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Motivation

@ Using the immersed boundary (IB) method,
¢ Investigate the interaction between a thin elastic material and fluid,
¢ Immersed boundaries are massive or porous.

¢ Examples: Flapping Filament, Mapleseed, Parachute, Foam
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Immersed Boundary Method

Two types of systems of equations:
Incompressible viscous flow (Eulerian).
Thin elastic material (Lagrangian).

Interaction equations
Using the Dirac delta function.
Elastic force in Lagrangian — Body force in Eulerian.
Elastic boundary moves at a local fluid velocity (no slip condition).
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Equations of Motion
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Equations of Motion
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Mass of Immersed boundary
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Mass of Immersed boundary

Mass of the Elastic Boundary

p(x,t) = /M(r, s)é(x — X(r, s,t))drds,

9,
p(x,t)(a—l: +u-Vu) = -Vp+uViu+f,
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Penalty IB method |

Split the elastic boundary into two Lagrangian components: massive component
Y (r, s,t) and massless component X(r, s, t).

Y (r, s,t) does not interact with the fluid and moves by Newton'’s law.

X (r, s,t) has no mass and plays the same role as in the 1B method.



Penalty IB method |

Split the elastic boundary into two Lagrangian components: massive component
Y (r, s,t) and massless component X(r, s, t).

Y (r, s,t) does not interact with the fluid and moves by Newton'’s law.
X (r, s,t) has no mass and plays the same role as in the 1B method.
The two components are connected by very stiff springs.

The spring force acts on both components to keep them close.
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Penalty IB method Il

are replaced by
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Flapping Filament in a flowing soap film

Application I: Flapping Filament in a Flowing Soap Film




Flapping Filament in a flowing soap film

e Comparison between massless and massive boundaries.
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Interaction with a rigid body

F(q,r,s,t) = K(Y(q,7,s,t) — X(q,T,5,1)) (8)

f(x,t) = /F(q,r,s,t)cS(x — X(q,1,8,t))dgdrds (9)



Interaction with a rigid body

Y(q,7,5,t) = Yem(t) + R(t)Cl(q, 7, 5) (10)
Md‘;zm = — / F(q,r,s,t)dgdrds — Mg (11)
dz;m = Vem(t) (12)
% _ / (Y (g7, 5,8) — Yem(t)) X (=F(q,, 5, t))dqdrds (13)
L(t) = / m(g, 7, 8)((R()C)" (R(t)C)Is — (R(t)C)(R(t)C)") (t) dqdrds
= R(t) / m(q,r,s)(CTCI3 — CCT) dgdrds R(t)T Q(t) (14)
drR

= Q(t) x R(t) (15)



Two dropping discs

Initial
(t=05s)

Drafting
(t=1s)

Kissing
(t=2s)

Tumbling
(t=3s)

Xg(® ()

Y ® )

(t) (cmls)

\Y
cm

two falling discs

time (s)




Maple seed
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Motion of Maple seed

Transition
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maple seed
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Parachute with Porous Canopy (2nd extension
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IB method with Porous Boundary

gas foam boundary
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gas side 1
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Let U(s, t) be fluid velocity at X (s, t) and %(s, t) be the boundary velocity.
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(U(s,t) — X (s,1))| 22 |ds = M (p1 — p2)| 2= |ds, where M is the permeability.
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IB method with Porous Boundary

gas foam boundary
side 2

gas side 1

Let U(s, t) be fluid velocity at X (s, t) and ‘9X > (s,t) be the boundary velocity.

Flux through a patch with the length |%—)§ |ds:
(U(s,t) — X (s,1))| 22 |ds = M (p1 — p2)| 2= |ds, where M is the permeability.

