 5 e
— turbulent plasma (prey) f (
— zonal flows (predator):
» E, x B turbulence-induced flow on small circles
 cause radial shear to damp turbulent plasma plasma current  toroidal magnetic field
« decrease due to dissipation

Self-organized dynamics in Magneto-hydrodynamics:
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Two-fluid predator-prey model
for transitional turbulence

Can we observe predator-prey
oscillations?
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Predator-Prey Dynamics in Tokomaks

In tokamak (toroidal chamber with axial magnetic field):

plasma , — poloidal

\> magnetic field
— turbulent plasma (small-scale drift waves along the ring

L
\ -

DT
plasma current  toroidal magnetic field
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Predator-Prey Dynamics in Tokomaks

plasma

In tokamak (toroidal chamber with axial magnetic field): =~ = = 20

— turbulent plasma (small-scale drift waves along the ring .

— zonal flows:
« E. x B turbulence-induced flow on small circles ~
 cause radial shear to damp turbulent plasma plasma current  toroidal magnetic ied
« decrease due to dissipation
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Predator-Prey Dynamics in Tokomaks

In tokamak (toroidal chamber with axial magnetic field): = .
: Y
— turbulent plasma (small-scale drift waves along the ring

— zonal flows:
 E, x B turbulence-induced flow on small circles

 cause radial shear to damp turbulent plasma

« decrease due to dissipation

plasma

4-//
>

\_/—7

poloidal

zonal flow

plasma current  toroidal magnetic field

Self-organized dynamics in Ecology:

induce

suppress

suppress

prey |

—>

predator T E—

prey | ——>

predator l

Capture headcount

induce

e—e Snowshoe hare

© CSLS/The University of Tokyo

https://interstices.info/jcms/n_49876/des-especes-en-nombre

magnetic field
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Predator-Prey Dynamics in Tokomaks

* In tokamak (toroidal chamber with axial magnetic field): p'aﬂi S 5 e
— turbulent plasma (prey) f (
— zonal flows (predator):
» E, x B turbulence-induced flow on small circles
 cause radial shear to damp turbulent plasma plasma current  toroidal magnetic field
« decrease due to dissipation
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Testing the ecology of turbulence

Quasi-cycles in ecology are
driven by number fluctuations,
ie. discreteness

Quasi-cycles exhibit f? power
spectrum, not f* expected for
noisy limit cycle
— What sets discreteness in
turbulence number fluctuations
of large-scale modes (predator)
and small-scale turbulence
(prey)?
— Nonlinearity and locality =
thresholds for scattering of
modes

Quasi-cycles seen in pumped
nonlinear Schrodinger equation
— Dyachenko et al. (1992) first

proposed existence of predator-
prey oscillations in NLSE

RN
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Correlation Power Spectrum
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Generic two-fluid behavior in
transitional turbulence

e Spiral
turbulence
Don;;;d fig_zoll
* Large-scale o plumes
circulation in d
turbulent - -
convection )

Xia, Theor. App. Mech. Lett. 3, 052001 (2013) Ahlers et al., RMP 81, 503 (2009)



Generic two-fluid behavior in
transitional turbulence

0.5
v
-0.5
L

* Pipe flow exhibits
both laminar and
turbulent regions

* The turbulence
moves slower than .., B
mean flow

* There is an
induced or
emergent large-
scale flow

10

Moxley and Barkley PNAS 2010



Turbulent convection transition

plumes

[+AT

Ty |
CTat >

Xia, Theor. App. Mech. Lett. 3,052001 (2013) Ahlers et al., RMP 81, 503 (2009)

* Next step: are there predator-prey oscillations
between the LSC and the turbulent

fluctuations?
e Can test this with Brown and Ahlers data

e Come back for GA 90!
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Large-scale circulation

> Experiment with water, Ra=3.7-10°%:
D Du and Tong, JEM (2000)

e Coherent LSC

— carries warm fluid from the bottom plate up one
side of the sample; cools when passes the top
plate and goes down on opposite side of the
sample

e Ce<cations and reorientations



2 Redrawn from
experimental
1.5 data Brown and
1 Ahlers (2008)

O
0O o

LSC amplitude
S

cessation threshold

J\ H*u““ W ‘ JW M- S

0 2 4  x10°

time
Cessations are rare events. However due to their importance, we
want to accurately estimate how rare is rare!
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Large-scale Circulation (LSC)

