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How	was	cri*cal	phenomena	solved?	

•  Common	features	
–  Strong	fluctua/ons	
–  Power	law	correla/ons	

•  Can	we	solve	turbulence	by	following	cri/cal	phenomena?	
•  Does	turbulence	exhibit	cri*cal	phenomena	at	its	onset?	

	
	

Ben Widom discovered  
“data collapse” (1963) 

Leo Kadanoff explained  
data collapse, with  
scaling  concepts (1966) 

Ken Wilson developed 
the RG based on  
Kadanoff’s scaling 
ideas (1970) 
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Transi*onal	turbulence:	puffs	

•  Reynolds’	originally	pipe	turbulence	
(1883)	reports	on	the	transi/on	

Univ.	of	Manchester	

“Flashes”	of	turbulence:	
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Determinis/c	classical	mechanics	of	many	par/cles	in	a	box	è	sta/s/cal	mechanics	
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Determinis/c	classical	mechanics	of	infinite	number	of	par/cles	in	a	box	
	

=	Navier-Stokes	equa/ons	for	a	fluid		
	

è	sta/s/cal	mechanics	
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Determinis/c	classical	mechanics	of	infinite	number	of	par/cles	in	a	box	
	

=	Navier-Stokes	equa/ons	for	a	fluid		
	

è	sta/s/cal	mechanics	



Soap film experiment 
 

M. A. Rutgers, X-l. Wu, and W. I. Goldburg.  
"The Onset of 2-D Grid Generated Turbulence in Flowing Soap Films," 
Phys. Fluids 8, S7, (Sep. 1996). 

Turbulence	is	stochas*c	and	wildly	fluctua*ng	



Soap film experiment 
 

M. A. Rutgers, X-l. Wu, and W. I. Goldburg.  
"The Onset of 2-D Grid Generated Turbulence in Flowing Soap Films," 
Phys. Fluids 8, S7, (Sep. 1996). 

Turbulence	generates	structure	at	many	scales	



Scale	invariance	in	turbulence	

•  Eddies	spin	off	other	
eddies	in	a	Hamiltonian	
process.	
– Does	not	involve	fric/on!	
– Hypothesis	due	to	
Richardson,	Kolmogorov,	…	

•  Implica/on:	viscosity	will	
not	enter	into	the	
equa/ons	



Scale	invariance	in	turbulence	

•  Compute	E(k),	turbulent	
kine/c	energy	in	wave	
number	range	k	to	k+dk	
–  E(k)	depends	on	k	
–  E(k)	will	depend	on	the	rate	at	
which	energy	is	transferred	
between	scales:	ε	

•  Dimensional	analysis:	
–  E(k)	~	ε2/3	k-5/3	

A.N. Kolmogorov 



The	energy	spectrum	
E(k) = ½ d(uk

2)/
dk 

Integral scale 

Dissipation 

Inertial range 



Turbulent cascades 

3D forward cascade 2D inverse cascade 

Energy flows to small scales Energy flows to large scales 



Turbulent cascades 

3D forward cascade 2D inverse cascade 



Turbulent cascades 

2D forward cascade 2D inverse cascade 

Vorticity flows to small scales Energy flows to large scales 



Turbulent cascades 

2D forward cascade 2D inverse cascade 



Turbulent cascades 

2D forward cascade 2D inverse cascade 

2D turbulence can have two separate cascades 



Atmospheric turbulence 

G. D. Nastrom and K. S. Gage, “A Climatology of Atmospheric 
Wavenumber Spectra of Wind and Temperature Observed by Commercial 
Aircraft”, Jour. Atmos. Sci. vol 42, 1985 p953 
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Turbulent cascades 

2D forward cascade 2D inverse cascade 

Turbulence is a statistical mechanical non-equilbrium 
steady state 

 
Fluctuation-dissipation theorem for non-equilibrium 

steady states predicts that macroscopic flow properties 
such as friction depend on the energy cascade 



Re = Reynolds number           ν = viscosity/density = kinematic 
viscosity 

Pipe flow 



Re = Reynolds number           ν = viscosity/density = kinematic 
viscosity 

Pipe flow 



Re	~	infinity	

Cri/cal	behaviour	in	
fully-developed	
turbulence?	

Q.	Is	there	universal	scaling	behaviour	in	fully-developed	
					turbulence?	
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Re	~	infinity	

Cri/cal	behaviour	in	
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Q.	Is	there	universal	scaling	behaviour	in	fully-developed	
					turbulence?	

A.	Yes!		And	regime	of	influence	extends	to	finite	Re	
					and	dominates	the	macroscopic	flow	behaviour	

You	are	here	



Re	~	infinity	

Cri/cal	behaviour	at		
laminar-turbulence	
transi/on	
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Phase	diagram	of	pipe	flow	
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Re	 1775	
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2100	
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2500	

spa/otemporal	
intermikency	

expanding	
slugs	

Splilng	puffs	

Avila et al., Science 333, 192 (2011) 

Single	puff	spontaneously		decays	

Cri/cal	behaviour	at		
laminar-turbulence	
transi/on	



Q. What is the universality class of 
the transition to turbulence? 
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Q. What is the universality class of 
the transition to turbulence? 

A.	Transi/onal	turbulence	is	controlled	by	
predator-prey	interac/ons		
implying	rigorously	the		
universality	class	of		
directed	percola/on	

5	



Transi*onal	turbulence:	puffs	

•  Reynolds’	originally	pipe	turbulence	
(1883)	reports	on	the	transi/on	

Univ.	of	Manchester	

“Flashes”	of	turbulence:	
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Precision	measurement	of	turbulent	transi*on	

23	Hof et al., PRL 101, 214501 (2008) 

Q:	will	a	puff	survive	to	the	end	of	the	pipe?	

Many	repe//ons	è	survival	probability	P(Re,	t)	



Fluid	in	a	pipe	near	onset	of	turbulence	

Turbulent	puff	life/me	

Mean	
/me	

between	
puff	split	
events	

Song et al., J. Stat. Mech. 2014(2), P020010 Avila et al., Science 333, 192 (2011) 1	
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Reynolds	number	
Super-exponen/al	scaling:	​𝜏/​𝜏↓0  ~exp​(​exp⁠Re )	



Predator-prey	ecosystem	in	a	pipe	near	ex*nc*on	
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Prey	life/me	
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Super-exponen/al	scaling:	​𝜏/​𝜏↓0  ~exp​(​exp⁠b )	



Turbulent	puff	life/me	

Mean	/me	between	puff	split	events	

Song et al., J. Stat. Mech. 2014(2), P020010 
Avila et al., Science 333, 192 (2011) 
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Prey	life/me	

Mean	/me	between	
popula/on	split	events	

Predator-prey	vs.	transi*onal	turbulence	



Turbulent	puff	life/me	

Mean	/me	between	puff	split	events	

Song et al., J. Stat. Mech. 2014(2), P020010 
Avila et al., Science 333, 192 (2011) 

3	

Prey	life/me	

Mean	/me	between	
popula/on	split	events	

Predator-prey	vs.	transi*onal	turbulence	

	
	

Ecology			=			Turbulence	
	
	
	

? 



Flow	in	a	pipe	
•  Fluid	flow	can	be	in	2	regimes:	

–  Laminar	
	
–  Turbulent	

•  Phase	of	the	flow	is	characterized	by	the	dimensionless	
Reynolds	number:	

	and	𝑉≡		mean	velocity,	𝜌≡		density,	𝐷≡	pipe	diameter,		

									𝜇≡		dynamic	viscosity,	𝜈≡ 	kinema/c	viscosity	

Re=​𝑉𝜌𝐷/𝜇 = ​𝑉𝐷/𝜈  	

48	



Transi*onal	turbulence:	puffs	

•  Reynolds’	originally	pipe	turbulence	
(1883)	reports	on	the	transi/on	

Univ.	of	Manchester	

“Flashes”	of	turbulence:	
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Transi*onal	turbulence:	puffs	

•  Reynolds’	originally	pipe	turbulence	
(1883)	reports	on	the	transi/on	

Univ.	of	Manchester	

50	

Re	
small		

large		

http://homepages.warwick.ac.uk/~masax/Research/pipe_models/pipe_models.html#sdfootnote8sym 



Laminar-Turbulent	Transi*on	

23	

•  Laminar state: steady (small Re) 
•  Turbulent state: fluctuating (large Re)	

http://homepages.warwick.ac.uk/~masax/Research/pipe_models/pipe_models.html#sdfootnote8sym Tsinober, An informal conceptual introduction to turbulence (2009) 

Re = Reynolds number = UL /ν 	



Precision	measurement	of	turbulent	transi*on	

23	Hof et al., PRL 101, 214501 (2008) 

Q:	will	a	puff	survive	to	the	end	of	the	pipe?	

