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A B S T R A C T  
NDT 4.0 is a vision for the next generation of 
nondestructive inspection systems following the 
expected fourth industrial revolution based on 
connected cyber-physical systems. While an 
increasing use of automation and algorithms in 
nondestructive testing (NDT) is expected over time, 
NDT inspectors will still play a critical role in 
ensuring NDT 4.0 reliability. As a counterpoint to 
recent advances in artificial intelligence algo-
rithms, intelligence augmentation (IA) refers to the 
effective use of information technology to enhance 
human intelligence. While attempting to replicate 
the human mind has encountered many obstacles, 
IA has a much longer history of practical success. 
This paper introduces a series of best practices for 
NDT IA to support NDT 4.0 initiatives. Algorithms 
clearly have a great potential to help alleviate the 
burden of “big data” in NDT; however, it is 
important that inspectors are involved in necessary 
secondary indication review and the detection of 
rare event indications not addressed well by 
typical algorithms. Examples of transitioning algo-
rithms for NDT applications will be presented, 
emphasizing the successful interfacing of inspector 
and software for optimal data review and decision 
making.  
KEYWORDS: Industry 4.0, artificial intelligence, 
intelligence augmentation, human-machine 
interface, reliability 

Introduction 
Industry 4.0 is a term developed by German industry leaders 
and researchers to describe how the Internet of Things (IoT), 
an emerging network of linked cyber-physical devices, will 
improve engineering, manufacturing, logistics, and life-cycle 
management processes (Jahanzaib and Jasperneite 2013). 
The number 4.0 refers to a fourth industrial revolution. Begin-
ning in the 1700s, three major waves of technological changes 
transformed the industrial landscape and increased produc-
tivity: (1) mechanization and water/steam power; (2) mass 
production (for example, assembly lines) and electricity; and 
(3) computers and automation. The fourth industrial revolu-
tion is expected to be based on connected cyber-physical 
systems. There is a parallel vision for the next generation of 
NDT capability referred to as NDT 4.0 (Meyendorf et al. 
2017a, 2017b; Link and Riess 2018; Vrana et al. 2018; Singh 
2019). A key aspect of NDT 4.0 is leveraging automation in 
the evaluation of the workpiece and providing characteriza-
tion of the state of the part for improved life-cycle manage-
ment (Lindgren 2017; Forsyth et al. 2018). 

A diagram of an integrated vision for NDT 4.0 is 
presented in Figure 1. One key innovation of NDT 4.0 is the 
integration of advanced control systems and NDT algorithms 
to support complex inspections, NDT sensor data acquisition, 
and data analysis tasks. In recent years, major advances have 
been made in the field of machine learning and artificial intel-
ligence (AI) to perform complex data classification tasks, 
leveraging training on “big data” sets (LeCun et al. 2015). 
While this technology is promising, challenges do exist with 
transitioning machine learning/AI algorithms to NDT appli-
cations. Training AI requires very large, well-understood data 
sets, frequently not available in NDT, and there are major 
concerns about the reliability and adaptability of such algo-
rithms to completely perform complex NDT data review 
tasks. One of the primary objectives of this paper is to survey 
the potential benefits and challenges of emerging algorithms 
for NDT 4.0 systems. Experience and perspective on the tran-
sition of algorithms for NDT applications will also be 
discussed. 

The Inspector and NDT 4.0 
A critical component of any NDT tool is the interface with the 
human that uses it. Figure 1 shows the human-machine interface 
as a critical link between the NDT inspector/engineer and 
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NDT 4.0 software and hardware. Care must be taken with the 
implementation of automation to ensure that operators have 
the necessary awareness and control as needed. In addition,  
as a counterpoint to recent advances in AI algorithms, intelli-
gence augmentation (IA) is introduced as the effective use  
of information technology to enhance human intelligence. 
From this perspective, the inspector is an integrated part  
of NDT 4.0 systems and performs necessary tasks in  
collaboration with automated NDT systems and data analysis 
algorithms. This paper will present a series of best practices 
for the interface between NDT hardware, software, and  
algorithms and human inspectors and engineers to ensure 
NDT 4.0 reliability. 