« Microscopic turbulence (plumes) + mesoscopic mean flow (LSC)
— predator-prey relations ? T e
1 Y |[i
« Ocean and atmospheric flow @/ \
« Turbulent Rayleigh-Benard convection 0
CoNTH - 400 (Car ) |

VK L

plumes

« Rayleigh number rq =

« Self-organized dynamics in Large-scale circulation:

induce suppress suppress
turbulent turbulent
plume > LSC T —> plume —> LSC 1
induce

0.85
0.68

| 0.51
. . 0.34

0.17
i

Xia, Theor. App. Mech. Lett. 3, 052001 (2013) Ahlers et al., RMP 81, 503 (2009) 31



Large-scale Circulation (LSC)

« Microscopic turbulence (plumes) + mesoscopic mean flow (LSC)
— predator-prey relations ? 7 T me

« Ocean and atmospheric flow

* Turbulent Rayleigh-Benard coglvection

« Rayleigh number rq = agATH” > 106

plumes

Crar 3> |

VK L

« Self-organized dynamics in Large-scale circulation:

induce suppress suppress
turbulent turbulent
plume > LSC T —> plume —> LSC 1
induce

[ 0.70
0.56

0.42
. 0.28

0.14
i

Xia, Theor. App. Mech. Lett. 3, 052001 (2013) Ahlers et al., RMP 81, 503 (2009)
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Large-scale Circulation (LSC)

« Microscopic turbulence (plumes) + mesoscopic mean flow (LSC)

— predator-prey relations ? o f =
i

plumes

« Ocean and atmospheric flow

» Turbulent Rayleigh-Benard convection \(&QS
. Rayleigh number o — “/ATH" - g8 & roar Y|PV
VK B L
« Self-organized dynamics in Large-scale circulation:
induce suppress suppress
turbulent 3 turbulent
plume LSCT —> plume —> LSCl
464 mi induce
T S N | N 0.47
5 T .().38
ol Lo Lo
aly »5\, *0 : :
x(cm)

Xia, Theor. App. Mech. Lett. 3, 052001 (2013) Ahlers et al., RMP 81, 503 (2009)
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Large-scale Circulation (LSC)

« Microscopic turbulence (plumes) + mesoscopic mean flow (LSC)

— predator-prey relations ? T e
1 Y |[i
« Ocean and atmospheric flow @/@
C
N}

plumes

« Turbulent Rayleigh-Benard convection X

VK L

« Rayleigh number rq =

« Self-organized dynamics in Large-scale circulation:

induce suppress suppress
turbulent turbulent
plume > LSC T —> plume —> LSC 1
induce

x(cm)

Xia, Theor. App. Mech. Lett. 3, 052001 (2013) Ahlers et al., RMP 81, 503 (2009)
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Large-scale Circulation (LSC)

« Microscopic turbulence (plumes) + mesoscopic mean flow (LSC)

— predator-prey relations ? T e
1 Y |[i
« Ocean and atmospheric flow @/@
C
N))

plumes

* Turbulent Rayleigh-Benard coglvection
+ Rayleigh number rq — “92TH > 108 W riar |

VK - L

« Self-organized dynamics in Large-scale circulation:

induce suppress suppress
turbulent 3 LSC T 3 turbulent 3 LSC 1
plume ‘) plume
1 o |
induce
t =117 min z .
T ~ cessation
reorientation . (intermittency)
I 3 |
) 0.6
©
2 04
: o
N € 02
3 53] (U
,‘::“ SERTETIROT | e ) ) O 0 | |
e 0 100 200 300 1 x 10* 2 x 10*
S Time(s) — Time(s)
5 X((():m) 5 Funfschilling et al., PRL 87, 194502 (2004) Zhong et al., J. Fluid Mech. 665, 300 (2010)
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Large-scale Circulation (LSC)

« Microscopic turbulence (plumes) + mesoscopic mean flow ( LSC)
— predator-prey relations ? T e

« Ocean and atmospheric flow T ( \\\m
+  Turbulent Rayleigh-Benard convection | k

 Rayleigh number g, — agATH® > 1068

plumes

///

VK - L

« Self-organized dynamics in Large-scale circulation:

induce suppress suppress
turbulent turbulent
plume > LSC T —)‘) plume —> LSC 1
0) .