Many	repe//ons	è	survival	probability	P(Re,	t)	



Laminar-Turbulent	Transi*on	

23	

•  Laminar state: steady (small Re) 
•  Turbulent state: fluctuating (large Re)	
•  Laminar-turbulent transition in pipe flows: 

Re	
small		

large		

http://homepages.warwick.ac.uk/~masax/Research/pipe_models/pipe_models.html#sdfootnote8sym Tsinober, An informal conceptual introduction to turbulence (2009) 

Re = Reynolds number = UL /ν 	

Hof et al., PRL 101, 214501 (2008) 



Laminar-Turbulent	Transi*on	
•  Laminar state: steady (small Re) 
•  Turbulent state: fluctuating (large Re)	
•  Laminar-turbulent transition in pipe flows: 

Re	
small		

large		

Re	
1650	 2050	 2500	

laminar		
flows	

metastable		
puffs	

http://homepages.warwick.ac.uk/~masax/Research/pipe_models/pipe_models.html#sdfootnote8sym Tsinober, An informal conceptual introduction to turbulence (2009) 

turbulence		
intensity	

mean	shear	

Re = Reynolds number = UL /ν 	

Hof et al., PRL 101, 214501 (2008) 

puff lifetime τ ~ exp(exp(Re)) 
23	



Laminar-Turbulent	Transi*on	
•  Laminar state: steady (small Re) 
•  Turbulent state: fluctuating (large Re)	
•  Laminar-turbulent transition in pipe flows: 

Re	
small		

large		

Re	
1650	 2050	 2500	

laminar		
flows	

metastable		
puffs	

splilng	puffs/	
intermikency	

http://homepages.warwick.ac.uk/~masax/Research/pipe_models/pipe_models.html#sdfootnote8sym Tsinober, An informal conceptual introduction to turbulence (2009) 

turbulence		
intensity	

mean	shear	

pipe		axis		

Re = Reynolds number = UL /ν 	

Hof et al., PRL 101, 214501 (2008) 

puff lifetime τ ~ exp(exp(Re)) 
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Laminar-Turbulent	Transi*on	
•  Laminar state: steady (small Re) 
•  Turbulent state: fluctuating (large Re)	
•  Laminar-turbulent transition in pipe flows: 

Re	
small		

large		

Re	
1650	 2050	 2500	

laminar		
flows	

metastable		
puffs	

splilng	puffs/	
intermikency	

expanding		
slugs	

http://homepages.warwick.ac.uk/~masax/Research/pipe_models/pipe_models.html#sdfootnote8sym Tsinober, An informal conceptual introduction to turbulence (2009) 

turbulence		
intensity	

mean	shear	

pipe		axis		

Re = Reynolds number = UL /ν 	

Hof et al., PRL 101, 214501 (2008) 

puff lifetime τ ~ exp(exp(Re)) 
pipe		axis		
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Directed	percola*on	and	the	laminar-
turbulent	transi*on	

•  Y.	Pomeau	(1986)	first	suggested	the	universality	class	of	
DP:	
–  Turbulent	regions	can	spontaneously	relaminarize	(go	into	an	
absorbing	state).	

–  They	can	also	contaminate	their	neighbourhood	with	
turbulence.		

•  Our	work:		
–  What	quan/ta/ve	aspects	of	the	transi/onal	turbulence	
phenomenology	can	be	described	by	such	a	minimal	model?	

–  Can	we	derive	such	a	sta/s/cal	mechanics,	minimal	model	from	
fluid	dynamics	flow	equa/ons?	

57	



Main	messages	
•  Transi/on	to	turbulence	is	in	the	universality	
class	of	directed	percola/on	
– Generic	absorbing	state	argument	
–  Puff	life/me	as	a	func/on	of	Re	
–  Extreme	value	sta/s/cs	and	finite-size	scaling	
–  Slug	spreading	rate	as	a	func/on	of	Re	

•  How	to	derive	universality	class	from	
hydrodynamics	
–  Transi/onal	turbulence	maps	into	predator-prey	
dynamics	

–  Sta/s/cal	field	theory	of	ecology	of	turbulence	
– Observa/onal	signatures	

58	



Phase	diagram	of	pipe	flow	

Re	 1775	

laminar	

2100	

equilibrium	
puffs	

2500	

spa/otemporal	
intermikency	

expanding	
slugs	

Single	puff	that	can	
spontaneously	
decay	

Extensive	puffs	that	
can	interact	and	split.	
Regions	of	turbulence	
with	intermikent		
laminar	patches.	

Regions	of		turbulence	
with	clear	growth	rate.	

But:	laminar	state	is	linearly	stable.	

Meseguer	and	Trefethen	(J.	Comp.	Phys	(2003)	

to	N-S	 59	



Phase	diagram	of	pipe	flow	
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Phase	diagram	of	pipe	flow	
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MODEL	FOR	METASTABLE	TURBULENT	
PUFFS	

Re	 1775	

laminar	
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metastable	
puffs	

2500	

spa/otemporal	
intermikency	

expanding	
slugs	
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Re	 1775	

laminar	

2100	

equilibrium	
puffs	

2500	

spa/otemporal	
intermikency	

expanding	
slugs	

Van	Doorne	and	Westerweel	(Phil.	Trans.	R.	Soc.	A	2009)	
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Metastable	puff	
•  Hot	wire	measurements:	

Nishi	et	al.	(JFM	2008)	/me	(s)	

Re=2310	

70	



Metastable	puff	
•  Life/me	of	puff	decay	was	measured	conclusively	by	Hof	et	al.	

(PRL	101,	214501	2008).	

•  Their	experimental	setup:	

•  They	measured	the	survival	probability	(probability	that	a	
puff	is	alive	when	it	reaches	the	outlet	of	the	pipe).	

Hof	et	al.	(PRL	2008)	

71	



Metastable	puff	
•  S-shaped	curves	imply	that	survival	probability	has	the	form:	

𝑃(Re, 𝑡)= ​𝑒↑− ​𝑡− ​𝑡↓0 /𝜏(Re)  	

Super-exponen/al	scaling:	​𝜏/​𝜏↓0  ~exp​(​exp⁠Re )	
Hof	et	al.	(PRL	2008)	

to	extra	slide	



DP	&	the	laminar-turbulent	transi*on	
•  Turbulent	regions	can	spontaneously	relaminarize	(go	into	

an	absorbing	state).	
•  They	can	also	contaminate	their	neighbourhood	with	

turbulence.	(Pomeau	1986)	

space	
dimension	

/me	

Decoagulation 

Annihilation 

Coagulation 

Diffusion 



Directed	Percola*on	Transi*on	

•  A	con/nuous	phase	transi/on	occurs	at	​𝑝↓𝑐 .	

𝜌~ ​(𝑝− ​𝑝↓𝑐 )↑𝛽 	 ​𝜉↓⊥ ~ ​(𝑝− ​𝑝↓𝑐 )↑− ​𝜈↓⊥  	 ​𝜉↓∥ ~ ​(𝑝− ​𝑝↓𝑐 )↑− ​𝜈↓∥  	

Hinrichsen	(Adv.	in	Physics	2000)	

•  Phase	transi/on	characterized	by	universal	exponents:	
	

to	DP	models	 74	



Pomeau’s	heuris*c	argument	
•  Turbulent	regions	can	spontaneously	relaminarize	(go	into	

an	absorbing	state).	
•  They	can	also	contaminate	their	neighbourhood	with	

turbulence.	(Pomeau	1986)	

space	
dimension	

/me	



Directed	percola*on	
•  Bond	percola/on:	Diagonal	lalce	with	bonds	open	with	
probability	𝑝.	

gravity	

space	dimension	

/me	
World	lines	of	par/cles	
living	in	1	dimension	

•  This	would	be	called	1	+	1-dimensional	DP.	
to	DP	models	
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Directed	percola*on	
•  Bond	percola/on:	Diagonal	lalce	with	bonds	open	with	
probability	𝑝.	

space	dimension	

to	DP	models	
77	
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Directed	Percola*on	Transi*on	
•  Order	parameter	is	the	size	of	the	percola/ng	cluster.	

