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Main ingredient 1: Multilevel Monte Carlo
Set-up

@ Suppose we want to compute £, ()], for some quantity of interest
() = Q(#) depending on parameters f# ~ Ji.

@ In many applications, the evaluation of () involves solving a
differential equation. We cannot compute () exactly, and instead

have access to a sequence of approximations {();};2, where:

» ()q is the cheapest, but also the least accurate approximation,

» (J); Is increasing in cost and accuracy as f increases, with ) = ().
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Main ingredient 1: Multilevel Monte Carlo
Set-up

@ Suppose we want to compute £, ()|, for some quantity of interest
() = (Q(#) depending on parameters # ~ .

@ In many applications, the evaluation of () involves solving a
differential equation. We cannot compute () exactly, and instead
have access to a sequence of approximations {();};°, where:

» (), is the cheapest, but also the least accurate approximation,

» (J); Is increasing in cost and accuracy as f increases, with 0 = Q.

@ Using the linearity of expectation, we can write

O

E.[Q] =Eu Qo] + %E#[Q{ — Qe

@ For practical purposes, we need to truncate the series.
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Main ingredient 1: Multilevel Monte Carlo

Definition
@ Multilevel Monte Carlo - © truncate at fixed L € N,
introducing a bias that decays to 0 as L — oc:
L
E. Q] ~ E,|Qo] + Z £, |Qr — Qe—1]-
=1

We estimate the L + 1 terms independently using Monte Carlo:

;\'D L. ‘\'g
AN/ | : ; 1 ). -
QMRS = 35 3 Q8"+ 333 @)~ Qa )
N g=] ¢=1.""" 1i=l
where Hf) o L.
@ Debiasing Monte Carlo - truncate at

random L, defining an unbiased estimator with finite expected cost.
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Main ingredient 1: Multilevel Monte Carlo

Error and Cost

@ In practice, we choose L large enough so that the bias is of the same
size as the sampling error.
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o, ,
~MLMC 1 o " (7) - 1 = (2) (2)
QL.{NE} = \?.3_ E Qolby") + E \—I E Qe(0, )—Qr'_1(9!- ).
) =1 - '

=] =i |

where HE"—) b L.
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O,
L | No
AMLMC . plt) (2)
QL.{A’E} . Z Q{](H ; N, Z; QI(H,’ ) — QI—I(H; ).
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Main ingredient 1: Multilevel Monte Carlo

Error and Cost

@ In practice, we choose L large enough so that the bias is of the same
size as the sampling error.

@ Why is the multilevel Monte Carlo estimator efficient?

@ [he sequence {\,} is decreasing, since

Np x V[QD]* Ny x V[Qt_ = Qf'—l]-
@ [his means:

» we take a large number Ny of cheap samples of (g,

» we take a small number N, of expensive samples of )y, for { > 1,
since V(Q¢ — Qp_1] - 0 as { — oc.

@ In contrast, standard Monte Carlo approaches use a large number of
expensive samples of () .
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J\'D “\ﬂ
P | : - 1 - -
MLMC ._ ()\ , oy A (i)
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=1 =1 =1 M,
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Main ingredient 1: Multilevel Monte Carlo

Error and Cost

@ In practice, we choose L large enough so that the bias is of the same
size as the sampling error.

@ Why is the multilevel Monte Carlo estimator efficient?

@ [he sequence {\,} is decreasing, since

:\?ﬂ OC V[Q{]J L\'; X V{Q; — Qi'—l}*
@ [his means:

» we take a large number Ny of cheap samples of (g,

» we take a small number N, of expensive samples of Jy, for { > 1,
since V(Qy — Qp_1] - 0 as { — .

@ In contrast, standard Monte Carlo approaches use a large number of
expensive samples of ) .
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Main ingredient 2: Bayesian posterior distributions
Set-up

@ We are interested in ;1 = ;¥ being the posterior distribution in a
Bayesian inverse problem

Y
rf-;![]

TNIE —|ly— >
(0) o e Iv=FOIZ_; (;Ty(ﬁ] o~ lv=FOI2_, rro(ﬁ)).

@ [ his arises from

» incorporating knowledge on # in a prior distribution o (with density
o),

» observing data y = F(#) + 1), with noise n ~ N(0.1),

» conditioning sty on y, resulting in the posterior distribution p¥ (with
density 7¥). .
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() o e~ NlV=FOIR_1 (;Ty(m + o~ IlV=F@I}_ HO(H])_
rf".‘r[]
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f ‘,.U - 2 i
;; (9) —||y—1 {H‘:!|r_[- (?TH(H) ~ E—HH—F{H}“F—l ?Tg(ﬁ))
(Ll
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Multilevel Metropolis Hastings algorithm

Computational challenges

What are the main challenges?

@ [he normalising constant of ;¥ is unknown, and i.i.d. sampling is not
available.

» We employ Markov chain Monte Carlo samplers.

@ [he quantity F can typically not be evaluated exactly, but we have
access to a sequence of approximations {F;}/ <., with F = F..

» This gives rise to a sequence of approximate posterior measures
{1717, so how should we define the multilevel estimator?
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Multilevel Metropolis Hastings algorithm
Algorithm

We need to generate coupled Markov chains {H( }},Em and {(—i l}fEr\;

9 {(—J‘,_l} has marginal distribution ¢/ _,,

o {#}"} has marginal distribution 1”,

‘WMH s -

(2;_]{(“}{ ]

— ) as { — .

The main idea of our algorithm is to:

@ use Metropo

@ use Metropo

Is-Hastings wit

Is-Hastings wit

n O)_1 ~ q(- \(—}E_Jl) to generate ()[ +11),
i@ = (—-}!_1 to generate HF

The acceptance probability a?" for H}-” Is easy to compute, and we can

ol 21,0
prove L-*i.__n-‘[

This means P [ gl
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Multilevel Metropolis Hastlngs algorlthm

Implementation details

@ So far, iu; was defined by approximating F by F;. We also

» change the number of parameters on level (: # € R — #,.5 € R

» change the noise level on level ¢: I — 1;, where n ~ N(0.I').

@ |n practice, we always start at level 0 when generating samples, and
use a sub-sampling rate 7,.

» This leads to an efficient implementation with small integrated
autocorrelation times (O(1)) on levels £ > 1 on level

@ For more details on efficient implementation using DUNE and MUQ),
see talk by Linus Seelinger in MS121 at 3.30pm.
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Multilevel Metropolis Hastings algorithm

Example in groundwater flow modelling

@ Unknown permeability of subsurface: /(.r),
@ Prior distribution: log k(2) ~ GP (0. exp(—2

Karhunen-Loeve ex

@ Parametrisation of k(x):

log £ ( i)—ZHJ!J

Under the prior dlstrlbutmn,

Ry
Zﬁjrj(t)

i.i.d

c(0.1)3

2 —2||1))

hansion

0 = {0;}21, ¥; € L=((0,1)%)

N(0.1).

@ Resulting pressure field p(xr): =V - (k(x)Vp(r)) =

@ Observed data: y = {p(r;)

@ Quantity of interest: outflow over right boundary
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Multilevel Metropolis Hastings algorithm

Example in groundwater flow modelling
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