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Definition (Asymptotic Phase)

Let M be a smooth n-dimensional manifold with distance metric
d,let ®: M xR — M be a flow satisfying the autonomous
differential equation w = F(x), and let v(t) = ®(xo, t) be a
hyperbolic, stable limit cycle with period T passing through the
point xop € M. Let I = {v(t),0 <t < T} be the point set
comprising the limit cycle, and let W*(I') be the stable manifold of
[, the set of points that converge to [ as t — oco. For any point
x € W#(IN), define the asymptotic phase function 6(x) € [0, T) to
be the unique value such that as t — o0,

d(®(t,x) —v(t+6(x))) — 0.

[Guckenheimer 1975]
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Definition (Isochron)

Let xo € [ C M and ® be as above, and let 2 be the largest
section through xp such that the first return time,

T = inf{t > 0|®(t,x) € X} satisfies 7 = T for all x € £y. Then
2 o is the isochron for [ through xp.

[Guckenheimer 1975]
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» For a deterministic oscillator, the asymptotic phase
disambiguates initial points.

» For a stochastic oscillator, all initial points (densities)
converge to the same stationary density Py(x) as t — oo.
Initial data is forgotten at arbitrarily long times.

» But at each point x the convergence to Py is oscillatory, with
a well defined “phase”.
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Stochastic Limit Cycle

SDE: dX = A(X) dt + B(X) dW  (It6 interpretation)
Define B = BB". For t > s, density is:

1
ply,t]x,s) = dy Pr{X(t) € [y,y +dy) | X(s) = x}

0
at”

— —Z 5y, APy, t]x,5) ZZ 5yidy, (Bi¥)ply.tx.5))

ply,t|x,s) = Ly[p] (forward operator)

(,fp(y, t|x,s) = Ll[p] (backward operator)

—ZA(X —p(y,t|xs ZZBU(X

p(y,tlx s)
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Assuming L can be diagonalized, we can expand the density into a
biorthogonal system of eigenfunctions

p(y, tIx,s) = Po(y) + Y X Py(y) Q5 (x), (2)
A

where the eigentriples (A, P, Q*) satisfy

APy, LT[QF] = AQ3, (3)
/dx Q;(X)P)\/(X) — 5)\,)\’- (4)

L[P)]
(@Qx|Px)

All eigenvalues but one will have negative real parts, representing
decaying modes.

Asymptotic Phase for Stochastic Oscillators. Thomas and Lindner. Phys. Rev. Lett. 2014
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Assumptions

We say to the system is robustly oscillatory if

1. The nontrivial eigenvalue with least negative real part,
A1 = i+ iw, is complex (with w > 0).

2. The oscillation is faster than the decay: |w/u| > 1.

3. The slowest decaying mode is separated from the faster
decaying modes, i.e. for all other eigenvalues )\, R[] < 2u.

Under these conditions, the slowest decaying mode (as the density
approaches its steady state Py) will oscillate with period 27 /w,
and decay with time constant 1/|u|.

Asymptotic Phase for Stochastic Oscillators. Thomas and Lindner. Phys. Rev. Lett. 2014
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Example: Heteroclinic “Oscillator”
(A)

[CTE

Bty /2

1

y1 = cos(y1) sin(y2) + a sin(2y1) + ~/2D&; (t)
' —sin(yp) cos(y2) + a sin(2yp) + @Ez(t)

<. <
[\ ®] [
|-

Phase Resetting in an Asymptotically Phaseless System:
On the Phase Response of Limit Cycles Verging on a Heteroclinic Orbit.
Shaw, Park, Chiel, Thomas. SIADS. 2012

Power Spectrum of a Noisy System Close to a Heteroclinic Orbit
Giner-Baldo, Thomas, Lindner. J. Stat. Phys. in press 2017
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Example: Heteroclinic “Oscillator”
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Power Spectrum of a Noisy System Close to a Heteroclinic Orbit
Giner-Baldo, Thomas, Lindner. J. Stat. Phys. in press 2017
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Gedankenexperiment

Fix a final condition y and measure the time varying histogram at
earlier times s < t at another point x, i.e. p(x, s|y, t).