•  A	con/nuous	phase	transi/on	occurs	at	​𝑝↓𝑐 .	

𝜌~ ​(𝑝− ​𝑝↓𝑐 )↑𝛽 	 ​𝜉↓⊥ ~ ​(𝑝− ​𝑝↓𝑐 )↑− ​𝜈↓⊥  	 ​𝜉↓∥ ~ ​(𝑝− ​𝑝↓𝑐 )↑− ​𝜈↓∥  	

Hinrichsen	(Adv.	in	Physics	2000)	

•  Phase	transi/on	characterized	by	universal	exponents:	
	

to	DP	models	 78	



Modeling	the	laminar-turbulent	
transi*on	

•  Turbulent	regions	can	spontaneously	relaminarize	(go	into	
an	absorbing	state).	

•  They	can	also	contaminate	their	neighbourhood	with	
turbulence.	(Pomeau	1986)	

space	
dimension	

/me	

Hinrichsen	(Adv.	in	Physics	2000)	



DP	in	3	+	1	dimensions	in	pipe	

80	

Puff	decay	 Slug	spreading	

Sipos and Goldenfeld,  PRE 84, 035304(R) (2011) 



Turbulent	transients:	Puffs	
•  Here	we	consider	decay	not	of	a	single	seed	but	an	ini/al	puff	

•  Below	​𝑝↓𝑐 ,	DP	cluster	decays	as	a	memoryless	process.	1+1	DP	 3+1	DP	

M. Sipos and NG,  PRE 84, 035304(R) (2011) 



Turbulent	transients:	Puffs	

82	



Turbulent	transients:	Puffs	
•  We	can	measure	the	survival	probability	of	ac/ve	DP	

regions,	like	Hof	et	al.	did	in	pipe	experiments:	

Hof	et	al.	(PRL	2008)	
1+1	DP	

83	

𝑃(Re, 𝑡)= ​𝑒↑− ​𝑡− ​𝑡↓0 /𝜏(Re)  	

Sipos and Goldenfeld,  PRE 84, 035304(R) (2011) 



Metastable	puff	
•  S-shaped	curves	imply	that	survival	probability	has	the	form:	

Super-exponen/al	scaling:	​𝜏/​𝜏↓0  ~exp​(​exp⁠Re )	
Hof	et	al.	(PRL	2008)	

to	extra	slide	



Turbulent	transients:	Puffs	
•  The	life/me	𝜏	fits	a	super-exponen/al	scaling	
•  ​𝜏/​𝜏↓0  ~exp​(​exp⁠Re )	

Hof	et	al.	(PRL	2008)	

1/
𝜏	

​lo
g⁠​l

og
⁠𝜏/
​𝜏↓

0 
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M. Sipos and NG,  
PRE 84, 035304(R) (2011) 



Super-exponen*al	scaling	and	
extreme	sta*s*cs	

•  Consider	iden/cal	and	independently	distributed	random	
variables	 ​𝑋↓𝑖 whose	distribu/on	decays	sufficiently	fast	at	
infinity	

•  Their	mean	 ​𝑋 ∝∑𝑖↑▒​𝑋↓𝑖  	is	normally	distributed	
(Central	limit	theorem).	

•  Their	maximum	 ​𝑋↓𝑚 ∝​max ⁠​𝑋↓𝑖  	is	distributed	according	
to	the	Fisher-Tippek	type	I	distribu/on:	

𝑃(​𝑋↓𝑚 <𝑥)= ​exp⁠​(− exp( ⁠−𝑥 )) 	
	En

er
gy
		 threshold	

space	

En
er
gy
		 threshold	

space	

more	on	FT	
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more	on	FT	2	

Goldenfeld,	Gioia,	Gukenberg	(2010)	



Super-exponen*al	scaling	and	
extreme	sta*s*cs	

•  Ac/ve	state	persists	un/l	the	
most	long-lived	percola/ng	
“strands”	decay.	
–  extreme	value	sta/s/cs	

•  Why	do	we	not	observe	the	
power	law	divergence	of	
life/me	of	DP	near	transi/on?	

•  Close	to	transi/on,	transverse	
correla/on	length	diverges,	so	
ini/al	seeds	are	not	
independent	
–  Crossover	to	single	seed	behaviour	
–  Asympto/cally	will	see	the	power	

law	behavior	in	principle	 ​𝜉↓⊥ ~ ​(𝑝− ​𝑝↓𝑐 )↑− ​𝜈↓⊥  	



MODEL	FOR	EXPANDING	TURBULENT	
SLUGS	

Re	 1775	

laminar	

2100	

metastable	
puffs	

2500	

spa/otemporal	
intermikency	

expanding	
slugs	
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Turbulent	slugs	
•  Turbulent	slugs	have	well-defined	fronts	with	well-defined	

expansion	

Nishi	et	al.	(JFM	2008)	
/me	(s)	

Re=8230	
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Growing	fronts	in	DP	

•  Above	​𝑝↓𝑐 ,	percola/ng	clusters	grow	with	front	velocity:	

𝐺~ ​​𝜉↓⊥ /​𝜉↓∥  ~ ​(𝑝− ​𝑝↓𝑐 )↑​𝜈↓∥ − ​𝜈↓⊥  	

•  In	1+1	DP:	

Hinrichsen	(Adv.	in	Physics	2000)	

dim	 ​𝝂↓∥ − ​
𝝂↓⊥ 	

1+1	 0.637	

2+1	 0.561	

3+1	 0.524	

/m
e	
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Growing	fronts	in	DP	
When	𝑝− ​𝑝↓𝑐 	is	small:	

​𝑝− ​𝑝↓𝑐 /​𝑝↓𝑐   ~ 0.05	

91	



Growing	fronts	in	DP	
When	𝑝− ​𝑝↓𝑐 	is	large:	

​𝑝− ​𝑝↓𝑐 /​𝑝↓𝑐   ~ 3	

92	



Crossover	in	pipe	geometry	

•  When	𝑝− ​𝑝↓𝑐 	is	
large	

​𝜉↓𝑦 	
​𝜉↓𝑧 	

​𝜉↓𝑥 	

​𝜉↓⊥ = ​(𝑝− ​𝑝↓𝑐 )↑− ​𝜈↓⊥  	

•  When	𝑝− ​𝑝↓𝑐 	is	
small	

​𝜉↓⊥ <𝐷  →			3+1	DP	

​𝜉↓𝑦 	

​𝜉↓⊥ >𝐷  →			1+1	DP	
93	



Growing	fronts	in	DP	

•  In	3+1	DP,		𝐺~ ​(𝑝− ​𝑝↓𝑐 )↑0.524 	
•  In	1+1	DP,		𝐺~ ​(𝑝− ​𝑝↓𝑐 )↑0.637 	

dim	 ​𝝂↓∥ − ​
𝝂↓⊥ 	

1+1	 0.637	

2+1	 0.561	

3+1	 0.524	
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Growing	fronts	in	DP	

•  In	3+1	DP,		𝐺~ ​(𝑝− ​𝑝↓𝑐 )↑0.524 	
•  In	1+1	DP,		𝐺~ ​(𝑝− ​𝑝↓𝑐 )↑0.637 	

dim	 ​𝝂↓∥ − ​
𝝂↓⊥ 	

1+1	 0.637	

2+1	 0.561	

3+1	 0.524	

Can’t	use	​𝑝↓𝑐 	from	the	
literature	since	it	
depends	on	the	size	of	
the	system.	

