Stochastic Gradient Descent,
In theory and practice

Rachel Ward

University of Texas at Austin
Department of Mathematics
The Oden Institute for Computational Engineering and Sciences

2017-2018: Facebook Al Research (FAIR)

SIAM CSE; Spokane, Washington
February, 2019

Optimization in Modern Machine Learning

Dogs

<N E G
¢ Ed i -
ﬂi Y
=

b -
Elnnm

Neural networks are functions of a particular parameterized form
modeled after the human brain which interpolate or approximate a

given set of training examples (X1, y1),...,(Xn, ¥n) (supervised
setting).

Why are neural networks so powerful and versatile?
» Approximation power + simple form of neural networks
» Modern computer hardware and simple optimization
methods like Stochastic Gradient Descent learn parameters of

neural networks quickly

Where do we stand regarding theory vs practice?

Optimization in Modern Machine Learning

Given training examples (X1, y1),...,(Xn, ¥n), find a vector of
weights w which minimizes a loss function

Flw) = - > (F(wi) —)?

where f(w; x) is a neural network function of depth d with RelLU
activation function o:

f(w;x) =w]o (w;,llg(. o(w] x))) C o(x); = max{0, x;}.

Dimensions are large — for example, data dimension is 10 million,
parameter dimension is 20 million.

For such high-dimensional problems, we must use first-order
iterative optimization methods. Chain rule gives a simple

closed-form expression for VF(w) — back propagation.

Stochastic Gradient Descent (SGD)

Minimize F(w) = + Jj—1 fi(w)

» When n is large, even computing a single gradient VF(w) is
too costly. Gradient descent is too costly.

» Cheaper to compute the gradient in a single (or batch of)
component directions Vf;(w) at each iteration as a surrogate

for VF(w).

SGD (Robbins, Monro 1951):

» Initialize step-size & > 0 and
w0 ¢ Rd;

» Until convergence,

Choose index i; at random so that [E;

Stochastic Gradient Descent and Linear Systems

Special Case: Solving an overdetermined consistent system of
*

linear equations. F(w) = 3||[Aw — b||?, and Iw* s.t. Aw* =b.

In this case, convex sets S; = {w : Vf;(w) = 0} are affine, and
SGD as an iterative projection onto convex sets (POCS) algorithm
with random order of selection

Stochastic Gradient Descent and Linear Systems

Special Case: Solving an overdetermined consistent system of
linear equations. F(w) = 3||[Aw — b||?, and Iw* s.t. Aw* =b.

In this case, convex sets S; = {w : Vf;(w) = 0} are affine, and
SGD as an iterative projection onto convex sets (POCS) algorithm
with random order of selection

Linear convergence of POCS with cyclic selection first studied by
von Neumann (1933).

For linear systems: convergence to least squares solution in noisy
setting. Convergence to least-norm solution in
underdetermined setting.

Stochastic Gradient Descent and Linear Systems

[— ¢

-

For linear systems, condition number governing linear convergence
rate of SGD is k = ﬁ = nmax; ||a;||?||(AT A)T|5.

[Strohmer Vershynin, 2007] If row a; is chosen at random
proportionally to ||a;||3 instead of uniformly and step-size is
preconditioned, the linear convergence rate can be improved to

& = ||AlE[I(ATA)T2.

[Needell, Srebro, W 2013] More generally, sampling component
functions in SGD at random proportionally to their Lipschitz
constants (importance sampling), linear convergence rate of SGD
% Zf Lj

L

max; L; to k! =
1L

improves from Kk =

From linear systems to neural networks

Back to the neural network loss function:

% Z(f(wj X)) —yj)%, f(w,x)=wgo (W;-—lg(- & g(wlTx)))

A plot of SGD convergence in the overparameterized setting:

CIFAR-100
— [DenseNet (L=40, k=12): BN

— DenseNet (L=40, k=12): N Note the training error goes to zero.
DenseNet (L=100, k=12): BN
T G In other words, the component func-
tions share a minimizer w* and SGD
converges to such a minimizer.

=

training ermor

This contradicts conventional wisdom
that optimizing such functions is NP-

hard.