For a stationary ensemble, p(x, s|y, t) — Po(x) as s = —o0. The
convergence follows a decaying oscillation:

p(x,sly, t) — Po(x) _ e~
2u(x)v(y)Po(x)  Poly)

The phase offset upon shifting the “initial point” x defines the

asymptotic phase ¥ (x) of the oscillator.
This phase comes from the slowest decaying eigenfunction of the

backward operator.

cos (w(t—s) +¥(x)—a(y)). (5)
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Eigenvalues of the backward (adjoint) Fokker-Planck operator

LT = [cos(z)sin(y) + asin(2z)]0, + DO?
+ [—sin(x) cos(y) + asin(2y)]0, + D@g. (7)

© -
* e D=0.01125
D=0.1
g 0 . L2 *
._E. .
L ] ® "
L \\ /
-1 leading ]
1 | eigenvalues
03 02 0.1 0
Re(\)

Asymptotic Phase for Stochastic Oscillators. Thomas and Lindner. Phys. Rev. Lett. 2014
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B
Phase of eigenfunction— .D=0.01125 (B)

Simulations =

l
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Conclusions |

» Asymptotic phase cannot be defined in the usual way for
stochastic systems. Individual trajectories do not converge
asymptotically to one another, and all densities

p(y; t) = Po(y), as t = oo

regardless of initial density.

» Convergence to the unique invariant distribution Py is
asymptotic to a decaying oscillation

p(x, sly, t)—Po(y) ~ e~ cos(w(t—s)+¥(x)~¢(y)), as (t—s) — oo

with A = 1 + iw the slowest decaying eigenvalue of L.

» The argument 1(x) of the corresponding eigenfunction,
Q*(x) = u(x)e™™), of the adjoint operator £I[Q*] = AQ*
generalizes the asymptotic phase of a deterministic oscillator.
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Phase Description of Stochastic Oscillations

Justus T.C. Schwabedal™ and Arkady Pikovsky

Department of Physics and Astronomy, Potsdam University, 14476 Potsdam, Germany
(Received 29 January 2013; published 13 May 2013)

We introduce an invariant phase description of stochastic oscillations by generalizing the concept of
standard isophases. The average isophases are constructed as sections in the state space, having a constant
mean first return time. The approach allows us to obtain a global phase variable of noisy oscillations, even
in the cases where the phase is ill defined in the deterministic limit. A simple numerical method for finding
the isophases is illustrated for noise-induced switching between two coexisting limit cycles, and for noise-
induced oscillation in an excitable system. We also discuss how to determine isophases of observed
irregular oscillations, providing a basis for a refined phase description in data analysis.
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Phase Description of Stochastic Oscillations

Justus T. C. Schwabedal™ and Arkady Pikovsky

For a noisy system we define the isophase surface J as a
Poincaré surface of section, for which the mean first return
time J — J, after performing one full oscillation, is a
constant 7', which can be interpreted as the average oscil-
lation period. In order for isophases to be well defined,
oscillations have to be well defined as well: for example in
polar coordinates, the radius variable must never become
zero, so that one can reliably recognize each “oscillation.”
Random processes for which this is not the case should be
treated with care.

Analytical calculations of the mean first return time
(MFRT) are a complex problem in dimensions larger
than one; therefore, below we apply a simple numerical
algorithm for construction of the isophases: an initial
Poincaré section is iteratively altered until all mean return
times are approximately equal. In two-dimensional sys-
tems for which isophases are lines, we represent Poincaré
sections by a linear interpolation in between a set of knots.
For each knot x;, the average return time 7; is computed
via the Monte Carlo simulation. According to the mis-
match of T; and the mean period (T’), the knot x; is
advanced or retarded. The procedure is repeated with all
knots, until it converges and all return times 7'; are nearly

equal to (7).

Guckenheimer 1975
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Reformulation of the “Average Isophase” Construction

Mean first passage time T(x) from x to an absorbing boundary S :
LIT(X)]=-1. T(x)=0,x€S. n-VT(x)=0,x € Seest.

To establish the boundary conditions, we unwrap the oscillator.

Heteroclinic oscillator

Alexander Cao, MS Thesis 2017
Phase for Stochastic Oscillators ~ Peter Thomas ~ May 21,2017 ~ SIAM Snowbird ~ MS | ~ Isochrons and Isostables



Reformulation of the “Average Isophase” Construction

Mean first passage time T(x) from x to an absorbing boundary S :
LIT(X)]=-1. T(x)=0,x€S. n-VT(x)=0,x € Seest.

To establish the boundary conditions, we unwrap the oscillator.

Heteroclinic oscillator

Alexander Cao, MS Thesis 2017
Phase for Stochastic Oscillators ~ Peter Thomas ~ May 21,2017 ~ SIAM Snowbird ~ MS | ~ Isochrons and Isostables



Reformulation of the “Average Isophase” Construction

Mean first passage time T(x) from x to an absorbing boundary S :
LIT(X)]=-1. T(x)=0,x€S. n-VT(x)=0,x € Seest.