Green	line	indicates	𝑝	
for	which	 ​𝜉↓⊥ =1.2𝑅	
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Experimental	measurements	of	slug	
fronts	

•  In	3+1	DP,		𝐺~ ​(𝑝− ​𝑝↓𝑐 )↑0.524 	
•  In	1+1	DP,		𝐺~ ​(𝑝− ​𝑝↓𝑐 )↑0.637 	

Re	

​𝐺↑
1/
𝛾 
	

dim	 ​𝝂↓∥ − ​
𝝂↓⊥ 	

1+1	 0.637	

2+1	 0.561	

3+1	 0.524	

1+1	DP	exponent	

3+1	DP	exponent	

Preliminary	
data:	

Hof	et	al.	(Unpublished,	2010)	 96	



Summary:	Transi*onal	Turbulence	as	DP	
•  Transitional turbulence ~ Directed percolation (Pomeau, 1986) 
•  Directed percolation (DP) 

–  percolating probability p at each site 
–  absorbing state → laminar flows  
–  active state → turbulent slugs  

•  Critical transition threshold pc:  

Sipos and Goldenfeld, PRE 84, 035304(R) (2011) 

/me	○ absorbing	site	
● ac/ve	site	

correlation length 

p ≈ pc p > pc p < pc 

•  Turbulence vs. (3+1) DP in pipe: De Lozar et al. arXiv:1001.2481 (2010) 

growth rate 

p ≈ pc, 	

Hof et al., PRL 101, 214501 (2008) 

Henkel, Non-Equilibrium Phase Transitions vol.1 (2008) Hinrichsen, Adv. Phys. 49, 815 (2000) 

ξ┴ 

ξ║ 
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MODEL	FOR	SPATIOTEMPORAL	
INTERMITTENCY	

Re	 1775	

laminar	

2100	

metastable	
puffs	

2500	

spa/otemporal	
intermikency	

expanding	
slugs	

skip	this	sec/on	
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MODEL	FOR	SPATIOTEMPORAL	
INTERMITTENCY	

Re	 1775	

laminar	

2100	

metastable	
puffs	

2500	

spa/otemporal	
intermikency	

expanding	
slugs	
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Very	complex	behavior	and	we	need	to	understand	precisely	what	happens	
at	the	transi*on,	and	where	the	DP	universality	class	comes	from.	



How	to	model	transi*onal	turbulence?	
•  Sta/s/cal	descrip/on	of	phase	transi/ons	based	on	
effec/ve	(Landau)	theory	for:	
–  Order	parameter	
–  Collec/ve	modes	
–  Hydrodynamic	modes	(long-wavelength,	long-/me)	

•  Effec/ve	theory	func/onal	form	determined	by	
symmetry,	conserva/on	laws	
–  Direct	deriva/on	from	microscopic	theory	usually	not	
possible	

–  Direct	deriva/on	from	microscopic	theory	usually	not	
desirable,	because	technical	assump/ons	restrict	the	
regime	of	validity	of	the	effec/ve	theory	

7	



Logic	of	modeling	phase	transi*ons	

7	
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Landau theory 
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Iden*fica*on	of	collec*ve	modes	at	
the	laminar-turbulent	transi*on	

To	avoid	technical	approxima/ons,	
we	use	DNS	of	Navier-Stokes	



How	to	model	transi*onal	turbulence?	

•  Pipe	flow	consists	of	two	regions,	turbulence	and	
roughly	laminar	large	scale	flow	

7	



How	to	model	transi*onal	turbulence?	

•  Pipe	flow	consists	of	two	regions,	turbulence	and	
roughly	laminar	large	scale	flow	

•  The	large	scale	flow	is	driven	by	the	turbulent	
fluctua/ons	

•  The	large	scale	flow	suppresses	the	turbulent	
fluctua/ons	

•  Suggests:	transi/onal	turbulence	=	predator-prey	
ecosystem	

7	



Observa*on	of	predator-prey	oscilla*ons	
in	numerical	simula*on	of	pipe	flow	

8	
Simulation based on the open source code by Ashley Willis: openpipeflow.org 

Turbulence	
Zonal	flow	
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Observa*on	of	predator-prey	oscilla*ons	
in	numerical	simula*on	of	pipe	flow	

8	
Simulation based on the open source code by Ashley Willis: openpipeflow.org 
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Zonal	flow	

Reynolds	stress	

Streamlines	
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Characterizing	predator-prey	dynamics	
•  Oscilla/ons	phase	
shiued	by	π/2	

	
•  Zonal	flow	is	
correlated	with	the	
radial	gradient	of	
the	Reynolds	stress	
–  In	space	
–  In	/me	

114	



Characterizing	predator-prey	dynamics	
•  Oscilla/ons	phase	
shiued	by	π/2	

	
•  Zonal	flow	is	
correlated	with	the	
radial	gradient	of	
the	Reynolds	stress	
–  In	space	
–  In	/me	

115	

gradient of Reynolds stress 

time derivative of azimuthal velocity 



1)  Anisotropy of turbulence creates Reynolds stress which 
generates the mean velocity in azimuthal direction 

2)  Mean azimuthal velocity decreases the anisotropy of 
turbulence and thus suppress turbulence 

What	drives	the	zonal	flow?	
•  Interaction in two fluid model 

–  Turbulence, small-scale (k>0) 
–  Zonal flow, large-scale (k=0,m=0): induced by turbulence 

and creates shear to suppress turbulence 

8	

Turbulence	
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1)  Anisotropy of turbulence creates Reynolds stress which 
generates the mean velocity in azimuthal direction 

2)  Mean azimuthal velocity decreases the anisotropy of 
turbulence and thus suppress turbulence 

What	drives	the	zonal	flow?	
•  Interaction in two fluid model 

–  Turbulence, small-scale (k>0) 
–  Zonal flow, large-scale (k=0,m=0): induced by turbulence 

and creates shear to suppress turbulence 
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1)  Anisotropy of turbulence creates Reynolds stress which 
generates the mean strain shear in azimuthal direction 

2)  Mean strain shear decreases the anisotropy of turbulence and 
thus suppress turbulence 

What	drives	the	zonal	flow?	
•  Interaction in two fluid model 

–  Turbulence, small-scale (k>0) 
–  Zonal flow, large-scale (k=0,m=0): induced by turbulence 

and creates shear to suppress turbulence 

8	
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1)  Anisotropy of turbulence creates Reynolds stress which 
generates the mean velocity in azimuthal direction 

2)  Mean strain shear decreases the anisotropy of turbulence and 
thus suppress turbulence 

What	drives	the	zonal	flow?	
•  Interaction in two fluid model 

–  Turbulence, small-scale (k>0) 
–  Zonal flow, large-scale (k=0,m=0): induced by turbulence 

and creates shear to suppress turbulence 
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1)  Anisotropy of turbulence creates Reynolds stress which 
generates the mean velocity in azimuthal direction 

2)  Mean strain shear decreases the anisotropy of turbulence and 
thus suppress turbulence 

What	drives	the	zonal	flow?	
•  Interaction in two fluid model 

–  Turbulence, small-scale (k>0) 
–  Zonal flow, large-scale (k=0,m=0): induced by turbulence 

and creates shear to suppress turbulence 
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1)  Anisotropy of turbulence creates Reynolds stress which 
generates the mean velocity in azimuthal direction 

2)  Mean strain shear decreases the anisotropy of turbulence and 
thus suppress turbulence 

What	drives	the	zonal	flow?	
•  Interaction in two fluid model 

–  Turbulence, small-scale (k>0) 
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1)  Anisotropy of turbulence creates Reynolds stress which 
generates the mean velocity in azimuthal direction 

2)  Mean strain shear decreases the anisotropy of turbulence and 
thus suppress turbulence 

What	drives	the	zonal	flow?	
•  Interaction in two fluid model 

–  Turbulence, small-scale (k>0) 
–  Zonal flow, large-scale (k=0,m=0): induced by turbulence 

and creates shear to suppress turbulence 
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θ	≈	π/2	

Normal population cycles in a predator-prey system 

2	

π/2 phase shift between prey and predator population 

hkps://inters/ces.info/jcms/n_49876/des-especes-en-nombre	

Prey	 Predator	Resource	

Persistent oscillations 
+ 

Fluctuations 



Ecology	of	turbulence	
•  Interac*on	in	two	fluid	model	

–  Turbulence, small-scale (k>0) 
–  Zonal flow, large-scale (k=0,m=0): induced by turbulence 

and creates shear to suppress turbulence 
–  Anisotropy of turbulence creates Reynolds stress which 

generates the mean strain shear in azimuthal direction 

–  Mean strain shear decreases the anisotropy of turbulence 
and thus suppress turbulence	
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Ecology	of	turbulence	
•  Interac*on	in	two	fluid	model	