Algorithms and AI in NDT 
NDT algorithms that perform indication detection and char-
acterization can be organized into three classes: (1) algorithms 
based on NDT expert knowledge and procedures (heuristic 
algorithms); (2) model-based inversion; and (3) algorithms 
incorporating statistical classifiers and/or machine learning. 
The most basic algorithm is one based on human experience. 
The term heuristic algorithm is useful to describe a class of 
algorithms based on learning through discovery and incorpo-
rating rules of thumb, common sense, and practical knowl-
edge. This first class of algorithms essentially encodes all key 
evaluation steps and criteria used by operators as part of a 

procedure into the algorithm. The second class of algorithms 
is a model-based inversion that uses a “first principles” 
physics-based model with an iterative scheme to solve char-
acterization problems. This approach requires accurate 
forward models and iteratively compares the simulated and 
measurement data, adjusting the model parameters until 
agreement is reached. The third class of algorithms covers 
statistical classifiers and machine learning, which are built 
through the fitting of a model function using measurement 
“training” data with known states. Statistical representation 
of data classes can be accomplished using either frequentist 
procedures or Bayesian classification. Machine learning and 
AI are general terms for the process by which computer 
programs can learn. Early work on machine learning built 
upon emulating neurons through functions as artificial 
neural networks using layered algorithms and a training 
process that mimics a network of neurons (Fukushima and 
Miyake 1982). In recent years, impressive advances have 
been made in the field of machine learning, primarily 
through significant developments in deep learning neural 
network (DLNN) algorithms (Hinton et al. 2006; LeCun 
et al. 2015; Lewis-Kraus 2016). Large sets of high-quality, 
well-characterized data have been critical for the successful 
training of DLNNs. As well, software tools have been devel-
oped for training neural networks that better leverage 
advances in high-performance computing. A recent 
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Figure 1. Vision for NDT 4.0: intelligence augmentation (IA) for NDT inspectors and engineers is achieved through a human-machine interface to 
NDT automation hardware, sensors, and data acquisition algorithms and models.
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overview on algorithms for NDT classification is summa-
rized in a previous paper (Aldrin and Lindgren 2018). 

Benefits of Algorithms/AI in NDT 
There are a number of advantages associated with incorpo-
rating algorithms as part of an NDT technique. First, algo-
rithms are typically very good at performing laborious and 
repetitive tasks. For most parts under test, either in manufac-
turing or in service, the presence of critical NDT indications is 
a fairly rare event. Therefore, the data review process can 
often be a tedious task for most operators, who can expect 
mostly good parts. Second, given the amount and complexity 
of some data review tasks performed for some inspections, 
such tasks can be a challenge, especially for inexperienced 
inspectors or inspections that are rarely performed. This trend 
appears to be growing with the increasing quantity of data 
acquired with automated scanning and array sensing systems. 
Third, in many instances, algorithms can perform the data 
review task faster than manual review, providing potential 
savings in maintenance time and costs. Fourth, algorithms are 
typically not biased by expectation, such as the frequency of 
indications in past inspections. With a reduction in errors, the 
overall risk of maintaining a component can be improved. 
Fifth, algorithms can be designed in such a way to support the 
operator as a “digital assistant.” Algorithms could potentially 
help alleviate the burden of “mostly good data” and allow 
operators to focus on key data review tasks. As well, algo-
rithms can be used to reduce the size and dimensionality of 
NDT data and present the operator with a reduced feature set 
for manual classification. Lastly, there are challenges with the 
aging workforce and transitioning expert knowledge to the 
next generation. Algorithms, if designed properly, can be 
repositories for expert knowledge in an NDT organization.  

Challenges of Algorithms/AI in NDT 
While the application of NDT algorithms shows great 
promise, there are a number of potential disadvantages with 
applying algorithm-based solutions to NDT inspection 
problems. First, the development and validation of reliable 
algorithms for NDT can be expensive. Training DLNNs 
requires very large, well-understood data sets, which are 
frequently not readily available for NDT applications. While 
the NDT community often possesses a large amount of data, 
the material state behind the data is often not perfectly 
known. Acquiring data from parts with well-characterized 
damage states, such as cracks, corrosion, or impact damage, 
requires either high-resolution NDT techniques for finger-
printing, or destructive characterization for full verification. 
The design, training, and validation of algorithms also require 
unique software development skills and many hours of engi-
neering labor to successfully implement.  