Plot from [Kalayeh, Shah, 2018]

From linear systems to neural networks

A plot of SGD training vs testing error in the overparameterized
setting:

CIFAR-100 » CIFAR-100

— DenseNel (L=40, k=12): BN DenseNet (L=40, k=12): BN

— DenseNet (L=40, k=12): MN — DenseNet (L=40, k=12): MN
DenseNet (L=100, k=12): BN pann DenseNet (L=100, k=12): BN

—— DenseNet (L=100, k=12): MN — DenseNet (L=100, k=12): MN

=

@ o
2 G
3 7
i &

epoch '
epoch

Not only does SGD converge to a global min-
imizer of the neural network loss function in
over-parameterized setting, it converges to a
good global minimizer — implicit regularization
of gradient descent.

From linear systems to neural networks

Modern neural networks are over-parameterized if possible — the
number of parameters is larger than the size of the training data.
SGD as an optimization method for such neural networks is
surprisingly similar to SGD as an optimization method for
underdetermined linear systems.

Recent theoretical work in this direction:

» With polynomial overparameterization ratio and random
initialization w(®), SGD will provably converge to a global
minimizer of certain neural networks, with linear convergence
ratel. The optimization problem is locally convex in a
neighborhood of w!®) and some w*.

For “shallow” neural networks?, gradient descent provably
converges to the minimum-norm solution wjc.

*[Soudry, Carmon, 2016], [Li, Yuan, 2017], [Du, Zhai, Poczos, Singh 2019]
*[Neyshabur, Tomioka, Salakhutdinov, Srebro 2017], [Gunasekar, Lee,
Soudry, Srebro 2018], [Molitor, Needell, W 2019]

Part |l: Making SGD robust to hyper-parameter tuning

“We want to design methods for machine learning that are not as
ideal as Newton's method but have [these| properties: first of all,
they tend to turn towards the right directions and they have the
right length, [i.e.] the step size of one is going to be working most
of the time ...".

Prof. Jorge Nocedal
IPAM Summer School, 2012

We are still quite far from this in theory and practice.

SGD with AdaGrad adaptive learning rate update

SGD update with AdaGrad adaptive learning rate update®: starting
from bg > 0,

v, (w)
V0B + [V, (wl=)]2)

WD — w(® _ o

3[Duchi, Hazan, Singer 2011|, [McMahan, Streeter, 2010]

Numerical illustration of robustness

ResNet at 10 ResNet at 60 ResNet at 120

o
o

Train Accuracy
= ()]
E.:l -

M
o

801

(m))
o

A=
-

-
U
m
| -
.
U
U
<L
it
i
QU
|_

)
o

10° 10° 10" 107 10° 10° 10°

bg bg

Training and testing error on CIFAR10 dataset, after 10, 60, and 120 epochs
over data, respectively.

Red- AdaGrad with o = 1 starting from % Black - SGD step-size . Blue -

by
SGD step-size bni/”t'

Conclusions

We motivated the use of Stochastic Gradient Descent as an
optimization method for neural networks.

In the past several years, we are understanding why SGD performs
so well in this context — SGD for over-parameterized neural
networks is similar to SGD for underdetermined linear systems.
Convergence to global minimizer, implicit regularization.

Still, SGD as implemented in practice is far from being online,
involving costly and time-consuming hyper-parameter tuning.

Recent theoretical results on adaptive gradient methods such as
AdaGrad justify what were previously heuristics for making SGD
more robust to hyper-parameters such as step-size. However, other
tricks such as batch normalization are even more powerful in
practice, and these are not understood ...

Perspectives

Neural networks are powerful and versatile new tools in
computational science, but they are just one tool.

Stochastic Gradient Descent is a useful algorithm beyond neural
networks for online or streaming optimization. But for SGD to truly
be a streaming algorithm, we must construct adaptive variations of
SGD which are less sensitive to e.g. choice of step-size.

Several open questions remain. Generative adversarial networks

(GANS) (unsupervised learning) are even more powerful in practice,
but less well understood. SGD is even less robust in this setting.

Thank You.

Thanks also to AFOSR, NSF, Facebook Al Research for funding

	slide01-0.00
	slide02-0.92
	slide03-0.98
	slide04-0.95
	slide05-0.98
	slide06-0.98
	slide07-0.98
	slide08-0.95
	slide09-0.93
	slide10-0.98
	slide11-0.95
	slide12-0.97
	slide13-0.93
	slide14-0.92
	slide15-0.42
	slide16-0.97