–  Turbulence, small-scale (k>0) 
–  Zonal flow, large-scale (k=0,m=0): induced by turbulence 

and creates shear to suppress turbulence 
–  Anisotropy of turbulence creates Reynolds stress which 

generates the mean strain shear in azimuthal direction 

–  Mean strain shear decreases the anisotropy of turbulence 
and thus suppress turbulence	
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Turbulenc
e	

Laminar	
flow	

Zonal	
flow	

Prey	Nutrient	 Predator	

Ecology	of	turbulence	
•  Interac*on	in	two	fluid	model	

–  Turbulence, small-scale (k>0) 
–  Zonal flow, large-scale (k=0,m=0): induced by turbulence 

and creates shear to suppress turbulence 
–  Anisotropy of turbulence creates Reynolds stress which 

generates the mean strain shear in azimuthal direction 

–  Mean strain shear decreases the anisotropy of turbulence 
and thus suppress turbulence	

8	

Turbulence	
Zonal	flow	



Predator-Prey	Dynamics	in	Tokomaks	

predator 

induce 

induce 

predator prey 

suppress suppress 

prey 

•  In tokamak (toroidal chamber with axial magnetic field): 
–  turbulent plasma (small-scale drift waves along the ring) 
–  zonal flows: 

•  Er x B turbulence-induced flow on small circles 
•  cause radial shear to damp turbulent plasma 
•  decrease due to dissipation 

•  Self-organized dynamics in Ecology: 

hkps://inters/ces.info/jcms/n_49876/des-especes-en-nombre	

θ	≈	π/2	

26	
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Predator-Prey	Dynamics	in	Tokomaks	
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•  Self-organized dynamics in Magneto-hydrodynamics: 
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time 

T~50µs 

θ	≈	π/2	

•  In tokamak (toroidal chamber with axial magnetic field): 
–  turbulent plasma (prey) 
–  zonal flows (predator): 

•  Er x B turbulence-induced flow on small circles 
•  cause radial shear to damp turbulent plasma 
•  decrease due to dissipation 

Estrada	et	al.	EPL	(2012)	
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Ecology	model	for	turbulence	
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mean-field	rate	equa/on:	
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Q. What is the universality class of 
the transition to turbulence? 

Tenta/ve	answer:	directed	
percola/on	…	but	why?	

5	



Strategy:	transi*onal	turbulence	to	directed	
percola*on		

Field	Theory	

Directed	
Percola/on	

Predator-Prey	

Two-fluid	
model	

(Classical)	
Turbulence	

Reggeon	field	theory	
(Janssen,	1981)	

Ex/nc/on	transi/on		
(Mobilia	et	al.,	2007)	

?	
(Wikimedia	Commons)	

(Wikimedia	Commons)	

(Pearson	Educa/on,	Inc.,	2009)	

(Boffeka	and	Ecke,	2012)	



Introduc*on	to	stochas*c	
predator-prey	systems	
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Time	

Ecology	

Evolu/onary	Ecology	

Turbulence	in	a	Tokomak	



θ	≈	π/2	

Normal population cycles in a predator-prey 
system 

2	

π/2 phase shift between prey and predator population 

hkps://inters/ces.info/jcms/n_49876/des-especes-en-nombre	

Prey	 Predator	Resource	

Persistent oscillations 
+ 

Fluctuations 
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Prey	consumes	
resource	and	grows	
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Prey	decreases	due	to	
preda/on	by	predator	
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Predator	decreases	
due	to	lack	of	prey	
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Prey	increases	because	of	
lower	preda/on	pressure	
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Predator	increases	again	
due	to	increasing	prey	
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Predator		can	only	start	to	grow	auer		
prey	grows	and	before	prey	declines	

Cartoon picture for normal cycles (π/2 phase 
shift) 

θ=	π/2	

Phase	shie	is	a	
quarter	period	



Ques*ons	
1.  The	turbulence	of	ecology	

	
A.	What	is	the	role	of	intrinsic	noise	in	spa/ally-
extended	ecosystems	with	predator-prey	
interac/ons?	

B.	What	happens	when	ecological	and	evolu/onary	
/mescales	are	comparable?	

2.  The	ecology	of	turbulence	
	
C.	What	is	the	universality	class	of	the	transi/on	from	
laminar	fluid	flow	to	turbulence?	
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Answers	
1.  The	turbulence	of	ecology	

	
A.	Demographic	stochas/city	can	generate	quasi-
pakerns	in	ecosystems	

B.	Rapid	evolu/on	can	emerge	from	demographic	
stochas/city	

2.  The	ecology	of	turbulence	
	
C.	Transi/onal	turbulence	is	controlled	by	predator-
prey	interac/ons	and	is	in	the	universality	class	of	
directed	percola/on	
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•  Lotka-Volterra eqn: conventional model for population dynamics 
•  L-V for prey-predator system: 
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•  L-V for prey-predator system: 

–  Reproduction of prey proportional to prey density → exponential growth 
–  Limited food resource → consider carrying capacity of prey, Ku 
–  Predator hunts prey → predation proportional to prey & predator densities 
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u:	prey					v:	predator			b:	prey	metabolic	rate	
Ku:	prey	carrying	capacity	
p:	preda/on	rate			d:	predator	death	rate	

— prey	
— predator	

Lotka-Volterra	equa*ons	for	predator-prey	dynamics	

•  Predicts π/2 phase shift between prey and predator 
•  Problems: No oscillations → Contrary to experiments! 

θ	≈	π/2	



Sa*a*on	model	
•  Add Michaelis-Menten kinetics to rewrite predation term 
•  Satiation effects as the additional mechanism; introduce 
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•  Predicts: (1) π/2 phase shift (2) undamped oscillations 
•  Problems: 

–  No fluctuations → Contrary to experiments! 
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Popula*on	level	vs.	individual	level	
Deterministic population-level model: 
•  Differential equations(Lotka-Volterra) for densities:   

–  Converges to stable states(contrary to experiments!) 
–  Additional mechanism (Michaelis-Menten terms) 
–  No fluctuations(contrary to experiments!) 
–  Not generic! 
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Stochastic individual-level model (Newman & McKane PRL 2005): 
•  Based on individual processes of species  (e.g. reproduce process:  A→2A) 
•  Fluctuations in the number of population → demographic stochasticity 
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•  No additional mechanism 
•  Quasicycles emerge from intrinsic demographic stochasticity 
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Quasicycles	
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Models for predator-prey ecosystem 

6	

•  Deterministic models 

Satiation model (Holling type II function) 
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Lotka-Volterra equations 

No persistent oscillations No fluctuations 



Models for predator-prey ecosystem 
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•  Deterministic models 

•  Stochastic individual level model  
     fluctuations in number → demographic stochasticity that induces quasi-cycles  
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Individual-level	stochas*c	model	of	predator-
prey	dynamics	

A.J.	McKane	and	T.	Newman.	Predator-Prey	Cycles	from	Resonant	
Amplifica*on	of	Demographic	Stochas*city.		Phys.	Rev.	Lel.	94,	
218102	(2005)	



Master	equa*on	for	predator-prey	model	

7	

Basic individual processes in predator (A) and prey 
(B) system: 

Birth 

Death 



Master	equa*on	for	individual-level	
model	

168	

m=predators			n=prey	



Master	equa*on	as	a	quantum	field	
theory	

•  Individuals	in	a	popula/on	are	quan/zed,	so	use	
annihila/on	and	crea/on	operators	to	count	them	and	
describe	their	interac/ons	
	
– When	adding	a	new	individual	to	the	system,	there	is	only	
one	to	chose	
	

– When	removing	an	individual	from	the	system	there	are	
many	to	chose	

•  Result:	even	classical	iden/cal	par/cles	obey	
commuta/on	rela/ons	familiar	from	quantum	field	
theory	

169	Doi	1976;	Grassberger	&	Scheunert	1980;	Cardy	&	Sugar	1980;	Mikhalov	1981;	Goldenfeld	1982,	1984;	Peli/	1985	
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Individual-level	stochas*c	model	of	predator-
prey	dynamics	