Second, algorithms also can perform poorly for scenarios 
that they are not trained to interpret. There have been 
concerns for decades about the reliability and adaptability of 

machine learning algorithms to completely perform complex 
NDT data review tasks. In NDT, many promising demonstra-
tions have been performed by the NDT research community, 
but frequent issues concerning overtraining and robustness to 
variability for practical NDT measurements outside of the 
laboratory have been noted (Aldrin and Lindgren 2018). 
Prior successful NDT applications of neural networks have 
been dependent on taking great care to reduce the dimension-
ality of the data and provide reliable features as inputs for clas-
sification. As well, designing algorithms to address truly rare 
events—so-called black swans—is extremely difficult (Taleb 
2007).  

Third, while human factors are frequently cited as being 
sources for error in NDT applications, humans are inherently 
more flexible in handling unexpected scenarios and can be 
better at making such judgement calls. Human inspectors also 
have certain characteristics like common sense and moral 
values, which can be beneficial in choosing the most reason-
able and safest option. In many cases, humans can detect 
when an algorithm is making an extremely poor classification 
due to inadequate training and correct those errors.  

Fourth, for many machine learning algorithms like 
DLNNs, it can be difficult to ascertain exactly why certain 
poor calls are made. These algorithms are often referred to as 
“black boxes,” because the complex web of mathematical 
operations optimized for complex data interpretation 
problems does not generally lend itself to reverse engineering. 
Approaches are being developed to sample the parameters 
space to ascertain the likely source for decisions (Olden and 
Jackson 2002), but the field of “explainable AI” (XAI) is still 
in its infancy (Stapleton 2017). 

Lastly, with the greater reliance on algorithms, there is a 
concern about the degradation of inspector skills over time. 
As well, there is a potential for certain organizations to view 
automated systems and algorithms as a means of reducing the 
number of inspectors. However, many of these disadvantages 
can be mitigated through the proper design of human-
machine interfaces. 

NDT Intelligence Augmentation 
With recent progress and hype on the coming wave of AI, 
some perspective is needed to understand how exactly these 
algorithms will be used by humans. While the original vision 
for AI was to mimic human intelligence, in practice AI has 
been successful only for very focused tasks. While today 
certain algorithms can perform better than humans for certain 
predefined and optimized tasks, we have not achieved the 
early goal of independent AI. Humans not only have the capa-
bility to perform millions of different tasks, many in parallel 
run by the unconscious mind, but they also have the where-
withal to determine when it is appropriate to switch between 
tasks and allow the conscious mind to have awareness as 
needed. The real value of AI today is using it as a specific tool 
(Aldrin et al. 2019). 
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As a counterpoint to AI, IA refers to the effective use of 
information technology to enhance human intelligence 
(Skagestad 1993; Rastogi 2017). This idea was proposed in 
the 1950s and 1960s by early cybernetics and computer 
pioneers. IA uses technology to essentially “support” a human 
in performing specific tasks. Relative to AI, IA has a long 
history of success. For example, consider the history of infor-
mation technology, from the birth of writing and slide rules to 
smartphones and the internet. All of these forms of tech-
nology have essentially been developed to extend the informa-
tion storage and processing capabilities of the human mind. 
Fundamentally, progress on AI algorithms should be viewed 
as an evolution of tools to better support human performance. 

While most of the attention in recent years has been on 
the performance of AI over humans in games such as chess 
and Go (Lewis-Kraus 2016), there are a number of applica-
tions that have been cited where humans plus algorithms can 
exceed the performance of computer algorithms alone. 
“Centaurs” (Scharre 2016; Case 2018) and “cyborgs” (Tharp 
2017) are terms used to refer to such human-plus-machine 
collaborations. One example that is frequently cited is chess. 
A team of amateur chess players paired with three chess 
programs convincingly defeated a series of teams made up of 
chess grandmasters and some of the world’s best chess 
programs (Cowen 2013; Tharp 2017). While this case study 
is slightly dated and may not hold up to the success of 
AlphZero (Gerbert 2018), fundamentally, all of these algo-
rithms at some stage in their design for operational tasks have 
incorporated human input. This collaboration between 
humans and algorithms leveraging high-performance 
computing has the potential to solve an array of greater 
problems than mere games of strategy. For example, for many 
decades the practice of engineering has consisted of humans 
leveraging their intellect with the support of computational 
tools to solve technical problems. Humans are still critical in 
asking the right questions and providing the appropriate 
focus, complementing the brute force computational power 
with creativity in selecting the most promising problem space 
to investigate (Wilson and Daugherty 2018). Humans also 
have a natural flexibility, versatility, and intuition that AI 
systems have yet to achieve. These uniquely human qualities 
are still quite impressive, especially considering the relatively 
low power consumption of the human mind.  