__ t=17min_ Future work: cessation

| 1. Are there heuristic predator-prey equations |ntermittency)

’gs % for LSC? . | »
S0 5; Q 2. If so, investigate predator-prey dynamics M WW
TR B |

-5 9 | and phase shift in experimental data , ,
:{} : / & . .. . 1 x 10 2 x 10
———+ 3. individual level model & quasicycle theory Time(s)
5 X((c):m) 5 Fluid Mech. 665, 300 (2010)

Xia, Theor. App. Mech. Lett. 3, 052001 (2013) Ahlers et al., RMP 81, 503 (2009) 31



Navier-Stokes

* Incompressible NS:

dit u+ (u'V)u=—Vp+ReT—1 I'T2 u,
V-u=0.

Linear stability

* Express #8in cylindrical coordinates.

* Linearize around laminar solution

u=ullaminar +ou

e Write as

olt du= L du



P(p, t)

Super-exponential scaling of lifetimes

* Slopes become steeper: rgrows faster than exponential.

* We plot survival curves at same times, but with assumed ~

exponential.

1.0 . 1.0 .
0.8} 0.8}

0.6 - 0.6

)

0.4} o 0.4}

0.2} 0.2}

0,0 ' 0.0 1
0.640 0.645 0.650 0.655 0.66 0.0 0.2

Y
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Simulating DP Models

Diagonal lattice models:

Bond percolation /
— each bond open with probability p

Site percolation
— each site passable with probability o

Domany-Kinzel \ .\ .\
— 2 probabilities £41 O

Contact process:
Continuous time

y

~° °3/‘ V o

Contact rate /4 '®)
1
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Fisher-Tippett
Distribution of the extremum depends on the tail of the

source distribution P(X\ll')

If P(X\ll')SET—X\U then one uses Fisher-Tippett type |
or Gumbel distribution

F(x)=el—el—(x—p) /o
Otherwise, one uses the Fisher-Tippett type Il and Il (Frechet
and Weibull) distributions

F(x)=exp{=[1+S(x—p/o )]T=1/¢ }
where the shape parameter >0 for Frechet and ¢<0 for
Weibull.
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isher-Tippett 2

F

The Weibull distribution: a

257

handbook by H Rinne (2009)



Hydrodynamic Phenomena

* Interaction of puffs (puffs that are close by can annihilate
each other).

no control
axial distance L/D

control

axial distance L/D

Hof et al. (Science 2010)
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Laminar patch size and fractal
dimension

Size of laminar patches will follow
P(A)=A1dLf
where @/ can be calculated by noting that

1AL = (r—plc )15 (&1L ) Td—1 &l

and using

$=(—pic)lv
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2D Poiseuille Flow

* Not linearly stable for all Re.

a
Upper Branch (Stable)
\
~ -
Lower Branch (Unstable) T~ N
h 5 Linear Instability
S o e
Linear Stabifity 577222 Re

Fortin et al. (J. Comp. Phys 115, 455-469, 1994)
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Decay of turbulence to rest
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Decay of Vorticity in Homogeneous Turbulence

Michael R. Smith,' Russell J. Donnelly,' Nigel Goldenfeld,? and W. F. Vinen?
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We report on observations of turbulent behavior made without requiring the use of Taylor’s “frozen
turbulence™ hypothesis. Initially, a towed grid generates homogeneous turbulence of grid Reynolds
number of order 10° within a stationary channel filled with helium I1. The subsequent decay in time 7 of
the line density of quantum vortices is measured by second sound attenuation, and the associated rms
vorticity w follows the behavior expected of a classical fluid with @~t ~*2, consistent with the notion of
a coupled turbulent state of helium II. This technique also yields the time dependence of the Kolmo-
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Propagation of turbulence

. 3/2
| 9,9 =09,[ah(1)Vqd,q]— 1

_f L § /a,h(t)

t S  Turbulence energy density Size of turbulent burst
GRID r — * e
# * (b)
X |
SENSOR ; i i X, 0 5 10 15 0“ 5 .1.()‘4“15
PAIR Time (sec) Time (sec)
ha— o Fig. 5. Theoretical and observed turbulent bursts. Panel (a)
shows the theoretical pulse proposed from Chen and Golden-
feld [15]. A good example of an experimentally observed

burst after signal averaging is shown in (b). In both cases,
x=1.337cm and V=50cm/s.

G.l. Barenblatt (1983); Chen & Goldenfeld, Phys. Rev. A (1992); M. Smith, Physica B (1994§*



Decay of turbulence to laminar flow