Master	equa*on	as	a	quantum	field	
theory	

•  Individuals	in	a	
popula/on	are	
quan/zed,	so	use	
annihila/on	and	crea/on	
operators	to	count	them	
and	describe	their	
interac/ons	

•  Time	evolu/on	given	by	
Liouville	equa/on	

171	Doi	1976;	Grassberger	&	Scheunert	1980;	Cardy	&	Sugar	1980;	Mikhalov	1981;	Goldenfeld	1982,	1984;	Peli/	1985	



•  Expand	the	number	of	predators	and	prey	
about	average	values	in	a	1/						expansion	

•  Resul/ng	equa/on	is	a	linear	stochas/c	
equa/on	in	x,	y	with	Langevin	noise	and	
power	spectrum,	sharply	peaked	about	an	
internally-generated	natural	frequency	

Resonance	from	demographic	noise	

172	



Quasi-cycles	

173	



Ex*nc*on/decay	sta*s*cs	for	
stochas*c	predator-prey	systems	



Deriva*on	of	predator-prey	
equa*ons	

Zonal	flow-turbulence	 Predator-prey	

Prey/Turbulence	Predator/Zonal	flow	



Turbulenc
e	

Laminar	
flow	

Zonal	
flow	

Prey	(B)	Nutrient	(E)	 Predator	(A)	

Ecology	model	for	turbulence	

10	

mean-field	rate	equa/on:	



Survival	probability	near	ex*nc*on	

•  Decay	of	popula/on	is	a	
memoryless	process	
– Extract	life/me	in	both	decay	
and	splilng	modes	

•  Log-linear	plot	of	life/me	
shows	curvature	
– superexponen/al	dependence	
on	prey	birth	rate	

177	
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Pipe	flow	turbulence	

Predator-prey	model	
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Turbulent	puff	life/me	

Mean	/me	between	puff	split	events	

Song et al., J. Stat. Mech. 2014(2), P020010 
Avila et al., Science 333, 192 (2011) 

3	

Prey	life/me	

Mean	/me	between	
popula/on	split	events	

Predator-prey	vs.	transi*onal	turbulence	



Survival	probability	near	ex*nc*on	

•  Decay	of	
popula/on	is	a	
memoryless	
process	
–  Extract	life/me	in	
both	decay	and	
splilng	modes	

•  Log-linear	plot	of	
life/me	shows	
curvature	
–  superexponen/al	
dependence	on	
prey	birth	rate	
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Metastable	turbulent	puff	
•  S-shaped	curves	imply	that	survival	probability	has	the	form:	

𝑃(Re, 𝑡)= ​𝑒↑− ​𝑡− ​𝑡↓0 /𝜏(Re)  	

Super-exponen/al	scaling:	​𝜏/​𝜏↓0  ~exp​(​exp⁠Re )	
Hof	et	al.	(PRL	2008)	

to	extra	slide	



Universality class of the transition 



Strategy:	transi*onal	turbulence	to	directed	
percola*on		

Field	Theory	

Directed	
Percola/on	

Predator-Prey	

Two-fluid	
model	

(Classical)	
Turbulence	

Reggeon	field	theory	
(Janssen,	1981)	

Ex/nc/on	transi/on		
(Mobilia	et	al.,	2007)	

?	
(Wikimedia	Commons)	

(Wikimedia	Commons)	

(Pearson	Educa/on,	Inc.,	2009)	

(Boffeka	and	Ecke,	2012)	



Ecology	model	for	turbulence	

10	

Turbulenc
e	

Laminar	
flow	

Zonal	
flow	

Prey	(B)	Nutrient	(E)	 Predator	(A)	



Universality	class	of	predator-prey	system	
near	ex*nc*on	

7	

Basic individual processes in predator (A) and prey 
(B) system: 

Birth 

Diffusion 

Death 

Carrying 
capacity 
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Near the transition to prey extinction, the prey (B) 
population is very small and no predator (A) can 
survive; A ~ 0. 
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Universality	class	of	predator-prey	system	
near	ex*nc*on	

7	

Near the transition to prey extinction, the prey (B) 
population is very small and no predator (A) can 
survive; A ~ 0. 

Decoagulation 

Diffusion 

Annihilation 

Coagulation 

t 
t+1 

Birth 

Diffusion 

Death 

Carrying 
capacity 

Predator-prey = Directed percolation 
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Master	equa*on	as	a	quantum	field	
theory	

•  Individuals	in	a	popula/on	are	quan/zed,	so	use	
annihila/on	and	crea/on	operators	to	count	them	and	
describe	their	interac/ons	
	
– When	adding	a	new	individual	to	the	system,	there	is	only	
one	to	chose	
	

– When	removing	an	individual	from	the	system	there	are	
many	to	chose	

•  Result:	even	classical	iden/cal	par/cles	obey	
commuta/on	rela/ons	familiar	from	quantum	field	
theory	

191	Doi	1976;	Grassberger	&	Scheunert	1980;	Cardy	&	Sugar	1980;	Mikhalov	1981;	Goldenfeld	1982,	1984;	Peli/	1985	
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192	Doi	1976;	Grassberger	&	Scheunert	1980;	Cardy	&	Sugar	1980;	Mikhalov	1981;	Goldenfeld	1982,	1984;	Peli/	1985	



•  Near	ex/nc/on	model	
reduces	to	simpler	system	

•  Express	as	Hamiltonian	
	
•  Map	into	a	coherent	state	path	integral	

	

•  Phase	diagram	

Field	theory	for	predator-prey	model	

See	Tauber	(2012)	 Preda/on	rate	

Predator-popula/on	>	0	Predator-popula/on	=	0	



Ex*nc*on	in	predator-prey	systems	
•  This field theory can be reduced to 

 

Action of Reggeon field theory and universality 
class of  directed percolation (Mobilia et al 
(2007) 

•  Summary: ecological model of transitional 
turbulence predicts the DP universality 
class 



Ex*nc*on	in	predator-prey	systems	
•  This field theory can be reduced to 

 

•  Reggeon field theory ↔ Extinction transition in 
predator-prey model (Mobilia et al (2007) 

•  Reggeon field theory ↔ DP universality class: 
non-equilibrium critical dynamics with 
absorbing state 

•  Summary: ecological model of transitional 
turbulence predicts the DP universality 
class 



Puff	splirng	in	ecology	model	

Driven	by	emerging	traveling	waves	
of	popula/ons	



Puff	splirng	in	predator-prey	systems	

•  Stability	of	predator-prey	mean	field	theory	has	a	
transi/on	between	stable	node	and	spiral	
– Near	transi/on,	no	oscilla/ons	
– Away	from	the	transi/ons,	oscilla/ons	begin	
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linear	stability	of	
mean-field	
solu/ons	



Puff	splirng	in	predator-prey	systems	

199	

Puff-splilng	in	predator-prey	ecosystem	
in	a	pipe	geometry	

Puff-splilng	in	pipe	turbulence	

Avila	et	al.,	Science	(2011)	
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Measure	the	ex*nc*on	*me	and	
the	*me	between	split	events	in	

predator-prey	system.	
	



Turbulent	puff	life/me	

Mean	/me	between	puff	split	events	

Song et al., J. Stat. Mech. 2014(2), P020010 
Avila et al., Science 333, 192 (2011) 

3	

Prey	life/me	

Mean	/me	between	
popula/on	split	events	

Predator-prey	vs.	transi*onal	turbulence	



Turbulent	puff	life/me	

Mean	/me	between	puff	split	events	

Song et al., J. Stat. Mech. 2014(2), P020010 
Avila et al., Science 333, 192 (2011) 

3	

Prey	life/me	

Mean	/me	between	
popula/on	split	events	

Predator-prey	vs.	transi*onal	turbulence	

	

Ex*nc*on	in	Ecology			=			Death	of	
Turbulence	

	
	



Ecology		=		turbulence		=		DP	

Sipos and Goldenfeld,   
PRE 84, 035304(R) (2011) 

Hof et al., PRL 101, 214501 (2008) 

14	

Shih, Hsieh, NG (2015) 



Direct	Numerical	Simula/ons	
of	Navier-Stokes	

Summary:	universality	class	of	transi*onal	
turbulence	

Field	Theory	

Directed	
Percola/on	

Predator-Prey	

Two-fluid	
model	

(Classical)	
Turbulence	

Reggeon	field	theory	
(Janssen,	1981)	

Ex/nc/on	transi/on		
(Mobilia	et	al.,	2007)	

(Wikimedia	Commons)	

(Wikimedia	Commons)	

(Pearson	Educa/on,	Inc.,	2009)	

(Boffeka	and	Ecke,	2012)	
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But	Nigel,	is	this	
the	transi/on	

to	turbulence	or	
a	transi/on	

to	turbulence?	



