Reinforced Concrete Design to ACI 318-11 Vertical Forces - Review Page

Load Combinations (see ACI 318-11 section 9.2):

- 1. U = 1.4D
- 2. $U = 1.2D + 1.6L + 0.5(L_r \text{ or } S \text{ or } R)$
- 3. $U = 1.2D + 1.6(L_r \text{ or } S \text{ or } R) + (1.0L \text{ or } 0.5W)$
- 4. $U = 1.2D + 1.0W + 1.0L + 0.5(L_r \text{ or } S \text{ or } R)$
- 5. U = 1.2D + 1.0E + 1.0L + 0.2S
- 6. U = 0.9D + 1.0W
- 7. U = 0.9D + 1.0E

Strength Reduction Factors: ϕ

- Tension-controlled 0.90
- Compression-controlled Tied 0.65
- Spiral 0.75
- Shear and Torsion
 0.75
 Description
- Bearing on Concrete 0.65

Flexural Moment Capacity:

$$M_n = A_s f_y (d - \frac{0.5A_s f_y}{0.85f'_c b})$$

(Approximately, As = Mu/(4d); where As is in², d is in inches and Mu is kip-ft)

Shear Design: $\phi V_n = \phi (V_c + V_s) > V_u$

Beam Shear and One-way Shear in Slabs at d from support:

		$V_u \leq \phi V_c/2$	$\phi V_c \ge V_u > \phi V_c/2$	$V_u > \phi V_c$
Required area of stirrups, A _v		none	$\frac{50b_{w}s}{f_{yt}}$	$\frac{(V_u - \phi V_c)s}{\phi f_{yt}d} \ge \frac{50b_w s}{f_{yt}}$
Stirrup spacing s	Required		$\frac{A_v f_{yt}}{50 b_w}$	$\frac{\phi A_v f_{yt} d}{V_u - \phi V_c} \ge \frac{A_v f_{yt}}{50 b_w}$
	Maximum		d/2 or 24 in.	$d/2 \text{ or } 24 \text{ in. for}$ $(V_u - \phi V_c) \le \phi 4 \sqrt{f'_c} b_w d$ $d/4 \text{ or } 12 \text{ in. for}$ $(V_u - \phi V_c) > \phi 4 \sqrt{f'_c} b_w d$

Two-Way Shear in Slabs & Footings at d/2 from support (minimum of the following):

 $V_c = 4 \sqrt{f'_c} b_o d$ (upper bound) $V_c = (2+4/\beta) \sqrt{f'_c} b_o d$ (column shape: β = ratio of long to short column dimensions) $V_c = [(\alpha_s d)/b_o + 2] \sqrt{f'_c} b_o d$ (column location: $\alpha_s = 40$ interior, 30 edge, 20 corner columns)

Short Column Axial Load Design:

Spiral Column: $\phi P_{n,max} = 0.85 \phi [0.85f'_c (A_g - A_{st}) + f_y A_{st}]$

Tied Column: $\phi P_{n,max} = 0.80 \phi [0.85f'_c (A_g - A_{st}) + f_y A_{st}]$

Short Tied Column "rule of thumb": $P_u = A_g \times \frac{1}{2} f'_c$ at 1% steel ($f_v = 60$ ksi)