From the perspective of NDT applications incorporating 
algorithms, IA has the potential to address most of the disad-
vantages of the AI-based algorithms cited previously. For 
example, many of the most promising DLNN applications 
today—from speech recognition to text translation and image 
classification—are still far from perfect. However, that does 
not mean that these tools are not useful. In practice, humans 
can frequently detect errors made by AI and can quickly work 
around poor results. Humans often develop an understanding 
where such algorithms can be most appropriately applied and 
where they should be avoided. By leveraging the algorithms 

where they are most useful, it becomes less critical for the 
algorithm to be able to handle all scenarios, especially very 
rare events. Lastly, by operators working in conjunction  
with algorithms, there is no need to pursue eliminating the 
human entirely. In general, the most cost-effective and  
reliable solution will mostly likely be some hybrid,  
human-plus-machine based approach. 

Human-Machine Interfaces 
Typical human interfaces with computer systems in NDT 
have included monitors, keyboards, mouses, and possibly 
joystick interactions. While these classic PC interfaces are  
still efficient for many tasks, there are also a number of 
emerging devices and tools that connect humans with 
automation. For example, industrial touchscreen tablets, 
augmented reality glasses, wearable devices (such as smart-
watches), voice-recognition systems, and position tracking 
devices (such as Microsoft Kinect) all have the potential to 
provide more natural human-machine interfaces to support 
emerging NDT 4.0 systems. Several promising applications of 
augmented reality for aircraft maintenance applications have 
demonstrated feasibility in recent years (Avatar Partners 
2017; Jordon 2018). Unique visualization support tools have 
also been developed for automatically aligning and visualizing 
data to 3D models, which enables detailed analysis to detect 
trends at specific locations on the model, indicating potential 
process problems (Sharp et al. 2009). 

Challenges for Implementation 
While this is an exciting time for new human-machine inter-
face tools, there is a critical need to carefully optimize the fine 
interactions between humans and computer algorithms in 
NDT. Some work has studied the human-machine problem 
for different NDT applications (Dudenhoeffer et al. 2007; 
Bertović 2016a, 2016b). For example, Bertović performed a 
detailed survey of prior work on human factors when inter-
facing with automation in NDT (Bertović 2016a). While 
extensive human-automation interaction has clear benefits, 
research suggests that increased automation has a number of 
challenges, costs (a paradox frequently dubbed as “automa-
tion ironies” [Bainbridge 1987]), or “automation surprises” 
(Sarter et al. 1997). In this work, a failure modes and effects 
analysis (FMEA) was conducted to identify potential risks, 
and a number of preventive measures were proposed. Subse-
quent studies were used to verify the benefit of the preventive 
measures, highlighting mixed levels of success (Bertović 
2016a). 

Additional guidance on the challenge of human-machine 
interfaces can be gained from the experiences of other 
communities that also require very high levels of reliability. 
For example, in aviation, the use of autopilot systems and the 
handoff between human control and autopilot is a pertinent 
case study for NDT. In recent years, the accident rate for 
major aircraft has been reduced to one major accident per  
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2.56 million flights (Oliver et al. 2017). While overall air 
safety has been improving, incidents of the loss of control 
have not. Loss of control occurs when pilots fail to recognize 
and correct a potentially dangerous situation, causing an 
aircraft to enter an unstable condition. One example of the 
possible catastrophic consequences of automation is the tragic 
crash of flight AF447 (Oliver et al. 2017). Another very recent 
example concerns the Lion Air and Ethiopian Airlines crashes 
of Boeing 737 Max aircraft (Rice and Winter 2019). Such 
incidents are typically triggered by unexpected, unusual 
events, often comprising multiple conditions that rarely occur 
together, that fall outside of the normal repertoire of the 
pilot’s experience. In the case of the Boeing 737 Max, the 
handoff between the human and autopilot systems appears to 
have not been designed well, and many pilots were not 
instructed on its operation (Rice and Winter 2019). This 
paradox of almost totally safe systems, where the same tech-
nology that allows the systems to be efficient and largely 
error-free, can also create systemic vulnerabilities that result in 
occasional catastrophes. Lessons learned from these cases 
include: (1) avoiding the cycle of implementing more 
automation to correct for poor human performance with 
existing autopilot systems; (2) encouraging more hand-flying 
to prevent the erosion of basic piloting skills; (3) improving 
the management of handovers from machines to humans;  
(4) increasing pilot training for rare events; and (5) supple-
menting training using simulation of various rare event 
scenarios. It is critical to avoid the natural tendency to blame 
the human in these situations when the human-machine inter-
face and/or algorithm design is poor (Hao 2019). Alterna-
tively, it is important to find ways to make such systems 
robust and ideally “anti-fragile” to randomness and disorder in 
the environment (Taleb 2012). The human operator must 
have some level of “skin in the game” (Taleb 2012) and not 
become reliant on automation over time. Designing human-
machine interfaces and providing the necessary training to 
achieve this balance is far from trivial. 