Predator-prey	oscilla*ons	in	convec*on	

209	



Predator-prey	oscilla*ons	in	convec*on	

210	L.P.	Kadanoff,	Physics	Today	(2001).	



Predator-prey	oscilla*ons	in	convec*on	

Pr=10				Ra=2	x	105						Sustained	shearing	convec*on		 Pr=10				Ra=2	x	108	

Pr	=	1			Ra=2	x	108														Bursty	shearing	convec*on	

D.	Goluskin	et	al.	JFM	(2014)	

Ex	=	Horizontal	component	of	KE	

Ez	=	Ver/cal	component	of	KE	Energy	in	zonal	flow	and	ver*cal	plumes	shows		
predator-prey	oscilla*ons	



Universal	predator-prey	behavior	
in	transi*onal	turbulence	

•  Experimental	observa/ons	
–  L-H	mode	transi/on	in	fusion	plasmas	in	tokamak	
–  2D	magne/zed	electroconvec/on	
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Bardoczi	et	al.		Phys.	Rev	E	(2012)	



Transi*on	to	turbulence	in	Taylor-Couele	flow	
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Measurement	of	DP	exponents	

Sano	&	Tamai,	Nature	Physics	(2016)	Lemoult	et	al.,	Nature	Physics	(2016)	



DP	in	large	aspect	ra*o	Taylor-Couele	

Lemoult	et	al.,	Nature	Physics	(2016)	

Dynamic	scaling	of	
turbulent	frac/on	
	following	a	cri/cal		
quench	from	
Re	>	Rec	



Summary	
•  Pipe	flow	consists	of	two	regions,	turbulence	and	
roughly	large	scale	flow	
–  These	behave	as	prey	and	predator	in	an	ecosystem	

•  We	report	first	observa/on	of	predator-prey	
oscilla/ons	in	pipe	turbulence	
–  Turbulence	is	the	prey	
–  Zonal	(azimuthal)	flow	is	the	predator	

•  Predator-prey	in	a	pipe	gives	
–  life/me	and	popula/on	splilng	exhibit	
superexponen/al	behavior	with	reproduc/on	rate	

–  The	predator-prey	transi/on	is	already	known	to	be	
directed	percola/on	(Mobilia	et	al.	2007)	and	
reproduces	observa/onal	phenomenology	(Sipos	&	
NG	2011)	
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Transi*on	to	turbulence	in	Taylor-Couele	flow	
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Summary	
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•  We	report	first	observa/on	of	predator-prey	
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Conclusion	
•  Transi/on	to	pipe	turbulence	is	in	the	universality	class	
of	directed	percola/on,	evidenced	by:	
–  Puff	life/me	as	a	func/on	of	Re	
–  Extreme	value	sta/s/cs	and	finite-size	scaling	
–  Slug	spreading	rate	as	a	func/on	of	Re	

•  How	to	derive	universality	class	from	hydrodynamics	
–  Small-scale	turbulence	ac/vates	large-scale	zonal	flow	
which	suppresses	small-scale	turbulence	

–  Effec/ve	theory	(“Landau	theory”)	is	stochas/c	predator-
prey	ecosystem	

–  Exact	mapping:	fluctua/ng	predator-prey	=	Reggeon	field	
theory	=	DP	near	ex/nc/on	

•  Observa/onal	signatures	
–  Predator-prey	near	ex/nc/on	shows	superexponen/al	
life/me	scaling	for	decay	and	splilng	of	puffs	 220	
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Wishing	you	many	
more	happy	

birthdays,	Jim!	
And	thanks	for	
pulng	us	into	a	
happy,	frui|ul	and	

long-lived	
metastable	state!	



Super-exponen*al	scaling	and	
extreme	sta*s*cs	

•  Ac/ve	state	persists	un/l	the	
most	long-lived	percola/ng	
“strands”	decay.	
–  extreme	value	sta/s/cs	

•  Why	do	we	not	observe	the	
power	law	divergence	of	
life/me	of	DP	near	transi/on?	

•  Close	to	transi/on,	transverse	
correla/on	length	diverges,	so	
ini/al	seeds	are	not	
independent	
–  Crossover	to	single	seed	behaviour	
–  Asympto/cally	will	see	the	power	

law	behavior	in	principle	 ​𝜉↓⊥ ~ ​(𝑝− ​𝑝↓𝑐 )↑− ​𝜈↓⊥  	



Turbulenc
e	

Laminar	
flow	

Zonal	
flow	

Prey	Nutrient	 Predator	

Ecology	of	turbulence	
•  Interac*on	in	two	fluid	model	

–  Turbulence, small-scale (k>0) 
–  Zonal flow, large-scale (k=0,m=0) 
–  Anisotropy of turbulence creates Reynolds stress 
–  The radial gradient of Reynolds stress generates the large 

scale fluctuations in azimuthal direction (zonal flow) 

–  Zonal flow creates shear to turbulence and decreases the 
anisotropy of turbulence and thus suppress turbulence	

8	

Turbulence	
Zonal	flow	



Summary:	Transi*onal	Turbulence	as	DP	
•  Transitional turbulence ~ Directed percolation (Pomeau, 1986) 
•  Directed percolation (DP) 

–  percolating probability p at each site 
–  absorbing state → laminar flows  
–  active state → turbulent slugs  

•  Critical transition threshold pc:  

Sipos and Goldenfeld, PRE 84, 035304(R) (2011) 

/me	○ absorbing	site	
● ac/ve	site	

correlation length 

p ≈ pc p > pc p < pc 

•  Turbulence vs. (3+1) DP in pipe: De Lozar et al. arXiv:1001.2481 (2010) 

growth rate 

p ≈ pc, 	

Hof et al., PRL 101, 214501 (2008) 

Henkel, Non-Equilibrium Phase Transitions vol.1 (2008) Hinrichsen, Adv. Phys. 49, 815 (2000) 

ξ┴ 

ξ║ 
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Predator-Prey	Dynamics	in	Tokomaks	

predator 

induce 

induce 

predator prey 

suppress suppress 

prey 

•  In tokamak (toroidal chamber with axial magnetic field): 
–  turbulent plasma (small-scale drift waves along the ring) 
–  zonal flows: 

•  Er x B turbulence-induced flow on small circles 
•  cause radial shear to damp turbulent plasma 
•  decrease due to dissipation 

•  Self-organized dynamics in Ecology: 

hkps://inters/ces.info/jcms/n_49876/des-especes-en-nombre	

θ	≈	π/2	
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Predator-Prey	Dynamics	in	Tokomaks	
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•  Self-organized dynamics in Magneto-hydrodynamics: 
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•  In tokamak (toroidal chamber with axial magnetic field): 
–  turbulent plasma (prey) 
–  zonal flows (predator): 

•  Er x B turbulence-induced flow on small circles 
•  cause radial shear to damp turbulent plasma 
•  decrease due to dissipation 

Estrada	et	al.	EPL	(2012)	
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Two-fluid	predator-prey	model	
for	transi*onal	turbulence	

Can	we	observe	predator-prey	
oscilla/ons?	
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Predator-Prey	Dynamics	in	Tokomaks	
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Tes*ng	the	ecology	of	turbulence	
•  Quasi-cycles	in	ecology	are	

driven	by	number	fluctua/ons,	
ie.	discreteness	

•  Quasi-cycles	exhibit	f-2	power	
spectrum,	not	f-4	expected	for	
noisy	limit	cycle	
–  What	sets	discreteness	in	

turbulence	number	fluctua/ons	
of	large-scale	modes	(predator)	
and	small-scale	turbulence	
(prey)?	