Normal equilibrium of the boundary: (p1 — p2)| 22 (s, t)| + F(s,t) -n = 0.
%_)t((sat) - U(Sat) — MF(S>t> ) n/|%—}§|
Since F(s,t) is normal to the boundary;,

0X

ey —(s,t) = u(X(s,t),t) —|—MF(s,t)/|%—}S(| (16)

— /u(x,t)5(x—X(r,s,t))dx—i—MF(s,t)/|%—)§|



2-D Parachute with Porous Canopy
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Motion of 2-D Parachute
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2D Foam Dynamics: von Neumann relation
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2D Foam Dynamics: von Neumann relation
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M :permealbility; ~v:surface tension; x:mean curvature.

Assume that the gas diffuses through the wall at a rate — M ~  per unit length.

% = —M~ [pKkds.
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2D Foam Dynamics: von Neumann relation
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M :permealbility; ~v:surface tension; x:mean curvature.

Assume that the gas diffuses through the wall at a rate — M ~  per unit length.

dA
&2 =—M~y [pkds.

where «;: exterior angle; n: number of walls.
The rate of change of the area of a given cell is independent of cell size and solely
dependent on the number of walls (or edges) of the cell.

The area is constant for 6-sided bubbles, bubbles with fewer than 6 sides tend to
shrink, and bubbles with more than 6 sides tend to grow.



2D Foam Dynamics: Force and Normal slip
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2D Foam Dynamics: Force and Normal slip
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F(s,t) = & (v7) =52

0X 0X
T(S,t) = ¥/|g .

X (5,6) = [ u(x,1)(x — X(s,6))dx + MF/ | 2%/,



Foam with 3 inner cells
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Foam with 500 cells
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3D Foam Dynamics
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R.D.MacPherson and D.J.Srolovitz, “The von Neumann relation generalized to
coarsening of three-dimensional micro-structures”, Nature, 2007.

4V — —2xM~(L(D) — 2 3°9_, e;(D)), where L(D) is a natural measure of the

linear size of domain D and e; is the length of triple line (edge) .

Descretzied version of the 3D von Neumann relation:

v _ —M~y ) " Leb.,

dt eck

where L. is the length of edge e of the triangular facet, and 6. is the angle
between the two facets with the same edge e.



3D foam: Continuous force and normal slip

Let X(r, s,t) be a foam boundary,

E
F(r,s,t) = —g—X,

EX(, )] =~[ |%—>f x 9% | drds, where  is the surface tension.
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3D foam: Continuous force and normal slip

Let X(r, s,t) be a foam boundary,

E
F(r,s,t) = —g—X,

EX(, )] =~[ |%—>f x 2% | drds, where  is the surface tension.

Normal slip is

0X
0s

)

X
E(T,S,t) = u(X(T,S,t),t)+MF/|88T X

0X
Os |

— [ a0 = X5 )+ M | T 5




3D foam: Discrete force and slip using Triangulation

After triangulation of the foam boundary,
1
EX" =y |TFl=~)_ §|(X’§ - X7) x (X5 — X)),
k k

where T* is a triangle with vertices {X%, X5, X%} and |T*| is the area of the
triangle T%.
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3D foam: Discrete force and slip using Triangulation

After triangulation of the foam boundary,
1
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F]f = m Zk;:1(XI§ — X’S) X n]f7
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3D foam: Discrete force and slip using Triangulation

After triangulation of the foam boundary,
1
EX" =y |TFl=~)_ §|(X’§ - X7) x (X5 — X)),
k k

where T* is a triangle with vertices {X%, X5, X%} and |T*| is the area of the
triangle T%.
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k
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3D Foam Dynamics with a single inner cell
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3D Foam Dynamics: 3D von Neumann relation
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3D General Foam with 40 Cells
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Conclusions and Future Work:

The pIB method is useful for the interaction between massive boundary and fluid.

The pIB method can be applied to problems by decoupling the structural dynamics
from the fluid dynamics.

The results verify 2D and 3D von Neumann relations.

The IB method can handle the interaction between porous elastic material and the
surrounding fluid.

Improve the stability condition generated from elastic force.

Increases in the Reynolds number are needed in various ways: improved fluid
solvers, global mesh refinement, adaptive mesh refinement, and direct numerical
simulation of turbulence models.
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