Best Practices for Design of IA and Human-Machine 
Interfaces 
Building on this prior work and experience, a series of best 
practices for IA in NDT 4.0 is proposed, highlighting how the 
operator should best interface with NDT data and algorithms. 
Algorithms clearly have a great potential to help alleviate the 
burden of big data in NDT; however, it is important that 
operators are appropriately involved in secondary indication 
review and the detection of rare event conditions. The 
following best practices are proposed:  
l Provide inspectors with a natural user interface for NDT 

workflow management. Usability of human-machine inter-
faces is a critical aspect of workflow management for NDT 
techniques, from setup, standardization, data acquisition, and 
indication review. Ideally, inspectors need a way to report 
results and efficiently provide feedback on indications. 

Frequently, there are means in NDT software systems to 
annotate indication results; however, making this metadata 
readily available to external systems is one of the challenges 
for NDT 4.0 going forward. Such information will be very 
useful for refining NDT algorithms and improving life-cycle 
management. 

l Implement data analysis algorithms to address frequent NDT 
calls and complex data interpretation. It is important to 
address the low-hanging fruit on implementing algorithms for 
NDT applications and to help alleviate the burden for inspec-
tors of reviewing “mostly good” data. As well, some complex 
interpretation problems (especially in ultrasonic NDT) can 
benefit from algorithms and data guides. The design of these 
algorithms requires a focus on the base capability for making 
NDT indication calls to provide value and help ensure relia-
bility. The algorithm design process should consider the 
necessary engineering development time, cost for acquiring 
necessary data, and the approach with the highest likelihood 
of success. There will be a payoff for some applications, but 
not all applications may benefit from automation. However, 
as NDT 4.0 systems mature, development costs for each new 
application should be reduced. 

l Ensure inspectors provide a secondary review of indications 
and review data for rare events. While there is often an initial 
desire to have NDT algorithms make all indication calls and 
present simple (good or bad) calls, based on prior experi-
ence, additional information is always requested by engi-
neering and management to understand the details on why 
an indication call was made. Inspectors need a natural user 
interface to review each call with supporting data and provide 
feedback on the call details in light of the technical require-
ments. As well, because no algorithm will be perfect, inspec-
tors need to have a straightforward means to review NDT 
data quickly. This entails identifying rare indications and 
determining when the acquisition of the NDT data is out of 
specification.  

l Develop an integrated NDT “simulator” to provide operator 
training and support complex indication review. There is a 
potential to leverage the same software interface for training 
purposes, by having the operators periodically train and test 
their skills with various conditions in NDT data. Specific rare 
events can be stored and introduced periodically as part of 
the regular re-training process. Thus, the interface could be 
used similar to how flight simulators are used for pilots to 
verify their performance under standard conditions and rare 
events. As well, integrated models within the user interface 
can also provide a means for the verification of indications 
and support sizing by the inspectors. 

l Implement open architecture for NDT data and reporting. 
Promising software tools exist to support NDT practitioners 
with data archiving, visualization, and special queries (Sharp 
et al. 2009), and continued improvements with usability and 
functionality are expected in the future. Ideally, to share data 
between NDT 4.0 components, leveraging open data 
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standards (such as DICONDE and HDF5) and incorpo-
rating flexible software architectures, will greatly accelerate 
the evolution of these systems (Meier et al. 2017; Vrana et al. 
2018).  