–  Nonlinearity	and	locality	à	
thresholds	for	scakering	of	
modes	

•  Quasi-cycles	seen	in	pumped	
nonlinear	Schrodinger	equa/on	
–  Dyachenko	et	al.	(1992)	first	

proposed	existence	of	predator-
prey	oscilla/ons	in	NLSE	
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Generic	two-fluid	behavior	in	
transi*onal	turbulence	

•  Spiral	
turbulence	

	
	
	
•  Large-scale	
circula*on	in	
turbulent	
convec*on	

Dong	and	Zheng	2011	

Xia, Theor. App. Mech. Lett. 3, 052001 (2013) Ahlers et al., RMP 81, 503 (2009) 



Generic	two-fluid	behavior	in	
transi*onal	turbulence	

•  Pipe	flow	exhibits	
both	laminar	and	
turbulent	regions	

•  The	turbulence	
moves	slower	than	
mean	flow	

•  There	is	an	
induced	or	
emergent	large-
scale	flow		

Moxley	and	Barkley	PNAS	2010	



Turbulent	convec*on	transi*on	

•  Next	step:	are	there	predator-prey	oscilla/ons	
between	the	LSC	and	the	turbulent	
fluctua/ons?	

•  Can	test	this	with	Brown	and	Ahlers	data	
•  Come	back	for	GA	90!	
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Large-scale	circula*on	

•  Coherent	LSC		
– carries	warm	fluid	from	the	bokom	plate	up	one	
side	of	the	sample;	cools	when	passes	the	top	
plate		and	goes	down	on	opposite	side	of	the	
sample	

•  Cessa*ons	and	reorienta*ons	

Experiment with water, Ra=3.7·108:  
Du and Tong, JFM (2000) 

0θ

L

D

U



Redrawn from 
experimental 
data Brown and 
Ahlers (2008) 

Cessa*ons	are	rare	events.	However	due	to	their	importance,	we	
want	to	accurately	es*mate	how	rare	is	rare!	
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•  Microscopic turbulence (plumes) + mesoscopic mean flow (LSC) 
     → predator-prey relations ? 
•  Ocean and atmospheric flow 
•  Turbulent Rayleigh-Benard convection 
•  Rayleigh number                          106    

Large-scale	Circula*on	(LSC)	

31	

•  Self-organized dynamics in Large-scale circulation: 
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induce 
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LSC turbulent 
plume 

suppress suppress 
turbulent 
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x(cm) 

z(
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)  

t = 37.5 min 

Xia, Theor. App. Mech. Lett. 3, 052001 (2013) 

plumes 

LSC 

Ahlers et al., RMP 81, 503 (2009) 



Large-scale	Circula*on	(LSC)	

•  Self-organized dynamics in Large-scale circulation: 
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Xia, Theor. App. Mech. Lett. 3, 052001 (2013) 
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Ahlers et al., RMP 81, 503 (2009) 

•  Microscopic turbulence (plumes) + mesoscopic mean flow (LSC) 
     → predator-prey relations ? 
•  Ocean and atmospheric flow 
•  Turbulent Rayleigh-Benard convection 
•  Rayleigh number                          106    
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•  Microscopic turbulence (plumes) + mesoscopic mean flow (LSC) 
     → predator-prey relations ? 
•  Ocean and atmospheric flow 
•  Turbulent Rayleigh-Benard convection 
•  Rayleigh number                          106    
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•  Microscopic turbulence (plumes) + mesoscopic mean flow (LSC) 
     → predator-prey relations ? 
•  Ocean and atmospheric flow 
•  Turbulent Rayleigh-Benard convection 
•  Rayleigh number                          106    
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•  Ocean and atmospheric flow 
•  Turbulent Rayleigh-Benard convection 
•  Rayleigh number                          106    

•  Self-organized dynamics in Large-scale circulation: 

LSC 

induce 
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LSC turbulent 
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)  
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Xia, Theor. App. Mech. Lett. 3, 052001 (2013) 
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Funfschilling et al., PRL 87, 194502 (2004) Zhong et al., J. Fluid Mech. 665, 300 (2010) 

Ahlers et al., RMP 81, 503 (2009) 
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reorientation 

? 
Future work:  

1.  Are there heuristic predator-prey equations 
for LSC? 

2.  If so, investigate predator-prey dynamics 
and phase shift in experimental data 

3.  individual level model & quasicycle theory 
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Navier-Stokes	
•  Incompressible	NS:	

​𝜕↓𝑡 𝒖+(𝒖⋅𝛁)𝐮=−𝛁p+R​e↑−1 ​𝛻↑2 𝐮,

𝛁⋅𝒖=0.	

	

Linear	stability	

•  Express	𝒖	in	cylindrical	coordinates.	
•  Linearize	around	laminar	solu/on		

𝒖= ​𝒖↓𝒍𝒂𝒎𝒊𝒏𝒂𝒓 +𝜹𝒖	
•  Write	as	

​𝜕↓𝑡  𝜹𝒖= ℒ 𝜹𝒖			

and	analyze	the	eigenvalues	of		ℒ.	

back	
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Super-exponen*al	scaling	of	life*mes	
•  Slopes	become	steeper:		𝜏	grows	faster	than	exponen/al.	

•  We	plot	survival	curves	at	same	/mes,	but	with	assumed	𝜏	
exponen/al.	

back	
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Simula*ng	DP	Models	

Diagonal	larce	models:	
•  Bond	percola/on	

–  each	bond	open	with	probability	𝑝	
•  Site	percola/on	

–  each	site	passable	with	probability	p	
•  Domany-Kinzel	

–  2	probabili/es	
Contact	process:	

•  Con/nuous	/me	

•  Contact	rate	𝜆	

1	 ​
𝑝↓
1 	

​
𝑝↓
1 	

​
𝑝↓
2 	

t	

t+1	
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Fisher-Tippel	
•  Distribu/on	of	the	extremum	depends	on	the	tail	of	the	

source	distribu/on	𝑃( ​𝑋↓𝑖 )	

•  If	𝑃(​𝑋↓𝑖 )≲ ​𝑒↑− ​𝑋↓𝑖  	then	one	uses	Fisher-Tippek	type	I	
or	Gumbel	distribu/on	

𝐹(𝑥)= ​𝑒↑​−𝑒↑−(𝑥−𝜇)/𝜎  	
•  Otherwise,	one	uses	the	Fisher-Tippek	type	II	and	III	(Frechet	

and	Weibull)	distribu/ons	

𝐹(𝑥)= ​exp⁠{− ​[1+𝜉(​𝑥−𝜇/𝜎 )]↑−1/𝜉 } 	
where	the	shape	parameter	𝜉>0 	for	Frechet	and	𝜉<0	for	
Weibull.	 back	
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Fisher-Tippek	2	

The	Weibull	distribu/on:	a	
handbook	by	H	Rinne	(2009)	

back	



Hydrodynamic	Phenomena	
•  Interac/on	of	puffs	(puffs	that	are	close	by	can	annihilate	

each	other).	

Hof	et	al.	(Science	2010)	
back	
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Laminar	patch	size	and	fractal	
dimension	

Size	of	laminar	patches	will	follow	
	

𝑃(𝐴)= ​𝐴↑​𝑑↓𝑓  	
	

where	​𝑑↓𝑓 	can	be	calculated	by	no/ng	that	
	

​𝜉↑​𝑑↓𝑓  = ​(𝑝− ​𝑝↓𝑐 )↑𝛽 ​(​𝜉↓⊥ )↑𝑑−1 ​𝜉↓∥ 	
	

and	using	
	

𝜉= ​(𝑝− ​𝑝↓𝑐 )↑𝜈 	
259	

back	



2D	Poiseuille	Flow	

•  Not	linearly	stable	for	all	Re.	

For/n	et	al.	(J.	Comp.	Phys	115,	455-469,	1994)	
back	
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Decay	of	turbulence	to	rest	



262	Eugene,	Oregon	1993	



263	



Propaga*on	of	turbulence	

264	

Turbulence	energy	density	 Size	of	turbulent	burst	

G.I.	Barenblak	(1983);	Chen	&	Goldenfeld,	Phys.	Rev.	A	(1992);	M.	Smith,	Physica	B	(1994)	



Decay	of	turbulence	to	laminar	flow	