To establish the boundary conditions, we unwrap the oscillator.

Heteroclinic oscillator

Alexander Cao, MS Thesis 2017
Phase for Stochastic Oscillators ~ Peter Thomas ~ May 21,2017 ~ SIAM Snowbird ~ MS | ~ Isochrons and Isostables



Reformulation of the “Average Isophase” Construction

Mean first passage time T(x) from x to an absorbing boundary S :
LIT(X)]=-1. T(x)=0,x€S. n-VT(x)=0,x € Seest.

To establish the boundary conditions, we unwrap the oscillator.

Mean first passage time function T(x)
should jump by mean period <T> at
section.

Heteroclinic oscillator

Alexander Cao, MS Thesis 2017
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Reformulation of the “Average Isophase” Construction

Mean first passage time T(x) from x to an absorbing boundary S :
LIT(X)]=-1. T(x)=0,x€S. n-VT(x)=0,x € Seest.

To establish the boundary conditions, we unwrap the oscillator.

Heteroclinic oscillator Multileaf construction.

Alexander Cao, MS Thesis 2017
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Reformulation of the “Average Isophase” Construction

Mean first passage time T(x) from x to an absorbing boundary S :
LIT(X)]=-1. T(x)=0,x€S. n-VT(x)=0,x € Seest.

To establish the boundary conditions, we unwrap the oscillator.

4 o 1

1. Obtain stationary density L[Py] = 0 and mean period T.

2. Solve Li[T(x)] = —1, where T(x) jumps by T across an
(arbitrary) section to the center.

Phase for Stochastic Oscillators ~ Peter Thomas ~ May 21,2017 ~ SIAM Snowbird ~ MS | ~ Isochrons and Isostables



Reformulation of the “Average Isophase” Construction

Noisy heteroclinic oscillator

y1 = cos(y1) sin(yz) + a sin(2y1) + ~/2D&; (¢)
y2 = —sin(y1) cos(y2) + a sin(2yy) + v/2Dé&> (1)

Alexander Cao, MS Thesis 2017

1. Obtain stationary density L[Py] = 0 and mean period T.

2. Solve Ei[T(x)] —= —1, where T(x) jumps by T across an
(arbitrary) section to the center.
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Reformulation of the “Average Isophase” Construction
Newby and Schwemmer’s “Antirotating” Oscillator

x = —wy +yx(1 — p?) + cyyQ(p) + V2DE,(t)
y = wx +7y(1 - p*) — cyxQ(p) + V2DE, (t)
p=vVx2+y? Qi(p)=p"—1

Effects of moderate noise on a limit cycle oscillator: counterrotation and bistability.
Newby and Schwemmer. Phys. Rev. Lett., 2014
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Reformulation of the “Average Isophase” Construction

Stuart-Landau perturbed by y-polarized noise

F=f+4orcosfE(t), 6 =g+ osinbE(t)

f=r(1—r°)+ ﬁ (cos® 6 — sin” 0)
— > ,
52
g —wtrcosf — Kkr* + ?cosﬁsinﬁ.

Alexander Cao, MS Thesis 2017
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Conclusions ||

» Schwabedal and Pikovsky (2013) suggested defining isochrons
as sections with uniform mean first return times.

» We interpret such “average isophase’ isochrons as level curves
of a MFPT function T(x) satisfying a 2nd order elliptic PDE
LT[T] = —1 with a jump boundary condition. This
formulation solves both the geometry and timing of the
isochrons.

» Rigorous existence and uniqueness theory remains to be
established, but numerical implementation (finite difference)
appears robust.
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Defining the Phase for Stochastic Oscillators

Does T(x) = (¢o — 1(x)) - T/2w? That is, are the average
isophase function T(x) and the asymptotic phase (x) obtained
from the slowest decaying complex eigenfunction

Q(x) = u(x)e™¥™ of LT equivalent?
» From Ito, E[dT(x)] = LT[T(X)] = —1 = const. Similarly

E[dy(x)] = LT[y (x)] Z B;j(9; In u)(0j1) # const.

» Lemma 1 (Cao 2017): For additive isotropic noise Bjj = ¢j;, if
the eigenfunction @ is complex analytic, then average
Isophase and stochastic asymptotic phase are equivalent.

» Lemma 2 (Cao 2017): For a 1D oscillator,

dX = f(X)dt +/2D(X) dW(t), X €[0,2n)

it e and T coincide then D and f are both constant.
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