l Reliability must be demonstrated for NDT 4.0 systems. The 
capability of inspection procedures incorporating NDT 4.0 
systems that depend on the performance of both algorithms 
and the NDT inspector must be evaluated jointly. Probability 
of detection (POD) evaluation procedures, such as  
MIL-HDBK-1823A (US DOD 2009), are designed to 
validate the reliability of NDT techniques, regardless of how 
the indication call is made.  

l Software and algorithms can also support NDT reliability as 
process controls. Simply demonstrating POD capability does 
not ensure reliability of the technique (Rummel 2010). 
FMEA should be performed for all NDT techniques incorpo-
rating automation to understand the potential sources for 
poor reliability (Bertović 2016a). In practice, NDT reliability 
depends on a reproduceable calibration procedure and a 
repeatable inspection process (Rummel 2010). Process 

controls and algorithms can thus be used to ensure all cali-
bration indications are verified and to track key metrics that 
show the NDT process is repeatable over time and under 
control. As an example, recent work on model-based inverse 
algorithms with eddy current inspections has shown the 
potential to reduce error due to variability in probes through 
calibration process controls (Aldrin et al. 2017). NDT 4.0 
systems are also expected to improve the safety of inspections 
in dangerous environments. By collecting environmental 
conditions (using environmental sensors and/or weather 
monitoring) and test system state data from the site, one can 
ensure the reliability of the inspection task and reduce the 
level of risk for all involved. 

l Build trust over time and consider the cost-benefit for 
future algorithms and user interface enhancements. 
Managing costs and mitigating risk drive most decisions 
for NDT today. For organizations that depend on NDT, 
there are likely certain applications that will provide the 
greatest payoff in terms of cost and quality for their 
customers, transitioning from conventional NDT  
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to NDT 4.0. The transition of algorithms should initially 
be a phased approach, to both validate the algorithm’s 
performance and build an understanding of where algo-
rithms are reliable and where limitations exist. By tracking 
called indications over time, it becomes feasible to refine 
algorithms as necessary. Building that experience internally 
and achieving an initial payoff will lead to a broader transi-
tion of these best practices across an organization and 
greater shareholder value. Organizational change manage-
ment must ease this transition through the proper training 
of inspectors and also management of expectations. 

Applications 
Several case studies are presented in the following sections 
that highlight these best practices of leveraging algorithms in 
NDT applications and addressing human-machine interfaces. 
These early examples can be considered in the context of a 
minimal viable product, providing a product with just enough 
features to satisfy early requirements and provide feedback for 
future product development. These examples provide key 
insight on both the promise for NDT 4.0 applications as well 
as opportunities for future improvement.  

Early Example Where AI Vision Becomes IA in Practice 
Following the success of the C-141 weep hole inspection 
program (Aldrin et al. 2001), the development of automated 
data analysis algorithms was investigated for the inspection of 

beam cap holes in US Air Force (USAF) C-130 aircraft 
(Figure 2a) (Lindgren et al. 2005). Here, the fastener sites of 
interest were in locations of limited accessibility from the 
external surface and contain fasteners with sealant (Figure 2b). 
Due to limitations with the NDT capability at the time, there 
was a need to develop improved ultrasonic techniques to 
detect fatigue cracks at these locations. A key challenge was 
the ability to discern multiple signals originating from a 
possible crack and a geometric feature in a part that was either 
closely spaced or superimposed in time. The C-130 beam cap 
holes provided a special challenge given the skewed riser, 
installed fasteners, and limited transducer accessibility of the 
B-scan inspection (Figure 2b). This inspection problem 
frequently produced reflections from the fastener hole (referred 
to as reradiated insert signals) occurring at similar times of flight 
(TOF) as near and far crack signals. To address this challenge, a 
novel feature extraction methodology was developed to detect 
the relative shift of signals in time for adjacent transducer loca-
tions due to differing echo dynamics from cracks and part 
geometries (Aldrin et al. 2006). This technique was the first 
ultrasonic NDT method using assisted data analysis methods, 
validated through a POD study, to inspect for fatigue cracks on 
USAF structures (Lindgren et al. 2005).  

A view of the operator’s user interface, dating back to  
16 years now, is presented in Figure 3. The original vision for 
the approach was to have the automated data analysis (ADA) 
algorithms make all of the indication calls. The team referred 

–1 = Signal too weak from hole;
 increase gain and rerun

–4 = Hole signal cut off;
 expand scan range and rerun

RIS = Reradiated insert signals
 (due to tight fastener fit)

Figure 3. Graphical user interface for automated data analysis (ADA) software incorporating neural network classifiers.
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to this early interface as simply “red light/green light.” 
However, during transition, when a call was made by the algo-
rithm, the question of “Why was the call made?” would imme-
diately follow. Enhancements were made to the software to 
provide more specific feedback on called indications and 
highlight when data was not adequate for making indication 
calls. A couple examples of hole indications being too weak or 
cut off to make proper calls are shown in Figure 3. As well, 
certain severe structure-plus-fastener conditions were found 
to produce false calls on rare occasions. To manage these false 
calls by the algorithm, the results and raw data required a 
secondary review by inspectors. Inspectors were trained on 
what to look for in the B-scan to manage this limitation with 
the algorithm. Although this technique was the first AI/neural 
network–based approach used to inspect a portion of the 
USAF C-130 fleet, this case study is actually a very good 
example of IA in practice. 

Lessons Learned on Improving the Human-Machine Interface  
Ultrasonic testing is one of the most effective methods to 
detect critical defect types and ensure the reliability of aero-
space polymer matrix composite structures. Most inspection 
applications of composites are based on pulse-echo ultrasonic 
testing and manual C-scan data interpretation. Using ampli-
tude and TOF C-scan data, delaminations, disbonds, porosity, 
and foreign materials can be detected and located in depth. 
However, the ultrasonic inspection of large composite  

structures requires a significant work force and production 
time. To address this inspection burden, ADA software tools 
were developed and implemented (Aldrin et al. 2016a). The 
ADA minimizes the inspector’s burden on performing 
mundane tasks and allocates their time to analyze data of 
primary interest. When the algorithm either detects a feature 
in the data that is unexpected or that is found to be represen-
tative of a defect, then the indication is flagged for further 
analysis by the inspector. 

A software interface for the ADA toolkit is shown in 
Figure 4. The main view provides a summary of the found 
indications in the analyzed data, a visual presentation of an 
indication map, and quantitative metrics assisting the 
operator in understanding why each call was made. An 
example of ADA processing results is reported in the interface 
display shown in Figure 4. Options are provided to enter 
feedback into the “review” column to indicate if certain calls 
are incorrect. This example specimen contains artificial 
defects that have been added at varying locations and ply 
depth, including above and below the adhesive layer. Indica-
tions are listed in the spreadsheet display in the upper left, and 
corresponding numbers are presented identifying the indica-
tions in the C-scan image display on the right. For these ADA 
evaluations of the two different scan orientations, the three 
triangular inserts in the bond region were all correctly called. 
The left-most triangle is in front of the bond and the right two 
triangles are behind the bond. Indications for the six inserted 
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Bond
region

indications

“Sticky note” indication

Figure 4. Example ADA toolkit interface with results for a test panel with embedded artificial defects, scanned from tool side, with time of flight 
C-scan view (adapted from Aldrin et al. 2016a).
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materials at the radii are also observed in the TOF map in 
Figure 4. As well, there are options to add uncalled indications 
as missed calls into the ADA report with comments. Lastly, 
features are also provided to support verification of calibration 
scans, detecting the file and matching the indication calls with 
expected calibration results. During this development 
program, feedback from the team and end users was critical in 
delivering the necessary capability.  

Ensuring NDT 4.0 Reliability 
A helpful model to represent the reliability of an inspection 
system has been introduced by Müller and others (Müller et 
al. 2000, 2014). Total reliability of an NDT system is defined 
by the intrinsic capability of the system, providing an upper 
bound for the technique under ideal conditions, with contri-
butions from application parameters, the effect of human 
factors, and organization context that can degrade the 
performance. While NDT 4.0 systems are expected to 
enhance POD performance through improved human factors 
(supporting ease of use) and repeatability in making complex 
calls with varying application parameters, NDT 4.0 capability 
must be evaluated. NDT techniques, whether incorporating 
AI algorithms, manual inspector data review, or a mixed IA-based 
approach, require validation through a POD evaluation. 
Comprehensive POD evaluation procedures (US DOD 2009; 
ASTM 2015) have been developed to validate the reliability 
of NDT techniques, regardless of how the indication call is 
made. In prior work, a POD study was conducted to evaluate 
the capability of an ADA algorithm to detect cracks around 
holes in vertical riser aircraft structures (Aldrin et al. 2001). In 
the study, an ADA approach incorporating neural networks 
was compared with manual data review by inspectors. Results 
demonstrated that the automated neural network approach 
was significantly improved in both detectability, false call rate, 
and inspection time relative to manual data interpretation 
(Aldrin et al. 2001). Other recent studies have also addressed 
the role of POD evaluation when human factors are involved 
(Bato et al. 2017). 

The greatest challenge with validation of NDT algorithms 
is ensuring that the algorithm is not overtrained but can 
handle the variability of practical NDT measurements outside 
of the laboratory. Testing algorithms with independent 
samples with respect to training data is critical. Model-assisted 
approaches for training (Fuchs et al. 2019) and validation 
(Aldrin et al. 2016b) will help provide a diversity of condi-
tions beyond what is practical and cost-effective with experi-
mental data only. Because of these challenges, properly 
validating NDT techniques using IA is expected to be far 
easier than a purely AI-based technique. For the example of 
validating self-driving car technology, simply augmenting the 
driver experience with collaborative safety systems is much 
more straightforward to validate than fully validating an  
AI only–based self-driving car technology. Recent accidents 
during the testing of self-driving cars indicate the care that is 

needed to properly and safely validate such fully automated 
systems when lives are at stake.  

Lastly, at this early stage in the application of AI and IA, 
there are currently no certification requirements for people 
who design and/or train such algorithms. However, as the 
field matures, such best practices should be shared 
throughout the community and included in accredited 
training programs. Over time, the potential value of imple-
menting certification programs should be considered, possibly 
under the umbrella of NDT engineering. 

Conclusions and Recommendations 
While an increasing use of automation and algorithms in 
NDT is expected over time, NDT inspectors will play a 
critical role in ensuring NDT 4.0 reliability. As a counterpoint 
to AI, IA was presented as an effective use of information 
technology to enhance human intelligence. Based on prior 
experience, this paper introduces a series of best practices for 
IA in NDT, highlighting how the operator should ideally 
interface with NDT data and algorithms. Algorithms clearly 
have a great potential to help alleviate the burden of big data 
in NDT; however, it is important that operators are involved 
in both secondary indication review and the detection of rare 
event indications not addressed well by typical algorithms. In 
addition, IA provides more flexibility with the application of 
AI. When applications are not a perfect fit for existing AI algo-
rithms, a human user can adapt and leverage the benefits of AI 
appropriately.  

Future work should continue to address the validation of 
NDT techniques that leverage both humans and algorithms 
for data review and investigate appropriate process controls 
and software design to ensure optimal performance. 
Currently, AI algorithms are being developed primarily by 
engineers to perform very specific tasks, but there may come a 
time soon when AI tools are more adaptive and offer collabo-
rative training. It is important for adaptive AI algorithms to 
maintain a core competency while also providing flexibility 
and learning capability. Care must be taken to avoid having an 
algorithm “evolve” to a poorer level of practice, due to bad 
data, inadequate guidance, or deliberate sabotage. Like 
computer viruses today, proper design practices and FMEA 
are needed to ensure such algorithms are robust to varying 
conditions. It is important to design these systems to periodi-
cally do self-checks on standard data sets, similar to how 
inspectors must verify NDT systems/transducers using stan-
dardization procedures or having inspectors perform NDT 
examinations periodically.  

Lastly, NDT 4.0–connected initiatives such as digital 
threads and digital twins are examples of how material systems 
can be better managed in the future (Kobryn et al. 2017; 
Lindgren 2017). The digital thread provides a means to track all 
digital information regarding the manufacturing and sustain-
ment of a component and system, including the material state 
and any variance from original design parameters. The digital 
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twin concept provides a digital equivalent of a system and 
exercises the digital twin model through various use scenarios 
to evaluate individual performance and forecast possible 
emerging maintenance issues. NDT 4.0 systems are critical to 
achieving these digital thread and digital twin concepts, 
enabling an evolution in knowledge management for end 
users.  
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